Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Filament-based smoke with vortex shedding and variational reconnection

Published: 26 July 2010 Publication History

Abstract

Simulating fluids based on vortex filaments is highly attractive for the creation of special effects because it gives artists full control over the simulation using familiar tools like curve editors or the scripted generation of new vortex filaments over time. Because filaments offer a very compact description of fluid flow, real time applications like games or virtual reality are also possible.
We present a complete model that includes moving obstacles with vortex shedding, all represented as filaments. Due to variational reconnection the long-time behavior of our method is excellent: Energy and momentum stay constant within reasonable bounds and computational complexity does not increase over time.

Supplementary Material

JPG File (tp058-10.jpg)
Supplemental material. (115.zip)
Animation is in 720p Quicktime format.
MP4 File (tp058-10.mp4)

References

[1]
Angelidis, A., and Neyret, F. 2005. Simulation of Smoke based on Vortex Filament Primitives. In Proc. Symp. Comp. Anim., 87--96.
[2]
Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In Proc. Symp. Comp. Anim., 25--32.
[3]
Angelidis, A. 2004. Hexanions: 6d Space for Twists. Tech. rep., University of Otago, November.
[4]
Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface flows. In Proc. Symp. Comp. Anim., 209--217.
[5]
Bernard, P. S. 2006. Turbulent flow properties of large-scale vortex systems. Proc. Natl. Acad. Sci. USA.
[6]
Bernard, P. S. 2009. Vortex filament simulation of the turbulent coflowing jet. Phys. Fluids 21.
[7]
Börm, S., Grasedyck, L., and Hackbusch, W. 2003. Hierarchical Matrices. Lecture Notes. MPI MIS.
[8]
Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., and Koumoutsakos, P. 2008. Billion vortex particle direct numerical simulations of aircraft wakes. Comput. Methods Appl. Mech. Engrg. 197, 1296--1304.
[9]
Chorin, A. J. 1990. Hairpin removal in vortex interactions. J. Comput. Phys. 91, 1, 1--21.
[10]
Chorin, A. J. 1993. Hairpin Removal in Vortex Interactions II. J. Comput. Phys. 107, 1, 1--9.
[11]
Crane, K., Llamas, I., and Tariq, S. 2007. GPU Gems 3 - Real-Time Simulation and Rendering of 3D Fluids. Addison-Wesley, ch. 30, 633--673.
[12]
Desbrun, M., and Gascuel, M.-P. 1996. Smoothed particles: a new paradigm for animating highly deformable bodies. In Symp. on Computer animation and simulation, Springer, 61--76.
[13]
Desbrun, M., Kanso, E., and Tong, Y. 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, vol. 38 of Oberwolfach Seminars. Birkhäuser.
[14]
Dormand, J. R., and Prince, P. J. 1980. A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics 6, 1, 19--26.
[15]
Dyke, M. V. 1982. An album of fluid motion. The parabolic Press, Stanford.
[16]
Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1.
[17]
Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proc. ACM/SIGGRAPH Conf., 15--22.
[18]
Greengard, C., and Anderson, C. R., Eds. 1988. Vortex Methods, vol. 1360 of Lecture Notes in Mathematics. Springer.
[19]
Katz, J., and Plotkin, A. 2001. Low-Speed Aerodynamics, 2 ed. No. 13 in Cambridge aerospace series. Cambridge Univ. Press.
[20]
Kim, B., Liu, Y., Llamas, I., and Rossignac, J. 2005. Flow-Fixer: Using BFECC for Fluid Simulation. In Proc. EG Workshop on Natural Phenomena, E. Galin and P. Poulin, Eds.
[21]
Kim, T., Thürey, N., James, D., and Gross, M. 2008. Wavelet turbulence for fluid simulation. In Proc. ACM/SIGGRAPH Conf., 1--6.
[22]
Kim, T. 2008. Hardware-aware analysis and optimization of stable fluids. In Proc. I3D Symp., 99--106.
[23]
Krüger, J., and Westermann, R. 2005. GPU Simulation and Rendering of Volumetric Effects for Computer Games and Virtual Environments. Comp. Graph. Forum 24, 3.
[24]
Lim, T. T., and Nickels, T. B. 1992. Instability and reconnection in the head-on collision of two vortex rings. Nature 357, 225--227.
[25]
Lim, T. T. 1989. An experimental study of a vortex ring interacting with an inclined wall. Experiments in Fluids 7, 7 (July), 453--463.
[26]
Marsden, J., and Weinstein, A. 1983. Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica 7D, 305--323.
[27]
Marzouk, Y. M., and Ghoniem, A. F. 2007. Vorticity structure and evolution in a transverse jet. J. Fluid Mech. 575, 267--305.
[28]
Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-preserving Integrators for Fluid Animation. Proc. ACM/SIGGRAPH Conf. 28, 3.
[29]
Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. Symp. Comp. Anim., 154--159.
[30]
Müller, M., Stam, J., James, D., and Thürey, N. 2008. Real time physics: class notes. In ACM/SIGGRAPH classes, 1--90.
[31]
Narain, R., Sewall, J., Carlson, M., and Lin, M. C. 2008. Fast animation of turbulence using energy transport and procedural synthesis. ACM Trans. Graph. 27, 5, 1--8.
[32]
Neyret, F. 2003. Advected Textures. In Proc. Symp. Comp. Anim.
[33]
Park, S. I., and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proc. Symp. Comp. Anim., 261--270.
[34]
Pfaff, T., Thuerey, N., Selle, A., and Gross, M. 2009. Synthetic turbulence using artificial boundary layers. In Proc. ACM/SIGGRAPH Asia Conf., 1--10.
[35]
Pinkall, U., Springborn, B., and Weissmann, S. 2007. A new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow. J. Phys. A: Math. Theor. 40, 42, 12563--12576.
[36]
Rasmussen, N., Nguyen, D. Q., Geiger, W., and Fedkiw, R. 2003. Smoke simulation for large scale phenomena. ACM Trans. Graph. 22, 3, 703--707.
[37]
Rockliff, S. H. L., Peter Ryal Voke, and Nicole Jacqueline. 2000. Three-Dimensional Vortices of a Spatially Developing Plane Jet. International Journal of Fluid Dynamics 4, 1-+.
[38]
Saffman, P. G. 1992. Vortex Dynamics. Cambridge University Press, Cambridge.
[39]
Sato, K. 1999. Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.
[40]
Sauter, S., and Schwab, C. 2004. Randelementmethoden. Vieweg+Teubner.
[41]
Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24, 3, 910--914.
[42]
Stam, J., and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In Proc. ACM/SIGGRAPH Conf., 369--376.
[43]
Stam, J., and Fiume, E. 1995. Depicting fire and other gaseous phenomena using diffusion processes. In Proc. ACM/SIGGRAPH Conf., 129--136.
[44]
Stam, J. 1999. Stable fluids. In Proc. ACM/SIGGRAPH Conf., 121--128.
[45]
Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Trans. Graph. 25, 3, 826--834.
[46]
Weiler, K. 1985. Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments. Computer Graphics and Applications, IEEE 5, 1 (Jan.), 21--40.
[47]
Weissmann, S., and Pinkall, U. 2009. Real-time interactive simulation of smoke using discrete integrable vortex filaments. In Proc. Vir. Real., Inter. & Phys. Sim., 1--10.
[48]
Weissmann, S., Gunn, C., Brinkmann, P., Hoffmann, T., and Pinkall, U. 2009. jReality. In Proc. ACM/MM Conf., 927--928.
[49]
Yan, H., Wang, Z., He, J., Chen, X., Wang, C., and Peng, Q. 2009. Real-time fluid simulation with adaptive SPH. Computer Animation and Virtual Worlds 20, 2--3, 417--426.
[50]
Yang, Q. 2009. Real-time simulation of 3D smoke based on Navier-Stokes equation. W. Trans. on Comp. 8, 1, 103--112.

Cited By

View all
  • (2024)Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent FlowsComputer Graphics Forum10.1111/cgf.1502443:2Online publication date: 30-Apr-2024
  • (2023)The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle MethodsAxioms10.3390/axioms1203024812:3(248)Online publication date: 28-Feb-2023
  • (2023)High-Order Moment-Encoded Kinetic Simulation of Turbulent FlowsACM Transactions on Graphics10.1145/361834142:6(1-13)Online publication date: 5-Dec-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 29, Issue 4
July 2010
942 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1778765
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 July 2010
Published in TOG Volume 29, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. fluid simulation
  2. panel method
  3. vortex filaments
  4. vortex reconnection
  5. vortex shedding

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)29
  • Downloads (Last 6 weeks)4
Reflects downloads up to 14 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent FlowsComputer Graphics Forum10.1111/cgf.1502443:2Online publication date: 30-Apr-2024
  • (2023)The VM2D Open Source Code for Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle MethodsAxioms10.3390/axioms1203024812:3(248)Online publication date: 28-Feb-2023
  • (2023)High-Order Moment-Encoded Kinetic Simulation of Turbulent FlowsACM Transactions on Graphics10.1145/361834142:6(1-13)Online publication date: 5-Dec-2023
  • (2023)A Parametric Kinetic Solver for Simulating Boundary-Dominated Turbulent Flow PhenomenaACM Transactions on Graphics10.1145/361831342:6(1-20)Online publication date: 5-Dec-2023
  • (2023)Fluid CohomologyACM Transactions on Graphics10.1145/359240242:4(1-25)Online publication date: 26-Jul-2023
  • (2022)Research on smoke simulation with vortex sheddingPLOS ONE10.1371/journal.pone.026911417:6(e0269114)Online publication date: 16-Jun-2022
  • (2022)Hidden Degrees of Freedom in Implicit Vortex FilamentsACM Transactions on Graphics10.1145/3550454.355545941:6(1-14)Online publication date: 30-Nov-2022
  • (2022)Seeing through obstructions with diffractive cloakingACM Transactions on Graphics10.1145/3528223.353018541:4(1-15)Online publication date: 22-Jul-2022
  • (2022)NeuralSoundACM Transactions on Graphics10.1145/3528223.353018441:4(1-15)Online publication date: 22-Jul-2022
  • (2022)Approximate convex decomposition for 3D meshes with collision-aware concavity and tree searchACM Transactions on Graphics10.1145/3528223.353010341:4(1-18)Online publication date: 22-Jul-2022
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media