Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Landslide susceptibility mapping is an indispensable prerequisite for landslide prevention and reduction. At present, research into landslide susceptibility mapping has begun to combine machine learning with remote sensing and geographic information system (GIS) techniques. The random forest model is a new integrated classification method, but its application to landslide susceptibility mapping remains limited. Landslides represent a serious threat to the lives and property of people living in the Zigui–Badong area in the Three Gorges region of China, as well as to the operation of the Three Gorges Reservoir. However, the geological structure of this region is complex, involving steep mountains and deep valleys. The purpose of the current study is to produce a landslide susceptibility map of the Zigui–Badong area using a random forest model, multisource data, GIS, and remote sensing data. In total, 300 pre-existing landslide locations were obtained from a landslide inventory map. These landslides were identified using visual interpretation of high-resolution remote sensing images, topographic and geologic data, and extensive field surveys. The occurrence of landslides is closely related to a series of environmental parameters. Topographic, geologic, Landsat-8 image, raining data, and seismic data were used as the primary data sources to extract the geo-environmental factors influencing landslides. Thirty-four layers of causative factors were prepared as predictor variables, which can mainly be categorized as topographic, geological, hydrological, land cover, and environmental trigger parameters. The random forest method is an ensemble classification technique that extends diversity among the classification trees by resampling the data with replacement and randomly changing the predictive variable sets during the different tree induction processes. A random forest model was adopted to calculate the quantitative relationships between the landslide-conditioning factors and the landslide inventory map and then generate a landslide susceptibility map. The analytical results were compared with known landslide locations in terms of area under the receiver operating characteristic curve. The random forest model has an area ratio of 86.10%. In contrast to the random forest (whole factors, WF), random forest (12 major factors, 12F), decision tree (WF), decision tree (12F), the final result shows that random forest (12F) has a higher prediction accuracy. Meanwhile, the random forest models have higher prediction accuracy than the decision tree model. Subsequently, the landslide susceptibility map was classified into five classes (very low, low, moderate, high, and very high). The results demonstrate that the random forest model achieved a reasonable accuracy in landslide susceptibility mapping. The landslide hazard zone information will be useful for general development planning and landslide risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abella EAC, Van Westen CJ (2007) Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides 4:311–325. doi:10.1007/s10346-007-0087-y

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44. doi:10.1007/s100640050066

    Article  Google Scholar 

  • Althuwaynee OF, Pradhan B, Park HJ, Lee JH (2014) A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 11(6):1063–1078. doi:10.1007/s10346-014-0466-0

    Article  Google Scholar 

  • Ardizzone F, Fiorucci F, Santangelo M, Cardinali M, Mondini AC, Rossi M, Reichenbach P, Guzzetti F (2013) Very-high resolution stereoscopic satellite images for landslide mapping. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, Heidelberg, pp 95–101. doi:10.1007/978-3-642-31325-7_12

    Chapter  Google Scholar 

  • Armaş I, Vartolomei F, Stroia F, Braşoveanu L (2014) Landslide susceptibility deterministic approach using geographic information systems: application to Breaza town, Romania. Nat Hazards 70:995–1017. doi:10.1007/s11069-013-0857-x

    Article  Google Scholar 

  • Bălteanu A, Chendeşb V, Simaa M, Enciua P (2010) A country-wide spatial assessment of landslide susceptibility in Romania. Geomorphology 124:102–112

    Article  Google Scholar 

  • Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43:3–31. doi:10.1016/S0167-7012(00)00201-3

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale in the Arno River Basin. Landslides 2:329–342

    Article  Google Scholar 

  • Catani F, Segoni S, Falorni G (2010) An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resour Res 46:1–15

    Article  Google Scholar 

  • Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13:2815–2831. doi:10.5194/nhess-13-2815-2013

    Article  Google Scholar 

  • Cleary PW, Prakash M, Rothauge K (2010) Combining digital terrain and surface textures with large-scale particle-based computational models to predict dam collapse and landslide events. Int J Image Data Fus 1(4):337–357. doi:10.1080/19479832.2010.491801

    Article  Google Scholar 

  • Costanzo D, Rotigliano E, Irigaray Fernández C, Jiménez-Perálvarez JD, Chacón Montero J (2012) Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain). Syst Sci 12(327–340):2012. doi:10.5194/nhess-12-327-2012

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. Transportation Research Board, Washington DC, Special Report 247, pp 36–75

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • De Vita P, Napolitano E, Godt JW, Baum RL (2013) Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy. Landslides 10:713–728. doi:10.1007/s10346-012-0348-2

    Article  Google Scholar 

  • Demir G, Aytekin M, Akgün A, Ikizler SB, Tatar O (2013) A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat Hazards 65(3):1481–1506. doi:10.1007/s11069-012-0418-8

    Article  Google Scholar 

  • Díaz-Uriarte R, De Andres S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinf 7:1–13. doi:10.1186/1471-2105-7-3

    Article  Google Scholar 

  • Du J, Yin K, Lacasse S (2013) Displacement prediction in colluvial landslides, three Gorges reservoir, China. Landslides 10(2):203–218. doi:10.1007/s10346-012-0326-8

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (west Black Sea region, Turkey). Eng Geol 75:229–250. doi:10.1016/j.enggeo.2004.06.001

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98. doi:10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Feng XT, Zhang Z, Sheng Q (2000) Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method. Int J Rock Mech Min Sci 37(7):1039–1054. doi:10.1016/S1365-1609(00)00035-6

    Article  Google Scholar 

  • Gordan B, Armaghani DJ, Hajihassani M, Monjezi M (2015) Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng Comput (Germany). doi:10.1007/s00366-015-0400-7

    Google Scholar 

  • Guzzetti F (2015) Forecasting natural hazards, performance of scientists, ethics, and the need for transparency. Toxico enviro Chem. doi:10.1080/02772248.2015.1030664

    Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multiscale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. doi:10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Proc Land 37:77–91. doi:10.1002/esp.2223

    Article  Google Scholar 

  • Immitzer M, Atzberger C, Koukal T (2012) Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sens (Basel) 4:2661–2693. doi:10.3390/rs4092661

    Article  Google Scholar 

  • Kavzoglu T, Sahin E, Colkesen I (2015) An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat Hazards 76:471–496. doi:10.1007/s11069-014-1506-8

    Article  Google Scholar 

  • Li J, Xie S, Kuang M (2001) Geomorphic evolution of the Yangtze Gorges and the time of their formation. Geomorphology 41(2):125–135. doi:10.1016/S0169-555X(01)00110-6

    Article  Google Scholar 

  • Li YR, Wen BP, Aydin A, Ju NP (2013) Ring shear tests on slip zone soils of three Giant landslides in the Three Gorges Project area. Eng Geol 154:106–115. doi:10.1016/j.enggeo.2012.12.015

    Article  Google Scholar 

  • Lian C, Zeng Z, Yao W, Tang H (2014) Ensemble of extreme learning machine for landslide displacement prediction based on time series analysis. Neural Comput Appl 24(1):99–107. doi:10.1007/s00521-013-1446-3

    Article  Google Scholar 

  • Liu JG, Mason PJ, Clerici N, Chen S, Davis A, Miao F, Deng H, Liang L (2004) Landslide hazard assessment in the three Gorges area of the Yangtze river using ASTER imagery: Zigui-Badong. Geomorphology 61:171–187. doi:10.1016/j.geomorph.2003.12.004

    Article  Google Scholar 

  • Liu JP, Zeng ZP, Liu HQ, Wang HB (2011) A rough set approach to analyze factors affecting landslide incidence. Comput Geosci 37:1311–1317. doi:10.1016/j.cageo.2011.02.010

    Article  Google Scholar 

  • Messenzehl K, Meyer H, Otto J, Hoffmann T, Dikau R (2016) Regional-scale controls on the spatial activity of rockfalls (Turtmann valley, Swiss Alps)—a multivariate modeling approach. Geomorphology. doi:10.1016/j.geomorph.2016.01.008

    Google Scholar 

  • Micheletti N, Kanevski M, Bai S, Wang J, Hong T (2013) Intelligent analysis of landslide data using machine learning algorithms. Landslide science and practice. Springer, Berlin Heidelberg, pp 161–167

    Chapter  Google Scholar 

  • Murillo-García FG, Alcántara-Ayala I, Ardizzone F, Cardinali M, Fiourucci F, Guzzetti F (2015) Satellite stereoscopic pair images of very high resolution: a step forward for the development of landslide inventories. Landslides 12:277–291. doi:10.1007/s10346-014-0473-1

    Article  Google Scholar 

  • Nandi A, Shakoor A (2008) Application of logistic regression model for slope instability prediction in Cuyahoga River watershed, Ohio. USA. Georisk 2:16–27

    Google Scholar 

  • Nefeslioglu HA, Sezer E, Gokceoglu C, Bozkir AS, Duman TY (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math Probl Eng. doi:10.1155/2010/901095

    Google Scholar 

  • Niu R, Wu X, Yao D, Peng L, Ai L, Peng J (2014) Susceptibility assessment of landslides triggered by the Lushan earthquake. IEEE J Select Top Appl Earth Observ Remote Sens 7:3979–3992

    Article  Google Scholar 

  • Nourani V, Pradhan B, Ghaffari H, Sharifi SS (2014) Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models. Nat Hazards 71:523–547. doi:10.1007/s11069-013-0932-3

    Article  Google Scholar 

  • Paudel U, Oguchi T (2014) Implementation of random forest in landslide susceptibility study, a case study of the Tokamachi area, Niigata, Japan. In: Japan Geoscience Union Meeting, Pcaifico Yokohama, 28th April–2nd May, 2014

  • Peng L, Niu R, Huang B, Wu X, Zhao Y, Ye R (2014) Landslide susceptibility mapping based on rough set theory and support vector machines: a case of the three Gorges area, China. Geomorphology 204:287–301. doi:10.1016/j.geomorph.2013.08.013

    Article  Google Scholar 

  • Pourghasemi HR, Moradi HR, Aghda SF (2013) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards 69:749–779. doi:10.1007/s11069-013-0728-5

    Article  Google Scholar 

  • Pradhan B (2010a) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38:301–320. doi:10.1007/s12524-010-0020-z

    Article  Google Scholar 

  • Pradhan B (2010b) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45:1244–1256. doi:10.1016/j.asr.2010.01.006

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Modell Softw 25:747–759. doi:10.1016/j.envsoft.2009.10.016

    Article  Google Scholar 

  • Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A (2014) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7:725–742

    Article  Google Scholar 

  • Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogrammetry Remote Sens 67:93–104. doi:10.1016/j.isprsjprs.2011.11.002

    Article  Google Scholar 

  • Sabatakakis N, Koukis G, Vassiliades E, Lainas S (2013) Landslide susceptibility zonation in Greece. Nat Hazards 65(1):523–543. doi:10.1007/s11069-012-0381-4

    Article  Google Scholar 

  • Santangelo M, Gioia D, Cardinali M, Guzzetti F, Schiattarella M (2015) Landslide inventory map of the upper Sinni River valley, Southern Italy. J Maps 11:444–453. doi:10.1080/17445647.2014.949313

    Article  Google Scholar 

  • Schuster RL, Wieczorek GF (2002) Landslide triggers and types. In: Landslides: proceedings of the first European conference on landslides. Prague, pp 59–78

  • Stumpf A, Kerle N (2011) Combining Random Forests and object-oriented analysis for landslide mapping from very high resolution imagery. Procedia Environ Sci 3:123–129. doi:10.1016/j.proenv.2011.02.022

    Article  Google Scholar 

  • Trigila A, Iadanza C, Esposito C, Scarascia-Mugnozza G (2015) Comparison of logistic regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 249:119–136. doi:10.1016/j.geomorph.2015.06.001

    Article  Google Scholar 

  • Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet JP, Montanarella L, Nadim F (2012) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9:357–369. doi:10.1007/s10346-011-0299-z

    Article  Google Scholar 

  • Van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184. doi:10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Wu S, Shi L, Wang R, Tan C, Hu D, Mei Y, Xu R (2001) Zonation of the landslide hazards in the forereservoir region of the three Gorges project on the Yangtze River. Eng Geol 59:51–58. doi:10.1016/S0013-7952(00)00061-2

    Article  Google Scholar 

  • Wu X, Niu R, Ren F, Peng L (2013) Landslide susceptibility mapping using rough sets and back-propagation neural networks in the three Gorges, China. Environ Earth Sci 70:1307–1318. doi:10.1007/s12665-013-2217-2

    Article  Google Scholar 

  • Wu X, Ren F, Niu R (2014) Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the three Gorges of China. Environ Earth Sci 71:4725–4738. doi:10.1007/s12665-013-2863-4

    Article  Google Scholar 

  • Xu C, Xu X, Yao X, Dai F (2014) Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 11(3):441–461. doi:10.1007/s10346-013-0404-6

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA 72:1–12. doi:10.1016/j.catena.2007.01.003

    Article  Google Scholar 

  • Yang ZS, Wang HJ, Saito Y, Milliman JD, Xu K, Qiao S, Shi G (2006) Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resour Res. doi:10.1029/2005WR003970

    Google Scholar 

  • Yang SL, Milliman JD, Xu KH, Deng B, Zhang XY, Luo XX (2014) Downstream sedimentary and geomorphic impacts of the three Gorges Dam on the Yangtze River. Earth Sci Rev 138:469–486. doi:10.1016/j.earscirev.2014.07.006

    Article  Google Scholar 

  • Yilmaz I (2009) A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ 68:297–306. doi:10.1007/s10064-009-0185-2

    Article  Google Scholar 

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2016) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at wadi Tayyah Basin, Asir region, Saudi Arabia. Landslides 13:839–856. doi:10.1007/s10346-015-0614-1

    Article  Google Scholar 

  • Zêzere JL, de Brum A, Rodrigues ML (1999) The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of Lisbon (Portugal). Geomorphology 30:133–146. doi:10.1016/S0169-555X(99)00050-1

    Article  Google Scholar 

Download references

Acknowledgements

This study was jointly supported by the National Natural Science Foundation of China (41501470), the Open Fund of the Key Laboratory of Urban Land Resources Monitoring and Simulation, the Ministry of Land and Resources (KF-2015-01-006), the Open Fund of Hubei Province Key Laboratory of Regional Development and Environmental Response (2015(B) 001), and the Open Research Fund Program of Shenzhen Key Laboratory of Spatial Smart Sensing and Services (Shenzhen University). The authors would also like to thank the members of the Administration of Prevention and Control of Geo-Hazards in the Three Gorges Reservoir of China for their assistance during the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqing Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Wu, X., Niu, R. et al. The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environ Earth Sci 76, 405 (2017). https://doi.org/10.1007/s12665-017-6731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6731-5

Keywords

Navigation