Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/1735688.1735708acmotherconferencesArticle/Chapter ViewAbstractPublication PagesgpgpuConference Proceedingsconference-collections
research-article

Iterative induced dipoles computation for molecular mechanics on GPUs

Published: 14 March 2010 Publication History

Abstract

In this work, we present a first step towards the efficient implementation of polarizable molecular mechanics force fields with GPU acceleration. The computational bottleneck of such applications is found in the treatment of electrostatics, where higher-order multipoles and a self-consistent treatment of polarization effects are needed. We have coded these sections, for the case of a non-periodic simulation, with the CUDA programming model. Results show a speedup factor of 21 for a single precision GPU implementation, when comparing to the serial CPU version. A discussion of the optimization and parameterization steps is included. Comparison between different graphic cards and a shared memory parallel CPU implementation is also given. The current work demonstrates the potential usefulness of GPU programming in accelerating this field of applications.

References

[1]
A. Aguado and P. A. Madden. Ewald summation of electrostatic multipole interactions up to the quadrupolar level. J. Chem. Phys., 119:7471, 2003.
[2]
J. A. Anderson, C. D. Lorenz, and A. Travesset. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comp. Phys., 227:5342, 2008.
[3]
P. Barnes, J. L. Finney, J. D. Nicholas, et al. Cooperative effects in simulated water. Nature, 282:459, 1979.
[4]
M. D. Beachy, D. Chasman, R. B. Murphy, et al. Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields. J. Am. Chem. Soc., 119:5908, 1997.
[5]
C. J. Burnham, J. C. Li, S. S. Xantheas, et al. The parametrization of a thole-type all-atom polarizable water model from first principles and its application to the study of water clusters (n=2âĂŞ21) and the phonon spectrum of ice ih. J. Chem. Phys., 110:4566, 1999.
[6]
R. Chelli, P. Procacci, R. Righini, et al. Electrical response in chemical potential equalization schemes. J. Chem. Phys., 111:8569, 1999.
[7]
B. L. Claus and S. R. Johnson. Grid computing in large pharmaceutical molecular modeling. Drug Discov. Today, 13:578, 2008.
[8]
W. D. Cornell, P. Cieplak, C. I. Bayly, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc., 117:5179, 1995.
[9]
B. G. Fitch, R. S. Germain, M. Mendell, et al. Blue matter, an application framework for molecular simulation on blue gene. J. Parallel Distrib. Comput., 63:759, 2003.
[10]
M. S. Friederichs, P. Eastman, V. Vaidyanathan, et al. Accelerating molecular dynamic simulation on graphics processing units. J. Comput. Chem., 30:864, 2009.
[11]
K. Group. Open Computing Language (OpenCL), Jan 2010. http://www.khronos.org/opencl/.
[12]
B. Guillot and Y. Guissani. How to build a better pair potential for water. J. Chem. Phys., 114:6720, 2001.
[13]
M. J. Harvey and G. D. Fabritiis. An implementation of the smooth particle mesh ewald method on gpu hardware. J. Chem. Theory Comput., 5:2371, 2009.
[14]
B. Jang, S. Do, H. Pien, et al. Architecture-aware optimization targeting multithreaded stream computing. GPGPU-2: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, pages 1--9, Mar 2009.
[15]
W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 118:11225, 1996.
[16]
J. Kaminsky and F. Jensen. Force field modeling of amino acid conformational energies. J. Chem. Theor. Comput., 3:1774, 2007.
[17]
J. Kaminsky, R. A. Mata, H.-J. Werner, et al. The accuracy of local mp2 methods for conformational energies. Mol. Phys., 106:1899, 2008.
[18]
P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded sparc processor. IEEE Micro-Institute of Electrical and Electronics Engineers, 25(2):21--29, 2005.
[19]
E. Lindholm, J. Nickolls, and S. o. Oberman. NVIDIA Tesla: A Unified Graphics and Computing Architecture. Micro, IEEE, 28(2):39--55, March 2008.
[20]
D. Luebke, M. Harris, J. Krüger, et al. GPGPU: General Purpose Computation on Graphics Hardware. In SIGGRAPH '04: ACM SIGGRAPH 2004 Course Notes, page 33, New York, NY, USA, 2004. ACM.
[21]
A. D. MacKerell Jr., D. Bashford, M. Bellott, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 102:3586, 1998.
[22]
J. A. V. Meel, A. Arnold, D. Frenkel, et al. Harvesting graphics power for md simulations. Mol. Simul., 34:259, 2008.
[23]
NVIDIA. CUDA occupancy calculator v1.5, Feb 2009. http://developer.download.nvidia.com/compute/cuda//CUDA_Occupancy_calculator.xls.
[24]
NVIDIA. Compute Unified Device Architecture (CUDA), Jan 2010. http://www.nvidia.com/object/cuda_home.html.
[25]
J. W. Ponder. TINKER: Software Tools for Molecular Design; 4.2 ed. Washington University School of Medicine: Saint Louis, 2003.
[26]
J. W. Ponder and D. A. Case. Force fields for protein simulations. Adv. Prot. Chem., 66:27, 2003.
[27]
M. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Science Engineering, 2004.
[28]
A. K. Rappé and W. A. Goddard III. Charge equilibration for molecular dynamics simulations. J. Phys. Chem., 95:3358, 1991.
[29]
P. Ren and J. W. Ponder. Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations. J. Comput. Chem., 23:1497, 2002.
[30]
P. Ren and J. W. Ponder. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B, 107:5933, 2003.
[31]
S. W. Rick. Simulations of ice and liquid water over a range of temperatures using the fluctuating charge model. J. Chem. Phys., 114:2276, 2001.
[32]
S. W. Rick and B. J. Berne. Dynamical fluctuating charge force fields: the aqueous solvation of amides. J. Am. Chem. Soc., 118:672, 1996.
[33]
S. W. Rick, S. J. Stuart, and B. J. Berne. Dynamical fluctuating charge force fields: Application to liquid water. J. Chem. Phys., 101:6141, 1994.
[34]
S. Ryoo, C. I. Rodrigues, S. S. Stone, et al. Program optimization carving for gpu computing. J Parallel Distr Com, 68(10):1389--1401, Jan 2008.
[35]
H. A. Stern, F. Rittner, B. J. Berne, et al. Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function. J. Chem. Phys., 115:2237, 2001.
[36]
J. E. Stone, J. C. Phillips, P. L. Freddolino, et al. Accelerating molecular modeling applications with graphics processors. J. Comput. Chem., 28:2618, 2007.
[37]
S. J. Stuart and B. J. Berne. Effects of polarizability on the hydration of the chloride ion. J. Phys. Chem., 100:11934, 1996.

Cited By

View all
  • (2019)Classical molecular dynamics on graphics processing unit architecturesWIREs Computational Molecular Science10.1002/wcms.144410:2Online publication date: 5-Sep-2019
  • (2018)Fine-grain parallelism using multi-core, Cell/BE, and GPU SystemsParallel Computing10.1016/j.parco.2011.08.00238:8(365-390)Online publication date: 31-Dec-2018
  • (2012)Energy efficient stream-based configurable architecture for embedded platforms2012 International Conference on Embedded Computer Systems (SAMOS)10.1109/SAMOS.2012.6404174(193-200)Online publication date: Jul-2012
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
GPGPU-3: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units
March 2010
124 pages
ISBN:9781605589350
DOI:10.1145/1735688
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 March 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. GPGPU
  2. induced dipoles
  3. molecular mechanics
  4. parallel programing
  5. polarizable force fields

Qualifiers

  • Research-article

Conference

GPGPU-3

Acceptance Rates

Overall Acceptance Rate 57 of 129 submissions, 44%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Classical molecular dynamics on graphics processing unit architecturesWIREs Computational Molecular Science10.1002/wcms.144410:2Online publication date: 5-Sep-2019
  • (2018)Fine-grain parallelism using multi-core, Cell/BE, and GPU SystemsParallel Computing10.1016/j.parco.2011.08.00238:8(365-390)Online publication date: 31-Dec-2018
  • (2012)Energy efficient stream-based configurable architecture for embedded platforms2012 International Conference on Embedded Computer Systems (SAMOS)10.1109/SAMOS.2012.6404174(193-200)Online publication date: Jul-2012
  • (2012)Computation of Induced Dipoles in Molecular Mechanics Simulations Using Graphics ProcessorsJournal of Chemical Information and Modeling10.1021/ci200564x52:5(1159-1166)Online publication date: 9-May-2012
  • (2011)Accelerating geospatial analysis on GPUs using CUDAJournal of Zhejiang University SCIENCE C10.1631/jzus.C110005112:12(990-999)Online publication date: 6-Dec-2011

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media