Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Fast viscoelastic behavior with thin features

Published: 01 August 2008 Publication History

Abstract

We introduce a method for efficiently animating a wide range of deformable materials. We combine a high resolution surface mesh with a tetrahedral finite element simulator that makes use of frequent re-meshing. This combination allows for fast and detailed simulations of complex elastic and plastic behavior. We significantly expand the range of physical parameters that can be simulated with a single technique, and the results are free from common artifacts such as volume-loss, smoothing, popping, and the absence of thin features like strands and sheets. Our decision to couple a high resolution surface with low-resolution physics leads to efficient simulation and detailed surface features, and our approach to creating the tetrahedral mesh leads to an order-of-magnitude speedup over previous techniques in the time spent re-meshing. We compute masses, collisions, and surface tension forces on the scale of the fine mesh, which helps avoid visual artifacts due to the differing mesh resolutions. The result is a method that can simulate a large array of different material behaviors with high resolution features in a short amount of time.

Supplementary Material

MOV File (a47-wojtan.mov)

References

[1]
Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3, 617--625.
[2]
Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2006. A semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1, 19--38.
[3]
Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, 16:1--16:8.
[4]
Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3, 100:1--100:7.
[5]
Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Computer Graphics Forum 26, 3, 339--347.
[6]
Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3, 594--603.
[7]
Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. Symposium on Computer Animation, 28--36.
[8]
Brochu, T. 2006. Fluid Animation with Explicit Surface Meshes and Boundary-Only Dynamics. Master's thesis, University of British Columbia.
[9]
Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3, 586--593.
[10]
Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. A multiresolution framework for dynamic deformations. In Proc. Symposium on Computer Animation, 41--47.
[11]
Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proc. Symposium on Computer Animation, 219--228.
[12]
Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In Proc. Symposium on Computer Animation, 219--228.
[13]
Desbrun, M., Meyer, M., Schröder, P., and Barr, A. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. SIGGRAPH, 317--324.
[14]
Enright, D., Losasso, F., and Fedkiw, R. 2005. A fast and accurate semi-Lagrangian particle level set method. Computers and Structures 83, 479--490.
[15]
Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE TVCG 3, 3, 201--214.
[16]
Galoppo, N., Otaduy, M., Mecklenburg, P., Gross, M., and Lin, M. 2006. Fast simulation of deformable models in contact using dynamic deformation textures. In Proc. Symp. on Computer Animation, 73--82.
[17]
Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463--468.
[18]
Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. Symposium on Computer Animation, 131--140.
[19]
Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26, 3, 13:1--13:6.
[20]
Jiao, X. 2007. Face offsetting: A unified approach for explicit moving interfaces. J. Comput. Phys. 220, 2, 612--625.
[21]
Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In the Proceedings of Eurographics Symposium on Point-based Graphics, 125--133.
[22]
Labelle, F., and Shewchuk, J. R. 2007. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. 26, 3, 57:1--57:10.
[23]
Lien, S., and Kajiya., J. T. 1984. A symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra. IEEE CG&A 4, 10 (October), 35--41.
[24]
Lindstrom, P., and Turk, G. 1999. Evaluation of memoryless simplification. IEEE TVCG 5, 2, 98--115.
[25]
Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812--819.
[26]
Molino, N., Bridson, R., Teran, J., And Fedkiw, R. 2003. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In IMR, 103--114.
[27]
Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 3, 385--392.
[28]
Mullen, P., McKenzie, A., Tong, Y., and Desbrun, M. 2007. A variational approach to eulerian geometry processing. ACM Trans. Graph. 26, 3, 66.
[29]
Müller, M., and Gross, M. 2004. Interactive virtual materials. In the Proccedings of Graphics Interface, 239--246.
[30]
Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proc. Symposium on Computer Animation, 49--54.
[31]
Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proc. Symposium on Computer Animation, 141--151.
[32]
Müller, M., Teschner, M., and Gross, M. 2004. Physically-based simulation of objects represented by surface meshes. In Computer Graphics International, 26--33.
[33]
Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3, 471--478.
[34]
Nooruddin, F. S., and Turk, G. 2003. Simplification and repair of polygonal models using volumetric techniques. IEEE Transactions on Visualization and Computer Graphics 9, 2, 191--205.
[35]
O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In the Proceedings of ACM SIGGRAPH 99, 137--146.
[36]
O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291--294.
[37]
Pauly, M., Keiser, R., Adams, B., Dutré;, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3, 957--964.
[38]
Reynolds, C. W., 1992. Adaptive polyhedral resampling for vertex flow animation, unpublished. http://www.red3d.com/cwr/papers/1992/df.html.
[39]
Rivers, A. R., and James, D. L. 2007. Fastlsm: fast lattice shape matching for robust real-time deformation. ACM Trans. Graph. 26, 3, 82:1--82:6.
[40]
Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20, 4, 151--160.
[41]
Shewchuk, J. R. 2002. What is a good linear element? interpolation, conditioning, and quality measures. In 11 th Int. Meshing Roundtable, 115--126.
[42]
Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Proc. Symposium on Computer Animation, 73--80.
[43]
Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proc. Symposium on Computer Animation, 81--90.
[44]
Terzopoulos, D., and Fleischer, K. 1988. Deformable models. The Visual Computer 4, 306--331.
[45]
Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In the Proceedings of ACM SIGGRAPH 1988, 269--278.
[46]
Terzopoulos, D., Platt, J., and Fleischer, K. 1989. Heating and melting deformable models (from goop to glop). In the Proceedings of Graphics Interface, 219--226.

Cited By

View all
  • (2023)A Multilevel Active-Set Preconditioner for Box-Constrained Pressure Poisson SolversProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069396:3(1-22)Online publication date: 24-Aug-2023
  • (2023)Physical Cyclic AnimationsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069386:3(1-18)Online publication date: 24-Aug-2023
  • (2023)NeuroDogProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069366:3(1-19)Online publication date: 24-Aug-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 27, Issue 3
August 2008
844 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1360612
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 August 2008
Published in TOG Volume 27, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computational fluid dynamics
  2. deformable models
  3. explicit surface
  4. finite element method
  5. free-form deformation
  6. viscoelastic behavior

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)11
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)A Multilevel Active-Set Preconditioner for Box-Constrained Pressure Poisson SolversProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069396:3(1-22)Online publication date: 24-Aug-2023
  • (2023)Physical Cyclic AnimationsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069386:3(1-18)Online publication date: 24-Aug-2023
  • (2023)NeuroDogProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069366:3(1-19)Online publication date: 24-Aug-2023
  • (2023)A comparison of linear consistent correction methods for first-order SPH derivativesProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069336:3(1-20)Online publication date: 24-Aug-2023
  • (2023)Physics-based Motion Retargeting from Sparse InputsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069286:3(1-19)Online publication date: 24-Aug-2023
  • (2023)HDHumansProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069276:3(1-23)Online publication date: 24-Aug-2023
  • (2023)A Generalized Constitutive Model for Versatile MPM Simulation and Inverse Learning with Differentiable PhysicsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069256:3(1-20)Online publication date: 24-Aug-2023
  • (2023)A Unified Particle-Based Solver for Non-Newtonian Behaviors SimulationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.334145330:4(1998-2010)Online publication date: 12-Dec-2023
  • (2023)Stretching Simulation of Viscoelastic Fluid with Spring ConnectionSimulation and Modeling Methodologies, Technologies and Applications10.1007/978-3-031-23149-0_5(94-105)Online publication date: 11-Feb-2023
  • (2022)Declarative Specification for Unstructured Mesh Editing AlgorithmsACM Transactions on Graphics10.1145/3550454.355551341:6(1-14)Online publication date: 30-Nov-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media