Abstract
In many regions, the absence of a landslide inventory hampers the production of susceptibility or hazard maps. Therefore, a method combining a procedure for sampling of landslide-affected and landslide-free grid cells from a limited landslide inventory and logistic regression modelling was tested for susceptibility mapping of slide- and flow-type landslides on a European scale. Landslide inventories were available for Norway, Campania (Italy), and the Barcelonnette Basin (France), and from each inventory, a random subsample was extracted. In addition, a landslide dataset was produced from the analysis of Google Earth images in combination with the extraction of landslide locations reported in scientific publications. Attention was paid to have a representative distribution of landslides over Europe. In total, the landslide-affected sample contained 1,340 landslides. Then a procedure to select landslide-free grid cells was designed taking account of the incompleteness of the landslide inventory and the high proportion of flat areas in Europe. Using stepwise logistic regression, a model including slope gradient, standard deviation of slope gradient, lithology, soil, and land cover type was calibrated. The classified susceptibility map produced from the model was then validated by visual comparison with national landslide inventory or susceptibility maps available from literature. A quantitative validation was only possible for Norway, Spain, and two regions in Italy. The first results are promising and suggest that, with regard to preparedness for and response to landslide disasters, the method can be used for urgently required landslide susceptibility mapping in regions where currently only sparse landslide inventory data are available.
Similar content being viewed by others
References
Allison PD (2001) Logistic regression using the SAS system: theory and application. Wiley Interscience, New York, USA
APAT (2007) Rapporto sulle frane in Italia: il progetto IFFI, metodologia, resultati e rapporti regionali. Rapporto 78/2007. Agenzia per la protezione dell’ambiente e per i servizi tecnici, Rome, Italy
Asch K (2005) The 1:5 Million International Geological Map of Europe and Adjacent Areas (IGME5000) map. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany
Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31. doi:10.1016/j.geomorph.2004.06.010
Bǎlteanu D, Chendeş V, Sima M, Enciu P (2010) A country level spatial assessment of landslide susceptibility in Romania. Geomorphology 124:102–112. doi:10.1016/j.geomorph.2010.03.005
Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37:315–329. doi:10.1007/s11069-005-5182-6
Bentley SP, Smalley IJ (1984) Landslips in sensitive clays. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, UK, pp 457–490
Bromhead EN, Ibsen ML (2006) A review of landsliding and coastal erosion damage to historic fortifications in South East England. Landslides 3:341–347. doi:10.1007/s10346-006-0063-y
Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, The Netherlands, pp 135–175
Carrara A, Crosta GB, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94:353–378. doi:10.1016/j.geomorph.2006.10.033
Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472
Ciesing (Center for International Earth Science Information Network, Columbia University), IFPRI (International Food Policy Research Institute), CIAT (Centro Internacional de Agricultura Tropical) (2004) Global rural–urban mapping project (GRUMP): Gridded population of the world, version 3, with urban reallocation (GPW-UR). Palisades, New York
CRED (2011) EM-DAT: The OFDA/CRED International Disaster Database. Centre for Research on Epidemiology of Disasters — CRED, Université Catholique de Louvain, Brussels, Belgium. http://www.emdat.be. Accessed 25 Jan 2011
Creighton R, Irish Landslides Working Group (2006) Landslides in Ireland. Geological Survey of Ireland, Dublin, Ireland
Decaulne A (2005) Slope processes and related risk appearance within the Icelandic Westfjords during the twentieth century. Nat Hazards Earth Sys Sci 5:309–318
Dikau R, Glade T (2003) Nationale Gefahrenhinweiskarte gravitativer Massenbewegungen. In: Liedtke H, Mäusbacher R, Schmidt KH (eds) Relief, boden und wasser. Nationalatlas Bundesrepublik Deutschland, Institut für Länderkunde, Leipzig, Germany, pp 98–99
Dykes AP, Kirk KJ (2001) Initiation of a multiple peat slide on Cuilcagh Mountain, Northern Ireland. Earth Surf Process Landforms 26:395–408. doi:10.1002/esp. 188
EEA (2010) Mapping the impacts of natural hazards and technological accidents in Europe — an overview of the last decade. EEA technical report 13/2010. European Environment Agency, Copenhagen, Denmark. doi:10.2800/62638
ESA (2008) GLobCover 2004–2006. European Space Agency, Paris, France
FAO, EC, ISRIC (2003) WRB Map of World Soil Resources, 1:25 000 000. FAO, Rome, Italy
Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98. doi:10.1016/j.enggeo.2008.03.022
Foster C, Gibson A, Wildman G (2008) The new national landslide database and landslide hazard assessment of Great Britain. Proceedings of the First World Landslide Forum, Tokyo, 18–21 November 2008, pp 203–206
Giardini D, Grünthal G, Shedlock K, Zhang P (2003) The GSHAP Global Seismic Hazard Map. In: Lee W, Kanamori H, Jennings P (eds) International handbook of earthquake and engineering seismology, International geophysics series 81 B. Academic, Amsterdam, USA, pp 1233–1239
GSC (2011) Landslides — recent events worldwide. Geological Survey of Canada. http://gsc.nrcan.gc.ca/landslides/in_the_news_e.php. Accessed 25 Jan 2011
Günther A, Reichenbach P, Hervás J (2008) Approaches for delineating areas susceptible to landslides in the framework of the European Soil Thematic Strategy. Proceedings of the First World Landslide Forum, Tokyo, 18–21 November 2008, pp 235–238
Guzzetti F, Tonelli G (2004) SICI: an information system on historical landslides and floods in Italy. Nat Hazards Earth Syst Sci 4:213–232
Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1
Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. doi:10.1016/j.geomorph.2006.04.007
Hansen A (1984) Landslide hazard analysis. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, USA, pp 523–602
Hervás J (2007) Guidelines for mapping areas at risk of landslides in Europe. Proceedings experts meeting, 23–24 October 2007, Ispra, Italy. JRC report EUR 23093 EN, Office for Official Publications of the European Communities, Luxembourg
Hervás J, Bobrowsky P (2009) Mapping: inventories, susceptibility, hazard and risk. In: Sassa K, Canuti P (eds) Landslides — disaster risk reduction. Springer, Berlin, Germany, pp 321–349
Hervás J, Günther A, Reichenbach P, Malet JP, Van Den Eeckhaut M (2010) Harmonised approaches for landslide susceptibility mapping in Europe. In: Malet JP, Glade T, Casagli N (eds) Proc. int. conference mountain risks: bringing science to society, Florence, Italy, 24–26 November 2010. CERG Editions, Strasbourg, France, pp 501–505
Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256. doi:10.1007/s11069-006-9104-z
Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York, USA
Hradecký J, Pánek T, Klimová R (2007) Landslide complex in the northern part of the Silesian Beskydy Mountains (Czech Republic). Landslides 4:53–62. doi:10.1007/s10346-006-0052-1
ICL (2011) International Consortium of Landslides. http://www.iclhq.org/Europe.htm. Accessed 25 Jan 2011
Ilcewicz-Stefaniuk D, Rybicki S, Slomka T, Stefaniuk M (2008) Surface mass movements in Poland — a review. Pol Geol Inst Spec Pap 24:83–92
ISDR (2009) Global assessment report on disaster risk reduction. United Nations, Geneva, Switzerland
Instituto Tecnologico GeoMinero de Espana (1988) Catalogo Nacional de Riesgos Geologicos. ITGE, Madrid, Spain
Jaedicke C, Lied K, Kronholm K (2009) Integrated database for rapid mass movements in Norway. Nat Hazards Earth Syst Sci 9:469–479
Jaedicke C, Van Den Eeckhaut M, Nadim F, Hervás J, Kalsnes B, Smith T, Tofani V, Ciurean R, Winter M. (2011) Identification of landslide hazard and risk “hotspots” in Europe. Geophys Res Abstr 13, EGU2011-10398
Jelínek R, Maitan S, Omura H (2001) Slope movements in Slovakia — geographic and geological characteristics. J Fac Agric Kyushu Univ 45:589–600
King G, Zeng L (2001) Logistic regression in rare events data. Polit Anal 9:137–163
Kirschbaum DB, Adler R, Hong Y, Lerner-Lam A (2009) Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat Hazards Earth Syst Sci 9:673–686
Kleinbaum DG, Klein M (2002) Logistic regression, a self-learning text, 2nd edn. Springer, New York, USA
Laguardia G, Niemeyer S (2008) On the comparison between the LISFLOOD modelled and the ERS/SCAT derived soil moisture estimates. Hydrol Earth Syst Sci Discuss 5:1227–1265
Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50:847–855. doi:10.1007/s00254-006-0256-7
Malet JP, Thiery Y, Hervás J, Günther A, Puissant A, Grandjean G (2009) Landslide susceptibility mapping at 1:1 M scale over France: exploratory results with a heuristic model. Proc. Int. conference on landslide processes: from geomorphologic mapping to dynamic modelling, A tribute to Prof. Dr. Theo van Asch, 6 –7 February 2009, Strasbourg, France, pp. 315–320
Markart G, Perzl F, Hohl B, Luzian R, Kleemayr K, Ess B, Mayerl J (2007) 22nd and 23rd August 2005 — analysis of flooding events and mass movements in selected communities of Vorarlberg. BFW-Dokumentation, Schriftenreihe des Bundesforschungs- and Ausbildungszentrums für Wald, Naturgefahren und Landschaft, Wien, Austria
Munich Re (2011) Munich Re NatCatSERVICE. http://www.munichre.com/en/reinsurance/business/non-life/georisks/natcatservice/default.aspx. Accessed 25 Jan 2011
Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. doi:10.1007/s10346-006-0036-1
Nadim F, Asbjørn S, Pedersen S, Schmidt-Thomé P, Sigmundsson F, Engdahl M (2008) Natural hazards in Nordic countries. Episodes 31:176–184
Nordregio (2004) Mountain areas in Europe: analysis of mountain areas in EU member states, acceding and other European countries, report 2004:1. Nordic Centre for Spatial Development, Stockholm, Sweden
Petley DN (2011) The landslide blog. http://blogs.agu.org/landslideblog/. Accessed 12 Oct 2011
Rossi M, Guzzetti F, Reichenbach P, Mondini A, Peruccacci S (2009) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114:129–142. doi:10.1016/j.geomorph.2009.06.020
Rudolf B, Beck C, Grieser J, Schneider U (2005) Global precipitation analysis products. Deutscher Wetterdienst, Offenbach a. M., Germany
Salvati P, Bianchi C, Rossi M, Guzzetti F (2010) Societal landslide and flood risk in Italy. Nat Hazards Earth Syst Sci 10:465–483
Song RH, Daimaru H, Abe K, Kurosawa U, Matsuura S (2008) Modelling the potential distribution of shallow-seated landslides using the weights of evidence and the logistic regression model: a case study in the Sabae area, Japan. Int J Sediment Res 23:106–118
Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293
Theilen-Willige B (2010) Detection of local site conditions influencing earthquake shaking and secondary effects in Southwest-Haiti using remote sensing and GIS-methods. Nat Hazards Earth Syst Sci 10:1183–1196
USGS (2011) Landslide events. US Geological Survey. http://landslides.usgs.gov/recent/. Accessed 25 Jan 2011
Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes, Belgium. Geomorphology 76:392–410. doi:10.1016/j.geomorph.2005.12.003
Van Den Eeckhaut M, Reichenbach P, Guzzetti F, Rossi M, Poesen J (2009) Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium. Nat Hazards Earth Syst Sci 9:507–521
Van Den Eeckhaut M, Marre A, Poesen J (2010) Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France). Geomorphology 115:141–155. doi:10.1016/j.geomorph.2009.09.042
Van Den Eeckhaut M, Poesen J, Gullentops F, Vandekerckhove L, Hervás J (2011) Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders. Quat Res 130:185–196
Van Den Eeckhaut M, Hervás J (in press) State of the art of national landslide databases in Europe and their potential for hazard and risk assessment. Geomorphology
van Westen CJ, Castellanos E, Kuriakose SL (2009) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131. doi.10.1016/j.enggeo.2008.03.010
Vogt JV, Soille P, de Jager AL, Rimaviciute E, Mehl W, Foisneau S, Bódis K, Dusart J, Paracchini ML, Haastrup P, Bamps C (2007) A pan-European river and catchment database. JRC report EUR 22920 EN, Office for Official Publications of the European Communities, Luxembourg
Warburton J, Holden J, Mills AJ (2004) Hydrological controls of surficial mass movements in peat. Earth Sci Rev 67:139–156. doi:10.1016/j.earscirev.2004.03.003
Zêzere JL (2002) Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 2:73–82
Acknowledgements
This study has been carried out in the framework of the EU-FP7 project SafeLand: Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies (Grant Agreement 226479; http://www.safeland-fp7.eu/). The authors thank all the project partners that have contributed to the collection of the thematic data. Special thanks go to Kari Sletten (Norwegian Geological Survey) and prof. Luciano Picarelli and Tonino Santo (AMRA S.c.a.r.l., Naples, Italy) for providing landslide inventory data for Norway and the Campania region respectively. The reviewer and editor are thanked for helpful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Van Den Eeckhaut, M., Hervás, J., Jaedicke, C. et al. Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9, 357–369 (2012). https://doi.org/10.1007/s10346-011-0299-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10346-011-0299-z