Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint

  • Survey
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

3D shape editing is widely used in a range of applications such as movie production, computer games and computer aided design. It is also a popular research topic in computer graphics and computer vision. In past decades, researchers have developed a series of editing methods to make the editing process faster, more robust, and more reliable. Traditionally, the deformed shape is determined by the optimal transformation and weights for an energy formulation. With increasing availability of 3D shapes on the Internet, data-driven methods were proposed to improve the editing results. More recently as the deep neural networks became popular, many deep learning based editing methods have been developed in this field, which are naturally data-driven. We mainly survey recent research studies from the geometric viewpoint to those emerging neural deformation techniques and categorize them into organic shape editing methods and man-made model editing methods. Both traditional methods and recent neural network based methods are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gao L, Yang J, Wu T, Yuan Y J, Fu H, Lai Y K, Zhang H. SDM-NET: Deep generative network for structured deformable mesh. ACM Trans. Graph., 2019, 38(6): Article No. 243. https://doi.org/10.1145/3355089.3356488.

  2. Yang J, Mo K, Lai Y K, Guibas L J, Gao L. DSMNet: Disentangled structured mesh net for controllable generation of fine geometry. arXiv:2008.05440, 2020. https://arxiv.org/abs/2008.05440, Jan. 2021.

  3. Chen Z, Zhang H. Learning implicit fields for generative shape modeling. In Proc. the 2019 IEEE Conference on Computer Vision and Pattern Recognition, June 2019, pp.5939-5948. https://doi.org/10.1109/CVPR.2019.00609.

  4. Xu Q, Wang W, Ceylan D, Mech R, Neumann U. DISN: Deep implicit surface network for high-quality single-view 3D reconstruction. In Proc. the 2019 Annual Conference on Neural Information Processing Systems, December 2019, pp.492-502.

  5. Gao L, Zhang L X, Meng H Y, Ren Y H, Lai Y K, Kobbelt L. PRS-Net: Planar reflective symmetry detection net for 3D models. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2020.3003823.

  6. Shi Y, Huang J, Zhang H, Xu X, Rusinkiewicz S, Xu K. SymmetryNet: Learning to predict reflectional and rotational symmetries of 3D shapes from single-view RGB-D images. ACM Trans. Graph., 2020, 39(6): Article No. 213. https://doi.org/10.1145/3414685.3417775.

  7. Fu R, Yang J, Sun J, Zhang F L, Lai Y K, Gao L. RISA-Net: Rotation-invariant structure-aware network for fine-grained 3D shape retrieval. arXiv:2010.00973, 2020. https://arxiv.org/abs/2010.00973, Jan. 2021.

  8. Xu Z, Zhou Y, Kalogerakis E, Landreth C, Singh K. RigNet: Neural rigging for articulated characters. ACM Trans. Graph., 2020, 39(4): Article No. 58. https://doi.org/10.1145/3386569.3392379.

  9. Chang A X, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, Savarese S, Savva M, Song S, Su H, Xiao J, Yi L, Yu F. ShapeNet: An information-rich 3D model repository. arXiv:1512.03012, 2015. https://arxiv.org/abs/1512.03012, Jan. 2021.

  10. Mitra N J, Wand M, Zhang H, Cohen-Or D, Kim V, Huang Q X. Structure-aware shape processing. In Proc. the 2014 ACM SIGGRAPH Courses, July 2014, Article No. 13. https://doi.org/10.1145/2614028.2615401.

  11. Chaudhuri S, Ritchie D, Wu J, Xu K, Zhang H. Learning generative models of 3D structures. Computer Graphics Forum, 2020, 39(2): 643-666. https://doi.org/10.1111/cgf.14020.

    Article  Google Scholar 

  12. Han X, Laga H, Bennamoun M. Image-based 3D object reconstruction: State-of-the-art and rends in the deep learning era. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1578-1604. https://doi.org/10.1109/TPAMI.2019.2954885.

    Article  Google Scholar 

  13. Jin Y, Jiang D, Cai M. 3D reconstruction using deep learning: A survey. Communications in Information and Systems, 2020, 20(4): 389-413. https://doi.org/10.4310/CIS.2020.v20.n4.a1.

    Article  MathSciNet  MATH  Google Scholar 

  14. Xiao Y P, Lai Y K, Zhang F L, Li C, Gao L. A survey on deep geometry learning: From a representation perspective. Computational Visual Media, 2020, 6(2): 113-133. https://doi.org/10.1007/s41095-020-0174-8.

    Article  Google Scholar 

  15. Botsch M, Sorkine O. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(1): 213-230. https://doi.org/10.1109/TVCG.2007.1054.

    Article  Google Scholar 

  16. Gain J, Bechmann D. A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph., 2008, 27(4): Article No. 107. https://doi.org/10.1145/1409625.1409629.

  17. Xu K, Kim V G, Huang Q, Mitra N, Kalogerakis E. Data-driven shape analysis and processing. In Proc. the 2016 SIGGRAPH Asia Courses, November 2016, Article No. 4. https://doi.org/10.1145/2988458.2988473.

  18. Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable models. In Proc. the 14th Annual Conference on Computer Graphics and Interactive Techniques, August 1987, pp.205-214. https://doi.org/10.1145/37401.37427.

  19. Celniker G, Gossard D. Deformable curve and surface finite-elements for free-form shape design. In Proc. the 18th Annual Conference on Computer Graphics and Interactive Techniques, July 1991, pp.257-266. https://doi.org/10.1145/122718.122746.

  20. Welch W, Witkin A. Variational surface modeling. SIGGRAPH Comput. Graph., 1992, 26(2): 157-166. https://doi.org/10.1145/142920.134033.

    Article  Google Scholar 

  21. Botsch M, Bommes D, Kobbelt L. Efficient linear system solvers for mesh processing. In Proc. the 11th IMA International Conference on Mathematics of Surfaces, September 2005, pp.62-83. https://doi.org/10.1007/11537908_5.

  22. Shi L, Yu Y, Bell N, Feng W W. A fast multigrid algorithm for mesh deformation. ACM Trans. Graph., 2006, 25(3): 1108-1117. https://doi.org/10.1145/1141911.1142001.

    Article  Google Scholar 

  23. Zorin D, Schröder P, Sweldens W. Interactive multiresolution mesh editing. In Proc. the 24th Annual Conference on Computer Graphics and Interactive Techniques, August 1997, pp.259-268. https://doi.org/10.1145/258734.258863.

  24. Kobbelt L, Campagna S, Vorsatz J, Seidel H P. Interactive multi-resolution modeling on arbitrary meshes. In Proc. the 25th Annual Conference on Computer Graphics and Interactive Techniques, July 1998, pp.105-114. https://doi.org/10.1145/280814.280831.

  25. Guskov I, Sweldens W, Schröder P. Multiresolution signal processing for meshes. In Proc. the 26th Annual Conference on Computer Graphics and Interactive Techniques, July 1999, pp.325-334. https://doi.org/10.1145/311535.311577.

  26. Botsch M, Sumner R, Pauly M, Gross M. Deformation transfer for detail-preserving surface editing. In Proc. the 11th International Fall Workshop Vision, Modeling & Visualization, November 2006, pp.357-364.

  27. Botsch M, Kobbelt L. An intuitive framework for real-time freeform modeling. ACM Trans. Graph., 2004, 23(3): 630-634. https://doi.org/10.1145/1015706.1015772.

    Article  Google Scholar 

  28. Liu H T D, Jacobson A. Cubic stylization. ACM Trans. Graph., 2019, 38(6): Article No. 197. https://doi.org/10.1145/3355089.3356495.

  29. Sorkine O. Laplacian mesh processing. In Proc. the 26th Annual Conference of the European Association for Computer Graphics, August 29–September 2, 2005, pp.53-70. https://doi.org/10.2312/egst.20051044.

  30. Sorkine O. Differential representations for mesh processing. Computer Graphics Forum, 2006, 25(4): 789-807. https://doi.org/10.1111/j.1467-8659.2006.00999.x.

    Article  Google Scholar 

  31. Alexa M. Differential coordinates for local mesh morphing and deformation. The Visual Computer, 2003, 19(2/3): 105-114. https://doi.org/10.1007/s00371-002-0180-0.

    Article  MATH  Google Scholar 

  32. Sederberg T W, Parry S R. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph., 1986, 20(4): 151-160. https://doi.org/10.1145/15886.15903.

    Article  Google Scholar 

  33. Lipman Y, Sorkine O, Cohen-Or D, Levin D, Rossi C, Seidel H P. Differential coordinates for interactive mesh editing. In Proc. Shape Modeling Applications, June 2004, pp.181-190. https://doi.org/10.1109/SMI.2004.1314505.

  34. Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rössl C, Seidel H P. Laplacian surface editing. In Proc. the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, July 2004, pp.175-184. https://doi.org/10.1145/1057432.1057456.

  35. Lipman Y, Sorkine O, Alexa M, Cohen-Or D, Levin D, Rössl C, Seidel H P. Laplacian framework for interactive mesh editing. International Journal of Shape Modeling, 2005, 11(1): 43-61. https://doi.org/10.1142/S0218654305000724.

  36. Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum H Y. Mesh editing with Poisson-based gradient field manipulation. In Proc. the 2004 ACM SIGGRAPH Papers, August 2004, pp.644-651. https://doi.org/10.1145/1186562.1015774.

  37. Zayer R, Rössl C, Karni Z, Seidel H P. Harmonic guidance for surface deformation. Computer Graphics Forum, 2005, 24(3): 601-609. https://doi.org/10.1111/j.1467-8659.2005.00885.x.

  38. Botsch M, Pauly M, Gross M H, Kobbelt L. PriMo: Coupled prisms for intuitive surface modeling. In Proc. the Eurographics Symposium on Geometry Processing, June 2006, pp.11-20. https://doi.org/10.2312/SGP/SGP06/011-020.

  39. Zhou K, Huang J, Snyder J, Liu X, Bao H, Guo B, Shum H Y. Large mesh deformation using the volumetric graph Laplacian. In Proc. the 2005 ACM SIGGRAPH Papers, July 2005, pp.496-503. https://doi.org/10.1145/1186822.1073219.

  40. Sheffer A, Kraevoy V. Pyramid coordinates for morphing and deformation. In Proc. the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, September 2004, pp.68-75. https://doi.org/10.1109/TDPVT.2004.1335149.

  41. Au O C, Tai C L, Liu L, Fu H. Dual Laplacian editing for meshes. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(3): 386-395. https://doi.org/10.1109/TVCG.2006.47.

    Article  Google Scholar 

  42. Fu H, Au O K C, Tai C L. Effective derivation of similarity transformations for implicit Laplacian mesh editing. Computer Graphics Forum, 2007, 26(1): 34-45. https://doi.org/10.1111/j.1467-8659.2007.00940.x.

    Article  Google Scholar 

  43. Huang J, Shi X, Liu X, Zhou K, Wei L Y, Teng S H, Bao H, Guo B, Shum H Y. Subspace gradient domain mesh deformation. In Proc. the 2006 ACM SIGGRAPH Papers, July 2006, pp.1126-1134. https://doi.org/10.1145/1179352.1142003.

  44. Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. In Proc. the 2005 ACM SIGGRAPH Papers, July 2005, pp.561-566. https://doi.org/10.1145/1186822.1073229.

  45. Vallet B, Lévy B. Spectral geometry processing with manifold harmonics. Computer Graphics Forum, 2008, 27(2): 251-260. https://doi.org/10.1111/j.1467-8659.2008.01122.x.

    Article  Google Scholar 

  46. Alexa M, Cohen-Or D, Levin D. As-rigid-as-possible shape interpolation. In Proc. the 27th Annual Conference on Computer Graphics and Interactive Techniques, July 2000, pp.157-164. https://doi.org/10.1145/344779.344859.

  47. Igarashi T, Moscovich T, Hughes J F. As-rigid-as-possible shape manipulation. ACM Trans. Graph., 2005, 24(3): 1134-1141. https://doi.org/10.1145/1073204.1073323.

    Article  Google Scholar 

  48. Sorkine O, Alexa M. As-rigid-as-possible surface modeling. In Proc. the 5th Eurographics Symposium on Geometry Processing, July 2007, pp.109-116. https://doi.org/10.2312/SGP/SGP07/109-116.

  49. Chao I, Pinkall U, Sanan P, Schröder P. A simple geometric model for elastic deformations. ACM Trans. Graph., 2010, 29(4): Article No. 38. https://doi.org/10.1145/1778765.1778775.

  50. Levi Z, Gotsman C. Smooth rotation enhanced as-rigid-as-possible mesh animation. IEEE Transactions on Visualization and Computer Graphics, 2014, 21(2): 264-277. https://doi.org/10.1109/TVCG.2014.2359463.

    Article  Google Scholar 

  51. Cuno A, Esperança C, Oliveira A, Cavalcanti P R. 3D as-rigid-as-possible deformations using MLS. In Proc. the 27th Computer Graphics International Conference, May 30–June 2, 2007, pp.115-122.

  52. Liu Y S, Yan H B, Martin R R. As-rigid-as-possible surface morphing. Journal of Computer Science and Technology, 2011, 26(3): 548-557. https://doi.org/10.1007/s11390-011-1154-3.

    Article  Google Scholar 

  53. Chen S Y, Gao L, Lai Y K, Xia S. Rigidity controllable as-rigid-as-possible shape deformation. Graphical Models, 2017, 91: 13-21. https://doi.org/10.1016/j.gmod.2017.02.005.

    Article  MathSciNet  Google Scholar 

  54. Qin X, Wu T, Liu Y. A surface deformation method based on stiffness control. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2020, 14(1): Article No. JAMDSM0010. https://doi.org/10.1299/jamdsm.2020jamdsm0010.

  55. Le Vaou Y, Léon J C, Hahmann S, Masfrand S, Mika M. As-stiff-as-needed surface deformation combining ARAP energy with an anisotropic material. Computer-Aided Design, 2020, 121: Article No. 102803. https://doi.org/10.1016/j.cad.2019.102803.

  56. Colaianni M, Siegl C, Süßmuth J, Bauer F, Greiner G. Anisotropic surface based deformation. In Proc. the 2016 SIGGRAPH ASIA Technical Briefs, November 2016, Article No. 1. https://doi.org/10.1145/3005358.3005361.

  57. Colaianni M, Siegl C, Süßmuth J, Bauer F, Greiner G. Anisotropic deformation for local shape control. Computational Visual Media, 2017, 3(4): 305-313. https://doi.org/10.1007/s41095-017-0092-6.

    Article  Google Scholar 

  58. Borosán P, Howard R, Zhang S, Nealen A. Hybrid mesh editing. In Proc. the 31st Annual Conference of the European Association for Computer Graphics, May 2010, pp.41-44. https://doi.org/10.2312/egsh.20101043.

  59. Sun Q, Wan W, Feng X, Chen G, Rizwan M, Sánchez J A. Bi-harmonic surface based as-rigid-as-possible mesh deformation. Journal of Computers, 2018, 29(4): 161-175. https://doi.org/10.3966/199115992018082904013.

    Article  Google Scholar 

  60. Zollhöfer M, Sert E, Greiner G, Süßmuth J. GPU based ARAP deformation using volumetric lattices. In Proc. the 33rd Annual Conference of the European Association for Computer Graphics, May 2012, pp.85-88. https://doi.org/10.2312/conf/EG2012/short/085-088.

  61. Manson J, Schaefer S. Hierarchical deformation of locally rigid meshes. Computer Graphics Forum, 2011, 30(8): 2387-2396. https://doi.org/10.1111/j.1467-8659.2011.02074.x.

    Article  Google Scholar 

  62. Kovalsky S Z, Galun M, Lipman Y. Accelerated quadratic proxy for geometric optimization. ACM Trans. Graph., 2016, 35(4): Article No. 134. https://doi.org/10.1145/2897824.2925920.

  63. Peng Y, Deng B, Zhang J, Geng F, Qin W, Liu L. Anderson acceleration for geometry optimization and physics simulation. ACM Trans. Graph., 2018, 37(4): Article No. 42. https://doi.org/10.1145/3197517.3201290.

  64. Rabinovich M, Poranne R, Panozzo D, Sorkine-Hornung O. Scalable locally injective mappings. ACM Trans. Graph., 2017, 36(4): Article No. 16. https://doi.org/10.1145/2983621.

  65. Shtengel A, Poranne R, Sorkine-Hornung O, Kovalsky S Z, Lipman Y. Geometric optimization via composite majorization. ACM Trans. Graph., 2017, 36(4): Article No. 38. 10.1145/3072959.3073618.

  66. Zhu Y, Bridson R, Kaufman D M. Blended cured quasi-Newton for distortion optimization. ACM Trans. Graph., 2018, 37(4): Article No. 40. https://doi.org/10.1145/3197517.3201359.

  67. Zhang S, Nealen A, Metaxas D N. Skeleton based as-rigid-as-possible volume modeling. In Proc. the 31st Annual Conference of the European Association for Computer Graphics, May 2010, pp.21-24. https://doi.org/10.2312/egsh.20101038.

  68. Zhang S, Huang J, Metaxas D N. Robust mesh editing using Laplacian coordinates. Graphical Models, 2011, 73(1): 10-19. https://doi.org/10.1016/j.gmod.2010.10.003.

    Article  Google Scholar 

  69. Jacobson A, Baran I, Kavan L, Popović J, Sorkine O. Fast automatic skinning transformations. ACM Trans. Graph., 2012, 31(4): Article No. 77. https://doi.org/10.1145/2185520.2185573.

  70. Yang J, Gao L, Lai Y K, Rosin P L, Xia S. Biharmonic deformation transfer with automatic key point selection. Graphical Models, 2018, 98: 1-13. https://doi.org/10.1016/j.gmod.2018.05.003.

    Article  MathSciNet  Google Scholar 

  71. Gao L, Lai Y K, Yang J, Zhang L X, Xia S, Kobbelt L. Sparse data driven mesh deformation. IEEE Transactions on Visualization and Computer Graphics, 2019, 27(3): 2085-2100. https://doi.org/10.1109/TVCG.2019.2941200.

    Article  Google Scholar 

  72. Liu L, Zhang L, Xu Y, Gotsman C, Gortler S J. A local/global approach to mesh parameterization. Computer Graphics Forum, 2008, 27(5): 1495-1504. https://doi.org/10.1111/j.1467-8659.2008.01290.x.

    Article  Google Scholar 

  73. Gao L, Lai Y K, Huang Q X, Hu S M. A data-driven approach to realistic shape morphing. Computer Graphics Forum, 2013, 32(2): 449-457. https://doi.org/10.1111/cgf.12065.

    Article  Google Scholar 

  74. Bouaziz S, Deuss M, Schwartzburg Y, Weise T, Pauly M. Shape-up: Shaping discrete geometry with projections. Computer Graphics Forum, 2012, 31(5): 1657-1667. https://doi.org/10.1111/j.1467-8659.2012.03171.x.

    Article  Google Scholar 

  75. Huang Q X, Wicke M, Adams B, Guibas L. Shape decomposition using modal analysis. Computer Graphics Forum, 2009, 28(2): 407-416. https://doi.org/10.1111/j.1467-8659.2009.01380.x.

    Article  Google Scholar 

  76. Liu T, Bargteil A W, O'Brien J F, Kavan L. Fast simulation of mass-spring systems. ACM Trans. Graph., 2013, 32(6): Article No. 214. https://doi.org/10.1145/2508363.2508406.

  77. Levi Z, Gotsman C. D-snake: Image registration by as-similar-as-possible template deformation. IEEE Transactions on Visualization and Computer Graphics, 2012, 19(2): 331-343. https://doi.org/10.1109/TVCG.2012.134.

    Article  Google Scholar 

  78. Sýkora D, Dingliana J, Collins S. As-rigid-as-possible image registration for hand-drawn cartoon animations. In Proc. the 7th International Symposium on Non-Photorealistic Animation and Rendering, August 2009, pp.25-33. https://doi.org/10.1145/1572614.1572619.

  79. Fadaifard H, Wolberg G. Image warping for retargeting garments among arbitrary poses. The Visual Computer, 2013, 29(6/7/8): 525-534. https://doi.org/10.1007/s00371-013-0816-2.

  80. Wang Y S, Liu F, Hsu P S, Lee T Y. Spatially and temporally optimized video stabilization. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(8): 1354-1361. https://doi.org/10.1109/TVCG.2013.11.

    Article  Google Scholar 

  81. Crane K, Pinkall U, Schröder P. Spin transformations of discrete surfaces. In Proc. the 2011 ACM SIGGRAPH Papers, July 2011, Article No. 104. https://doi.org/10.1145/1964921.1964999.

  82. Fang Q, Zhao Z Y, Liu Z Y, Liu L, Fu X M. Metric first reconstruction for interactive curvature-aware modeling. Computer-Aided Design, 2020, 126: Article No. 102863. https://doi.org/10.1016/j.cad.2020.102863.

  83. Lai Y K, Zhou Q Y, Hu S M, Wallner J, Pottmann H. Robust feature classification and editing. IEEE Transactions on Visualization and Computer Graphics, 2006, 13(1): 34-45. https://doi.org/10.1109/TVCG.2007.19.

    Article  Google Scholar 

  84. Lipman Y, Cohen-Or D, Gal R, Levin D. Volume and shape preservation via moving frame manipulation. ACM Trans. Graph., 2007, 26(1): Article No. 5. https://doi.org/10.1145/1189762.1189767.

  85. Alhashim I, Zhang H, Liu L. Detail-replicating shape stretching. The Visual Computer, 2012, 28(12): 1153-1166. https://doi.org/10.1007/s00371-011-0665-9.

    Article  Google Scholar 

  86. Au O K C, Tai C L, Chu H K, Cohen-Or D, Lee T Y. Skeleton extraction by mesh contraction. ACM Trans. Graph., 2008, 27(3): Article No. 44. https://doi.org/10.1145/1360612.1360643.

  87. Liu Z, Wang W M, Liu X P, Liu L G. Scale-aware shape manipulation. Journal of Zhejiang University SCIENCE C, 2014, 15(9): 764-775. https://doi.org/10.1631/jzus.C1400122.

    Article  Google Scholar 

  88. Xu L, Wang R, Zhang J, Yang Z, Deng J, Chen F, Liu L. Survey on sparsity in geometric modeling and processing. Graphical Models, 2015, 82: 160-180. https://doi.org/10.1016/j.gmod.2015.06.012.

    Article  Google Scholar 

  89. Gao L, Zhang G, Lai Y. Lp shape deformation. Science China Information Sciences, 2012, 55(5): 983-993. https://doi.org/10.1007/s11432-012-4574-y.

    Article  MathSciNet  Google Scholar 

  90. Deng B, Bouaziz S, Deuss M, Zhang J, Schwartzburg Y, Pauly M. Exploring local modifications for constrained meshes. Computer Graphics Forum, 2013, 32(2pt1): 11-20. https://doi.org/10.1111/cgf.12021.

  91. Museth K, Breen D E, Whitaker R T, Barr A H. Level set surface editing operators. In Proc. the 29th Annual Conference on Computer Graphics and Interactive Techniques, July 2002, pp.330-338. https://doi.org/10.1145/566570.566585.

  92. Eyiyurekli M, Breen D E. Detail-preserving level set surface editing and geometric texture transfer. Graphical Models, 2017, 93: 39-52. https://doi.org/10.1016/j.gmod.2017.08.002.

    Article  MathSciNet  Google Scholar 

  93. Coquillart S. Extended free-form deformation: A sculpturing tool for 3D geometric modeling. In Proc. the 17th Annual Conference on Computer Graphics and Interactive Techniques, September 1990, pp.187-196. https://doi.org/10.1145/97879.97900.

  94. Kraevoy V, Sheffer A, Shamir A, Cohen-Or D. Nonhomogeneous resizing of complex models. ACM Trans. Graph., 2008, 27(5): Article No. 111. https://doi.org/10.1145/1409060.1409064.

  95. Xu W, Wang J, Yin K, Zhou K, Van De Panne M, Chen F, Guo B. Joint-aware manipulation of deformable models. ACM Trans. Graph., 2009, 28(3): Article No. 35. https://doi.org/10.1145/1531326.1531341.

  96. Gal R, Sorkine O, Mitra N J, Cohen-Or D. iWIRES: An analyze-and-edit approach to shape manipulation. In Proc. the 2009 ACM SIGGRAPH Papers, July 2009, Article No. 33. https://doi.org/10.1145/1576246.1531339.

  97. Li G, Liu L, Zheng H, Mitra N J. Analysis, reconstruction and manipulation using arterial snakes. ACM Trans. Graph., 2010, 29(6): Article No. 152. https://doi.org/10.1145/1882261.1866178.

  98. Zheng Y, Fu H, Cohen-Or D, Au O K C, Tai C L. Component-wise controllers for structure-preserving shape manipulation. Computer Graphics Forum, 2011, 30(2): 563-572. https://doi.org/10.1111/j.1467-8659.2011.01880.x.

    Article  Google Scholar 

  99. Xu K, Zheng H, Zhang H, Cohen-Or D, Liu L, Xiong Y. Photo-inspired model-driven 3D object modeling. ACM Trans. Graph., 2011, 30(4): Article No. 80. https://doi.org/10.1145/2010324.1964975.

  100. Zhang C, Yang L, Xu L, Wang G, Wang W. Real-time editing of man-made mesh models under geometric constraints. Computers & Graphics, 2019, 82: 174-182. https://doi.org/10.1016/j.cag.2019.05.028.

  101. Bokeloh M, Wand M, Koltun V, Seidel H P. Pattern-aware shape deformation using sliding dockers. In Proc. the 2011 SIGGRAPH Asia Conference, December 2011, Article No. 123. https://doi.org/10.1145/2024156.2024157.

  102. Bokeloh M, Wand M, Seidel H P, Koltun V. An algebraic model for parameterized shape editing. ACM Trans. Graph., 2012, 31(4): Article No. 78. https://doi.org/10.1145/2185520.2185574.

  103. Lin J, Cohen-Or D, Zhang H, Liang C, Sharf A, Deussen O, Chen B. Structure-preserving retargeting of irregular 3D architecture. ACM Trans. Graph., 2011, 30(6): Article No. 183. https://doi.org/10.1145/2070781.2024217.

  104. Milliez A, Wand M, Cani M P, Seidel H P. Mutable elastic models for sculpting structured shapes. Computer Graphics Forum, 2013, 32(2pt1): 21-30. https://doi.org/10.1111/cgf.12022.

  105. Habbecke M, Kobbelt L. Linear analysis of nonlinear constraints for interactive geometric modeling. Computer Graphics Forum, 2012, 31(2pt3): 641-650. https://doi.org/10.1111/j.1467-8659.2012.03043.x.

  106. Cabral M, Lefebvre S, Dachsbacher C, Drettakis G. Structure-preserving reshape for textured architectural scenes. Computer Graphics Forum, 2009, 28(2): 469-480. https://doi.org/10.1111/j.1467-8659.2009.01386.x.

    Article  Google Scholar 

  107. Tagliasacchi A, Delame T, Spagnuolo M, Amenta N, Telea A. 3D skeletons: A state-of-the-art report. Computer Graphics Forum, 2016, 35(2): 573-597. https://doi.org/10.1111/cgf.12865.

    Article  Google Scholar 

  108. Magnenat-Thalmann N, Laperrière R, Thalmann D. Joint-dependent local deformations for hand animation and object grasping. In Proc. the 14th Graphics Interface Conference, June 1988, pp.26-33. https://doi.org/10.20380/GI1988.04.

  109. Bang S, Lee S H. Spline interface for intuitive skinning weight editing. ACM Trans. Graph., 2018, 37(5): Article No. 174. https://doi.org/10.1145/3186565.

  110. Baran I, Popović J. Automatic rigging and animation of 3D characters. ACM Trans. Graph., 2007, 26(3): Article No. 72. https://doi.org/10.1145/1276377.1276467.

  111. Wareham R, Lasenby J. Bone glow: An improved method for the assignment of weights for mesh deformation. In Proc. the 5th International Conference on Articulated Motion and Deformable Objects, July 2008, pp.63-71. https://doi.org/10.1007/978-3-540-70517-8_7.

  112. Jacobson A, Baran I, Popovic J, Sorkine O. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph., 2011, 30(4): Article No. 78. https://doi.org/10.1145/2010324.1964973.

  113. Jacobson A, Weinkauf T, Sorkine O. Smooth shape-aware functions with controlled extrema. Computer Graphics Forum, 2012, 31(5): 1577-1586. https://doi.org/10.1111/j.1467-8659.2012.03163.x.

    Article  Google Scholar 

  114. Yuan Y J, Lai Y K, Wu T, Xia S, Gao L. Data-driven weight optimization for real-time mesh deformation. Graphical Models, 2019, 104: Article No. 101037. https://doi.org/10.1016/j.gmod.2019.101037.

  115. Dionne O, Lasa M. Geodesic voxel binding for production character meshes. In Proc. the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2013, pp.173-180. https://doi.org/10.1145/2485895.2485919.

  116. Dionne O, De Lasa M. Geodesic binding for degenerate character geometry using sparse voxelization. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(10): 1367-1378. https://doi.org/10.1109/TVCG.2014.2321563.

    Article  Google Scholar 

  117. Yan H B, Hu S M, Martin R. Skeleton-based shape deformation using simplex transformations. In Proc. the 24th Computer Graphics International Conference, June 2006, pp.66-77. https://doi.org/10.1007/11784203_6.

  118. Yan H B, Hu S, Martin R R, Yang Y L. Shape deformation using a skeleton to drive simplex transformations. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(3): 693-706. https://doi.org/10.1109/TVCG.2008.28.

    Article  Google Scholar 

  119. Lewis J P, Cordner M, Fong N. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In Proc. the 27th Annual Conference on Computer Graphics and Interactive Techniques, July 2000, pp.165-172. https://doi.org/10.1145/344779.344862.

  120. Mohr A, Gleicher M. Building efficient, accurate character skins from examples. ACM Trans. Graph., 2003, 22(3): 562-568. https://doi.org/10.1145/882262.882308.

    Article  Google Scholar 

  121. Wang R Y, Pulli K, Popović J. Real-time enveloping with rotational regression. In Proc. the 2007 ACM SIGGRAPH Papers, July 2007, Article No. 73. https://doi.org/10.1145/1275808.1276468.

  122. Chen C H, Lin I C, Tsai M H, Lu P H. Lattice-based skinning and deformation for real-time skeleton-driven animation. In Proc. the 12th International Conference on Computer-Aided Design and Computer Graphics, September 2011, pp.306-312. https://doi.org/10.1109/CAD/Graphics.2011.41.

  123. Abu Rumman N, Fratarcangeli M. Position-based skinning for soft articulated characters. Computer Graphics Forum, 2015, 34(6): 240-250. https://doi.org/10.1111/cgf.12533.

    Article  Google Scholar 

  124. Weber O, Sorkine O, Lipman Y, Gotsman C. Context-aware skeletal shape deformation. Computer Graphics Forum, 2007, 26(3): 265-274. https://doi.org/10.1111/j.1467-8659.2007.01048.x.

    Article  Google Scholar 

  125. Shi X, Zhou K, Tong Y, Desbrun M, Bao H, Guo B. Example-based dynamic skinning in real time. ACM Trans. Graph., 2008, 27(3): Article No. 29. https://doi.org/10.1145/1399504.1360628.

  126. Kavan L, Collins S, Žára J, O'Sullivan C. Skinning with dual quaternions. In Proc. the 2007 Symposium on Interactive 3D Graphics and Games, April 30–May 2, 2007, pp.39-46. https://doi.org/10.1145/1230100.1230107.

  127. Kavan L, Collins S, Žára J, O’Sullivan C. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph., 2008, 27(4): Article No. 105. https://doi.org/10.1145/1409625.1409627.

  128. Kavan L, Collins S, O'Sullivan C. Automatic linearization of nonlinear skinning. In Proc. the 2009 Symposium on Interactive 3D Graphics and Games, February 27–March 1, 2009, pp.49-56. https://doi.org/10.1145/1507149.1507157.

  129. Alexa M. Linear combination of transformations. ACM Trans. Graph., 2002, 21(3): 380-387. https://doi.org/10.1145/566654.566592.

    Article  MathSciNet  Google Scholar 

  130. Magnenat-Thalmann N, Cordier F, Seo H, Papagianakis G. Modeling of bodies and clothes for virtual environments. In Proc. the 3rd International Conference on Cyberworlds, November 2004, pp.201-208. https://doi.org/10.1109/CW.2004.47.

  131. Kavan L, Žára J. Spherical blend skinning: A real-time deformation of articulated models. In Proc. the 2005 Symposium on Interactive 3D Graphics and Games, April 2005, pp.9-16. https://doi.org/10.1145/1053427.1053429.

  132. Le B H, Hodgins J K. Real-time skeletal skinning with optimized centers of rotation. ACM Trans. Graph., 2016, 35(4): Article No. 37. https://doi.org/10.1145/2897824.2925959.

  133. Kim Y, Han J. Bulging-free dual quaternion skinning. Computer Animation and Virtual Worlds, 2014, 25(3/4): 321-329. https://doi.org/10.1002/cav.1604.

    Article  Google Scholar 

  134. Forstmann S, Ohya J. Fast skeletal animation by skinned arc-spline based deformation. In Proc. the 27th Annual Conference of the European Association for Computer Graphics, September 2006, pp.1-4. https://doi.org/10.2312/egs.20061014.

  135. Forstmann S, Ohya J, Krohn-Grimberghe A, McDougall R. Deformation styles for spline-based skeletal animation. In Proc. the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, August 2007, pp.141-150. https://doi.org/10.2312/SCA/SCA07/141-150.

  136. Yang X, Somasekharan A, Zhang J J. Curve skeleton skinning for human and creature characters. Computer Animation and Virtual Worlds, 2006, 17(3/4): 281-292. https://doi.org/10.1002/cav.132.

    Article  Google Scholar 

  137. Öztireli A C, Baran I, Popa T, Dalstein B, Sumner R W, Gross M. Differential blending for expressive sketch-based posing. In Proc. the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2013, pp.155-164. https://doi.org/10.1145/2485895.2485916.

  138. Wang X C, Phillips C. Multi-weight enveloping: Least-squares approximation techniques for skin animation. In Proc. the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2002, pp.129-138. https://doi.org/10.1145/545261.545283.

  139. Merry B, Marais P, Gain J. Animation space: A truly linear framework for character animation. ACM Trans. Graph., 2006, 25(4): 1400-1423. https://doi.org/10.1145/1183287.1183294.

    Article  Google Scholar 

  140. Jacobson A, Sorkine O. Stretchable and twistable bones for skeletal shape deformation. In Proc. the 2011 SIGGRAPH Asia Conference, December 2011, Article No. 165. https://doi.org/10.1145/2024156.2024199.

  141. Thiery J M, Eisemann E. ARAPLBS: Robust and efficient elasticity-based optimization of weights and skeleton joints for linear blend skinning with parametrized bones. Computer Graphics Forum, 2018, 37(1): 32-44. https://doi.org/10.1111/cgf.13161.

    Article  Google Scholar 

  142. Li J, Lu G. Skeleton driven animation based on implicit skinning. Computers & Graphics, 2011, 35(5): 945-954. https://doi.org/10.1016/j.cag.2011.07.005.

  143. Kavan L, Sorkine O. Elasticity-inspired deformers or character articulation. ACM Trans. Graph., 2012, 31(6): Article No. 196. https://doi.org/10.1145/2366145.2366215.

  144. McAdams A, Zhu Y, Selle A, Empey M, Tamstorf R, Teran J, Sifakis E. Efficient elasticity for character skinning with contact and collisions. In Proc. the 2011 ACM SIGGRAPH Papers, July 2011, Article No. 37. https://doi.org/10.1145/1964921.1964932.

  145. Vaillant R, Barthe L, Guennebaud G, Cani M P, Rohmer D, Wyvill B, Gourmel O, Paulin M. Implicit skinning: Real-time skin deformation with contact modeling. ACM Trans. Graph., 2013, 32(4): Article No. 125. https://doi.org/10.1145/2461912.2461960.

  146. Wendland H. Scattered Data Approximation. Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511617539.

  147. Macedo I, Gois J P, Velho L. Hermite radial basis functions implicits. Computer Graphics Forum, 2011, 30(1): 27-42. https://doi.org/10.1111/j.1467-8659.2010.01785.x.

    Article  Google Scholar 

  148. Vaillant R, Guennebaud G, Barthe L, Wyvill B, Cani M P. Robust iso-surface tracking for interactive character skinning. ACM Trans. Graph., 2014, 33(6): Article No. 189. 10.1145/2661229.2661264.

  149. Teng Y, Otaduy M A, Kim T. Simulating articulated subspace self-contact. ACM Trans. Graph., 2014, 33(4): Article No. 106. https://doi.org/10.1145/2601097.2601181.

  150. James D L, Twigg C D. Skinning mesh animations. ACM Trans. Graph., 2005, 24(3): 399-407. https://doi.org/10.1145/1073204.1073206.

    Article  Google Scholar 

  151. Yoshizawa S, Belyaev A, Seidel H P. Skeleton-based variational mesh deformations. Computer Graphics Forum, 2007, 26(3): 255-264. https://doi.org/10.1111/j.1467-8659.2007.01047.x.

    Article  Google Scholar 

  152. Xie Y, Xu W, Yang Y, Guo X, Zhou K. Agile structural analysis for fabrication-aware shape editing. Computer Aided Geometric Design, 2015, 35-36: 163-179. https://doi.org/10.1016/j.cagd.2015.03.019.

    Article  MathSciNet  MATH  Google Scholar 

  153. Xu W, Yang H, Yang Y, Wang Y, Zhou K. Stress-aware large-scale mesh editing using a domain-decomposed multigrid solver. Computer Aided Geometric Design, 2018, 63: 17-30. https://doi.org/10.1016/j.cagd.2018.03.013.

    Article  MathSciNet  MATH  Google Scholar 

  154. Jiang W, Xu K, Cheng Z Q, Martin R R, Dang G. Curve skeleton extraction by coupled graph contraction and surface clustering. Graphical Models, 2013, 75(3): 137-148. https://doi.org/10.1016/j.gmod.2012.10.005.

    Article  Google Scholar 

  155. Wang S, Wu J, Wei M, Ma X. Robust curve skeleton extraction for vascular structures. Graphical Models, 2012, 74(4): 109-120. https://doi.org/10.1016/j.gmod.2012.03.008.

    Article  Google Scholar 

  156. Tagliasacchi A, Alhashim I, Olson M, Zhang H. Mean curvature skeletons. Computer Graphics Forum, 2012, 31(5): 1735-1744. https://doi.org/10.1111/j.1467-8659.2012.03178.x.

    Article  Google Scholar 

  157. Tagliasacchi A, Zhang H, Cohen-Or D. Curve skeleton extraction from incomplete point cloud. In Proc. the 2009 ACM SIGGRAPH Papers, July 2009, Article No. 71. https://doi.org/10.1145/1576246.1531377.

  158. Qin H, Han J, Li N, Huang H, Chen B. Mass-driven topology-aware curve skeleton extraction from incomplete point clouds. IEEE Transactions on Visualization and Computer Graphics, 2019, 26(9): 2805-2817. https://doi.org/10.1109/TVCG.2019.2903805.

    Article  Google Scholar 

  159. Livny Y, Yan F, Olson M, Chen B, Zhang H, El-Sana J. Automatic reconstruction of tree skeletal structures from point clouds. In Proc. the 2010 ACM SIGGRAPH Asia Papers, December 2010, Article No. 151. https://doi.org/10.1145/1866158.1866177.

  160. Huang H, Wu S, Cohen-Or D, Gong M, Zhang H, Li G, Chen B. L1-medial skeleton of point cloud. ACM Trans. Graph., 2013, 32(4): Article No. 65. https://doi.org/10.1145/2461912.2461913.

  161. Feng A, Casas D, Shapiro A. Avatar reshaping and automatic rigging using a deformable model. In Proc. the 8th ACM SIGGRAPH Conference on Motion in Games, November 2015, pp.57-64. https://doi.org/10.1145/2822013.2822017.

  162. Anguelov D, Srinivasan P, Koller D, Thrun S, Rodgers J, Davis J. SCAPE: Shape completion and animation of people. ACM Trans. Graph., 2005, 24(3): 408-416. https://doi.org/10.1145/1073204.1073207.

    Article  Google Scholar 

  163. Bharaj G, Thormählen T, Seidel H P, Theobalt C. Automatically rigging multi-component characters. Computer Graphics Forum, 2012, 31(2pt4): 755-764. https://doi.org/10.1111/j.1467-8659.2012.03034.x.

  164. Schaefer S, Yuksel C. Example-based skeleton extraction. In Proc. the 5th Eurographics Symposium on Geometry Processing, July 2007, pp.153-162. https://doi.org/10.2312/SGP/SGP07/153-162.

  165. De Aguiar E, Theobalt C, Thrun S, Seidel H P. Automatic conversion of mesh animations into skeleton-based animations. Computer Graphics Forum, 2008, 27(2): 389-397. https://doi.org/10.1111/j.1467-8659.2008.01136.x.

    Article  Google Scholar 

  166. Hasler N, Thormählen T, Rosenhahn B, Seidel H P. Learning skeletons for shape and pose. In Proc. the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, February 2010, pp.23-30. https://doi.org/10.1145/1730804.1730809.

  167. Le B H, Deng Z. Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph., 2014, 33(4): Article No. 84. https://doi.org/10.1145/2601097.2601161.

  168. Le B H, Deng Z. Smooth skinning decomposition with rigid bones. ACM Trans. Graph., 2012, 31(6): Article No. 199. https://doi.org/10.1145/2366145.2366218.

  169. Cohen J, Varshney A, Manocha D, Turk G, Weber H, Agarwal P, Brooks F, Wright W. Simplification envelopes. In Proc. the 23rd Annual Conference on Computer Graphics and Interactive Techniques, August 1996, pp.119-128. https://doi.org/10.1145/237170.237220.

  170. Ben-Chen M, Weber O, Gotsman C. Spatial deformation transfer. In Proc. the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, August 2009, pp.67-74. https://doi.org/10.1145/1599470.1599479.

  171. Deng Z J, Luo X N, Miao X P. Automatic cage building with quadric error metrics. J. Comput. Sci. Technol., 2011, 26(3): 538-547. https://doi.org/10.1007/s11390-011-1153-4.

    Article  MATH  Google Scholar 

  172. Sacht L, Vouga E, Jacobson A. Nested cages. ACM Trans. Graph., 2015, 34(6): Article No. 170. https://doi.org/10.1145/2816795.2818093.

  173. Xian C, Lin H, Gao S. Automatic generation of coarse bounding cages from dense meshes. In Proc. the 2009 IEEE International Conference on Shape Modeling and Applications, June 2009, pp.21-27. https://doi.org/10.1109/SMI.2009.5170159.

  174. Xian C, Li G, Xiong Y. Efficient and effective cage generation by region decomposition. Comput. Animat. Virtual Worlds, 2015, 26(2): 173-184. https://doi.org/10.1002/cav.1571.

    Article  Google Scholar 

  175. Le B H, Deng Z. Interactive cage generation for mesh deformation. In Proc. the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, February 2017, Article No. 3. https://doi.org/10.1145/3023368.3023369.

  176. Ju T, Zhou Q Y, Panne M, Cohen-Or D, Neumann U. Reusable skinning templates using cage-based deformations. ACM Trans. Graph., 2008, 27(5): Article No. 122. https://doi.org/10.1145/1409060.1409075.

  177. Savoye Y, Franco J S. CageIK: Dual-Laplacian cage-based inverse kinematics. In Proc. the 6th International Conference on Articulated Motion and Deformable Objects, July 2010, pp.280-289. https://doi.org/10.1007/978-3-642-14061-7_27.

  178. Floater M S. Mean value coordinates. Computer Aided Geometric Design, 2003, 20(1): 19-27. https://doi.org/10.1016/S0167-8396(03)00002-5.

    Article  MathSciNet  MATH  Google Scholar 

  179. Floater M S, Kós G, Reimers M. Mean value coordinates in 3D. Computer Aided Geometric Design, 2005, 22(7): 623-631. https://doi.org/10.1016/j.cagd.2005.06.004.

    Article  MathSciNet  MATH  Google Scholar 

  180. Hormann K, Floater M S. Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph., 2006, 25(4): 1424-1441. https://doi.org/10.1145/1183287.1183295.

    Article  Google Scholar 

  181. Joshi P, Meyer M, DeRose T, Green B, Sanocki T. Harmonic coordinates for character articulation. ACM Trans. Graph., 2007, 26(3): Article No. 71. https://doi.org/10.1145/1276377.1276466.

  182. Lipman Y, Kopf J, Cohen-Or D, Levin D. GPU-assisted positive mean value coordinates for mesh deformations. In Proc. the 5th Eurographics Symposium on Geometry Processing, July 2007, pp.117-123. https://doi.org/10.2312/SGP/SGP07/117-123.

  183. Langer T, Belyaev A, Seidel H P. Spherical barycentric coordinates. In Proc. the 4th Eurographics Symposium on Geometry Processing, June 2006, pp.81-88. https://doi.org/10.2312/SGP/SGP06/081-088.

  184. Ju T, Schaefer S, Warren J D, Desbrun M. A geometric construction of coordinates for convex polyhedra using polar duals. In Proc. the 3rd Eurographics Symposium on Geometry Processing, July 2005, pp.181-186. https://doi.org/10.2312/SGP/SGP05/181-186.

  185. Lipman Y, Levin D, Cohen-Or D. Green coordinates. ACM Trans. Graph., 2008, 27(3): Article No. 78. https://doi.org/10.1145/1360612.1360677.

  186. Weber O, Ben-Chen M, Gotsman C. Complex barycentric coordinates with applications to planar shape deformation. Computer Graphics Forum, 2009, 28(2): 587-597. https://doi.org/10.1111/j.1467-8659.2009.01399.x.

    Article  Google Scholar 

  187. Ben-Chen M, Weber O, Gotsman C. Variational harmonic maps for space deformation. ACM Trans. Graph., 2009, 28(3): Article No. 34. https://doi.org/10.1145/1531326.1531340.

  188. Yang W, Feng J, Jin X. Shape deformation with tunable stiffness. The Visual Computer, 2008, 24(7/8/9): Article No. 495. https://doi.org/10.1007/s00371-008-0230-3.

  189. Manson J, Schaefer S. Moving least squares coordinates. Computer Graphics Forum, 2010, 29(5): 1517-1524. https://doi.org/10.1111/j.1467-8659.2010.01760.x.

    Article  Google Scholar 

  190. Dyken C, Floater M S. Transfinite mean value interpolation. Computer Aided Geometric Design, 2009, 26(1): 117-134. https://doi.org/10.1016/j.cagd.2007.12.003.

    Article  MathSciNet  MATH  Google Scholar 

  191. Weber O, Poranne R, Gotsman C. Biharmonic coordinates. Computer Graphics Forum, 2012, 31(8): 2409-2422. https://doi.org/10.1111/j.1467-8659.2012.03130.x.

    Article  Google Scholar 

  192. Li X Y, Ju T, Hu S M. Cubic mean value coordinates. ACM Trans. Graph., 2013, 32(4): Article No. 126. https://doi.org/10.1145/2461912.2461917.

  193. Landreneau E, Schaefer S. Poisson-based weight reduction of animated meshes. Computer Graphics Forum, 2010, 29(6): 1945-1954. https://doi.org/10.1111/j.1467-8659.2010.01661.x.

    Article  Google Scholar 

  194. Le B H, Deng Z. Two-layer sparse compression of dense-weight blend skinning. ACM Trans. Graph., 2013, 32(4): Article No. 124. https://doi.org/10.1145/2461912.2461949.

  195. Zhang J, Deng B, Liu Z, Patanè G, Bouaziz S, Hormann K, Liu L. Local barycentric coordinates. ACM Trans. Graph., 2014, 33(6): Article No. 188. https://doi.org/10.1145/2661229.2661255.

  196. Chambolle A, Caselles V, Cremers D, Novaga M, Pock T. An introduction to total variation for image analysis. In Theoretical Foundations and Numerical Methods for Sparse Recovery, Fornasier M (ed.), De Gruyter, 2010, pp.263-340. https://doi.org/10.1515/9783110226157.263

  197. Tao J, Deng B, Zhang J. A fast numerical solver for local barycentric coordinates. Computer Aided Geometric Design, 2019, 70: 46-58. https://doi.org/10.1016/j.cagd.2019.04.006.

    Article  MathSciNet  MATH  Google Scholar 

  198. Botsch M, Pauly M, Wicke M, Gross M. Adaptive space deformations based on rigid cells. Computer Graphics Forum, 2007, 26(3): 339-347. https://doi.org/10.1111/j.1467-8659.2007.01056.x.

    Article  Google Scholar 

  199. Li Z, Levin D, Deng Z, Liu D, Luo X. Cage-free local deformations using green coordinates. The Visual Computer, 2010, 26(6/7/8): 1027-1036. https://doi.org/10.1007/s00371-010-0438-x.

  200. Levi Z, Levin D. Shape deformation via interior RBF. IEEE Transactions on Visualization and Computer Graphics, 2013, 20(7): 1062-1075. https://doi.org/10.1109/TVCG.2013.255.

    Article  Google Scholar 

  201. García F G, Paradinas T, Coll N, Patow G. *Cages: A multilevel, multi-cage-based system for mesh deformation. ACM Trans. Graph., 2013, 32(3): Article No. 24. https://doi.org/10.1145/2487228.2487232.

  202. Thiery J M, Guy E, Boubekeur T. Sphere-meshes: Shape approximation using spherical quadric error metrics. ACM Trans. Graph., 2013, 32(6): Article No. 178. https://doi.org/10.1145/2508363.2508384.

  203. Thiery J M, Guy E, Boubekeur T, Eisemann E. Animated mesh approximation with sphere-meshes. ACM Trans. Graph., 2016, 35(3): Article No. 30. https://doi.org/10.1145/2898350.

  204. Zhang Y, Zheng J, Cai Y. Proxy-driven free-form deformation by topology-adjustable control lattice. Computers & Graphics, 2020, 89: 167-177. https://doi.org/10.1016/j.cag.2020.05.013.

  205. Bogo F, Romero J, Loper M, Black M J. FAUST: Dataset and evaluation for 3D mesh registration. In Proc. the 2014 IEEE Conference on Computer Vision and Pattern Recognition, June 2014, pp.3794-3801. https://doi.org/10.1109/CVPR.2014.491.

  206. Sumner R W, Zwicker M, Gotsman C, Popović J. Mesh-based inverse kinematics. ACM Trans. Graph., 2005, 24(3): 488-495. https://doi.org/10.1145/1073204.1073218.

    Article  Google Scholar 

  207. Sumner R W, Popović J. Deformation transfer for triangle meshes. ACM Trans. Graph., 2004, 23(3): 399-405. https://doi.org/10.1145/1015706.1015736.

    Article  Google Scholar 

  208. Murray R M, Li Z, Sastry S S. A Mathematical Introduction to Robotic Manipulation (1st edition). CRC Press, 1994. https://doi.org/10.1201/9781315136370.

  209. Der K G, Sumner R W, Popović J. Inverse kinematics for reduced deformable models. ACM Trans. Graph., 2006, 25(3): 1174-1179. https://doi.org/10.1145/1141911.1142011.

    Article  Google Scholar 

  210. Wampler K. Fast and reliable example-based mesh IK for stylized deformations. ACM Trans. Graph., 2016, 35(6): Article No. 235. https://doi.org/10.1145/2980179.2982433.

  211. Lipman Y, Sorkine O, Levin D, Cohen-Or D. Linear rotation-invariant coordinates for meshes. ACM Trans. Graph., 2005, 24(3): 479-487. https://doi.org/10.1145/1073204.1073217.

    Article  Google Scholar 

  212. Baran I, Vlasic D, Grinspun E, Popović J. Semantic deformation transfer. In Proc. the 2009 ACM SIGGRAPH Papers, July 2009, Article No. 36. https://doi.org/10.1145/1576246.1531342.

  213. Gao L, Chen S Y, Lai Y K, Xia S. Data-driven shape interpolation and morphing editing. Computer Graphics Forum, 2017, 36(8): 19-31. https://doi.org/10.1111/cgf.12991.

    Article  Google Scholar 

  214. Kircher S, Garland M. Free-form motion processing. ACM Trans. Graph., 2008, 27(2): Article No. 12. https://doi.org/10.1145/1356682.1356685.

  215. Winkler T, Drieseberg J, Alexa M, Hormann K. Multi-scale geometry interpolation. Computer Graphics Forum, 2010, 29(2): 309-318. https://doi.org/10.1111/j.1467-8659.2009.01600.x.

    Article  Google Scholar 

  216. Fröhlich S, Botsch M. Example-driven deformations based on discrete shells. Computer Graphics Forum, 2011, 30(8): 2246-2257. https://doi.org/10.1111/j.1467-8659.2011.01974.x.

  217. Gao L, Lai Y K, Liang D, Chen S Y, Xia S. Efficient and flexible deformation representation for data-driven surface modeling. ACM Trans. Graph., 2016, 35(5): Article No. 158. https://doi.org/10.1145/2908736.

  218. Xu W, Zhou K, Yu Y, Tan Q, Peng Q, Guo B. Gradient domain editing of deforming mesh sequences. ACM Trans. Graph., 2007, 26(3): Article No. 84. https://doi.org/10.1145/1276377.1276482.

  219. Sumner R W, Schmid J, Pauly M. Embedded deformation for shape manipulation. In Proc. the 2007 ACM SIGGRAPH Papers, August 2007, Article No. 80. https://doi.org/10.1145/1275808.1276478.

  220. Alexa M, Müller W. Representing animations by principal components. Computer Graphics Forum, 2000, 19(3): 411-418. https://doi.org/10.1111/1467-8659.00433.

  221. Neumann T, Varanasi K, Wenger S, Wacker M, Magnor M, Theobalt C. Sparse localized deformation components. ACM Trans. Graph., 2013, 32(6): Article No. 179. https://doi.org/10.1145/2508363.2508417.

  222. Huang Z, Yao J, Zhong Z, Liu Y, Guo X. Sparse localized decomposition of deformation gradients. Computer Graphics Forum, 2014, 33(7): 239-248. https://doi.org/10.1111/cgf.12492.

    Article  Google Scholar 

  223. Bernard F, Gemmar P, Hertel F, Goncalves J, Thunberg J. Linear shape deformation models with local support using graph-based structured matrix factorisation. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 2016, pp.5629-5638. https://doi.org/10.1109/CVPR.2016.607.

  224. Wang Y, Li G, Zeng Z, He H. Articulated-motion-aware sparse localized decomposition. Computer Graphics Forum, 2017, 36(8): 247-259. https://doi.org/10.1111/cgf.13076.

    Article  Google Scholar 

  225. Liu Y, Li G, Wang Y, Nie Y, Mao A. Discrete shell deformation driven by adaptive sparse localized components. Computers & Graphics, 2019, 78: 76-86. https://doi.org/10.1016/j.cag.2018.11.005.

  226. Wang Y, Liu B, Tong Y. Linear surface reconstruction from discrete fundamental forms on triangle meshes. Computer Graphics Forum, 2012, 31(8): 2277-2287. https://doi.org/10.1111/j.1467-8659.2012.03153.x.

    Article  Google Scholar 

  227. Sassen J, Heeren B, Hildebrandt K, Rumpf M. Geometric optimization using nonlinear rotation-invariant coordinates. Computer Aided Geometric Design, 2020, 77: Article No. 101829. https://doi.org/10.1016/j.cagd.2020.101829.

  228. Sassen J, Hildebrandt K, Rumpf M. Nonlinear deformation synthesis via sparse principal geodesic analysis. Computer Graphics Forum, 2020, 39(5): 119-132. https://doi.org/10.1111/cgf.14073.

    Article  Google Scholar 

  229. Heeren B, Zhang C, Rumpf M, Smith W. Principal geodesic analysis in the space of discrete shells. Computer Graphics Forum, 2018, 37(5): 173-184. https://doi.org/10.1111/cgf.13500.

    Article  Google Scholar 

  230. Loper M, Mahmood N, Romero J, Pons-Moll G, Black M J. SMPL: A skinned multi-person linear model. ACM Trans. Graph., 2015, 34(6): Article No. 248. https://doi.org/10.1145/2816795.2818013.

  231. Pons-Moll G, Romero J, Mahmood N, Black M J. Dyna: A model of dynamic human shape in motion. ACM Trans. Graph., 2015, 34(4): Article No. 120. https://doi.org/10.1145/2766993.

  232. Fish N, Averkiou M, Van Kaick O, Sorkine-Hornung O, Cohen-Or D, Mitra N J. Meta-representation of shape families. ACM Trans. Graph., 2014, 33(4): Article No. 34. https://doi.org/10.1145/2601097.2601185.

  233. Yumer ME, Kara L B. Co-constrained handles for deformation in shape collections. ACM Trans. Graph., 2014, 33(6): Article No. 187. https://doi.org/10.1145/2661229.2661234.

  234. Yumer M E, Kara L B. Co-abstraction of shape collections. ACM Trans. Graph., 2012, 31(6): Article No. 166. https://doi.org/10.1145/2366145.2366185.

  235. Yumer M E, Chaudhuri S, Hodgins J K, Kara L B. Semantic shape editing using deformation handles. ACM Trans. Graph., 2015, 34(4): Article No. 86. https://doi.org/10.1145/2766908.

  236. Fu Q, Chen X, Su X, Li J, Fu H. Structure-adaptive shape editing for man-made objects. Computer Graphics Forum, 2016, 35(2): 27-36. https://doi.org/10.1111/cgf.12808.

    Article  Google Scholar 

  237. Laga H, Tabia H. Modeling and exploring covariations in the geometry and configuration of man-made 3D shape families. Computer Graphics Forum, 2017, 36(5): 13-25. https://doi.org/10.1111/cgf.13241.

    Article  Google Scholar 

  238. Zheng Y, Liu H, Dorsey J, Mitra N J. Ergonomics-inspired reshaping and exploration of collections of models. IEEE Transactions on Visualization and Computer Graphics, 2015, 22(6): 1732-1744. https://doi.org/10.1109/TVCG.2015.2448084.

    Article  Google Scholar 

  239. Ovsjanikov M, Li W, Guibas L, Mitra N J. Exploration of continuous variability in collections of 3D shapes. ACM Trans. Graph., 2011, 30(4): Article No. 33. https://doi.org/10.1145/2010324.1964928.

  240. Ishimtsev V, Bokhovkin A, Artemov A, Ignatyev S, Niessner M, Zorin D, Burnaev E. CAD-Deform: Deformable fitting of CAD models to 3D scans. arXiv:2007.11965, 2020. https://arxiv.org/abs/2007.11965, Jan. 2021.

  241. Mahmood N, Ghorbani N, Troje N F, Pons-Moll G, Black M J. AMASS: Archive of motion capture as surface shapes. In Proc. the 2019 IEEE/CVF International Conference on Computer Vision, Oct. 27–Nov. 2, 2019, pp.5442-5451. https://doi.org/10.1109/ICCV.2019.00554.

  242. Tan Q, Gao L, Lai Y K, Xia S. Variational autoencoders for deforming 3D mesh models. In Proc. the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018, pp.5841-5850. https://doi.org/10.1109/CVPR.2018.00612.

  243. Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. In Proc. the 30th International Conference on Neural Information Processing Systems, December 2016, pp.3844-3852.

  244. Yuan Y J, Lai Y K, Yang J, Duan Q, Fu H, Gao L. Mesh variational autoencoders with edge contraction pooling. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, June 2020, pp.274-275. https://doi.org/10.1109/CVPRW50498.2020.00145.

  245. Tan Q, Gao L, Lai Y K, Yang J, Xia S. Mesh-based autoencoders for localized deformation component analysis. In Proc. the 32nd AAAI Conference on Artificial Intelligence, February 2018, pp.2452-2459.

  246. Yang J, Gao L, Tan Q, Huang Y, Xia S, Lai Y K. Multiscale mesh deformation component analysis with attention-based autoencoders. arXiv:2012.02459, 2020. https://arxiv.org/abs/2012.02459, Jan. 2021.

  247. Qiao Y L, Gao L, Lai Y K, Xia S. Learning bidirectional LSTM networks for synthesizing 3D mesh animation sequences. arXiv:1810.02042, 2018. https://arxiv.org/abs/1810.02042, Jan. 2021.

  248. Gao L, Yang J, Qiao Y L, Lai Y K, Rosin P L, Xu W, Xia S. Automatic unpaired shape deformation transfer. ACM Trans. Graph., 2018, 37(6): Article No. 237. https://doi.org/10.1145/3272127.3275028.

  249. Zhu J Y, Park T, Isola P, Efros A A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proc. the IEEE International Conference on Computer Vision, October 2017, pp.2223-2232. https://doi.org/10.1109/ICCV.2017.244.

  250. Chen L, Zhang X, Ye J. Multi-feature super-resolution network for cloth wrinkle synthesis. arXiv:2004.04351, 2020. https://arxiv.org/abs/2004.04351, Jan. 2021.

  251. Chen L, Gao L, Yang J, Xu S, Ye J, Zhang X, Lai Y K. Deep deformation detail synthesis for thin shell models. arXiv:2102.11541, 2021. https://arxiv.org/abs/2102.11541, March 2021.

  252. Wang J, Wen C, Fu Y, Lin H, Zou T, Xue X, Zhang Y. Neural pose transfer by spatially adaptive instance normalization. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020, pp.5831-5839. https://doi.org/10.1109/CVPR42600.2020.00587.

  253. Bailey S W, Omens D, Dilorenzo P, O'Brien J F. Fast and deep facial deformations. ACM Trans. Graph., 2020, 39(4): Article No. 94. https://doi.org/10.1145/3386569.3392397.

  254. Bailey S W, Otte D, Dilorenzo P, O’Brien J F. Fast and deep deformation approximations. ACM Trans. Graph., 2018, 37(4): Article No. 119. https://doi.org/10.1145/3197517.3201300.

  255. Li T, Shi R, Kanai T. DenseGATs: A graph-attention-based network for nonlinear character deformation. In Proc. the 2020 Symposium on Interactive 3D Graphics and Games, May 2020, Article No. 5. https://doi.org/10.1145/3384382.3384525.

  256. Liu L, Zheng Y, Tang D, Yuan Y, Fan C, Zhou K. NeuroSkinning: Automatic skin binding for production characters with deep graph networks. ACM Trans. Graph., 2019, 38(4): Article No. 114. https://doi.org/10.1145/3306346.3322969.

  257. Xu Z, Zhou Y, Kalogerakis E, Singh K. Predicting animation skeletons for 3D articulated models via volumetric nets. In Proc. the 2019 International Conference on 3D Vision, September 2019, pp.298-307. https://doi.org/10.1109/3DV.2019.00041.

  258. Vesdapunt N, Rundle M, Wu H, Wang B. JNR: Joint-based neural rig representation for compact 3D face modeling. arXiv:2007.06755, 2020. https://arxiv.org/abs/2007.06755, Jan. 2021.

  259. Luo R, Shao T, Wang H, Xu W, Chen X, Zhou K, Yang Y. NNWarp: Neural network-based nonlinear deformation. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(4): 1745-1759. https://doi.org/10.1109/TVCG.2018.2881451.

    Article  Google Scholar 

  260. Fulton L, Modi V, Duvenaud D, Levin D I, Jacobson A. Latent-space dynamics for reduced deformable simulation. Computer Graphics Forum, 2019, 38(2): 379-391. https://doi.org/10.1111/cgf.13645.

    Article  Google Scholar 

  261. Santesteban I, Garces E, Otaduy M A, Casas D. Soft-SMPL: Data-driven modeling of nonlinear soft-tissue dynamics for parametric humans. Computer Graphics Forum, 2020, 39(2): 65-75. https://doi.org/10.1111/cgf.13912.

    Article  Google Scholar 

  262. Deng B, Lewis J, Jeruzalski T, Pons-Moll G, Hinton G, Norouzi M, Tagliasacchi A. NASA neural articulated shape approximation. In Proc. the 16th European Conference on Computer Vision, August 2020, pp.612-628. https://doi.org/10.1007/978-3-030-58571-6_36.

  263. Jeruzalski T, Levin D I, Jacobson A, Lalonde P, Norouzi M, Tagliasacchi A. NiLBS: Neural inverse linear blend skinning. arXiv:2004.05980, 2020. https://arxiv.org/abs/2004.05980, Jan. 2021.

  264. Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J. 3D ShapeNets: A deep representation for volumetric shapes. In Proc. the 2015 IEEE Conference on Computer Vision and Pattern Recognition, June 2015, pp.1912-1920. https://doi.org/10.1109/CVPR.2015.7298801.

  265. Zhou Q, Jacobson A. Thingi10K: A dataset of 10,000 3D-printing models. arXiv:1605.04797, 2016. https://arxiv.org/abs/1605.04797, Jan. 2021.

  266. Koch S, Matveev A, Jiang Z, Williams F, Artemov A, Burnaev E, Alexa M, Zorin D, Panozzo D. ABC: A big CAD model dataset for geometric deep learning. In Proc. the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2019, pp.9601-9611. https://doi.org/10.1109/CVPR.2019.00983.

  267. Yumer M E, Mitra N J. Learning semantic deformation flows with 3D convolutional networks. In Proc. the 14th European Conference on Computer Vision, October 2016, pp.294-311. https://doi.org/10.1007/978-3-319-46466-4_18

  268. Liu J, Yu F, Funkhouser T. Interactive 3D modeling with a generative adversarial network. In Proc. the 2017 International Conference on 3D Vision, October 2017, pp.126-134. https://doi.org/10.1109/3DV.2017.00024.

  269. Umetani N. Exploring generative 3D shapes using autoencoder networks. In Proc. the 2017 SIGGRAPH Asia Technical Briefs, November 2017, Article No. 24. https://doi.org/10.1145/3145749.3145758.

  270. Mehr E, Jourdan A, Thome N, Cord M, Guitteny V. DiscoNet: Shapes learning on disconnected manifolds for 3D editing. In Proc. the 2019 IEEE/CVF International Conference on Computer Vision, Oct. 27–Nov. 2, 2019, pp.3474-3483. https://doi.org/10.1109/ICCV.2019.00357.

  271. Wang Y, Aigerman N, Kim V G, Chaudhuri S, Sorkine-Hornung O. Neural cages for detail-preserving 3D deformations. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020, pp.75-83. https://doi.org/10.1109/CVPR42600.2020.00015.

  272. Liu M, Sung M, Mech R, Su H. DeepMetaHandles: Learning deformation meta-handles of 3D meshes with biharmonic coordinates. arXiv:2102.09105, 2021. https://arxiv.org/abs/2102.09105, April 2021.

  273. Wang Y, Jacobson A, Barbič J, Kavan L. Linear subspace design for real-time shape deformation. ACM Trans. Graph., 2015, 34(4): Article No. 57. https://doi.org/10.1145/2766952.

  274. Liu S, Li T, Chen W, Li H. Soft rasterizer: A differentiable renderer for image-based 3D reasoning. In Proc. the 2019 IEEE/CVF International Conference on Computer Vision, Oct. 27–Nov. 2, 2019, pp.7707-7716. https://doi.org/10.1109/ICCV.2019.00780.

  275. Hao Z, Averbuch-Elor H, Snavely N, Belongie S. DualSDF: Semantic shape manipulation using a two-level representation. In Proc. the 2020 IEEE Conference on Computer Vision and Pattern Recognition, June 2020, pp.7631-7641. https://doi.org/10.1109/CVPR42600.2020.00765.

  276. Zadeh A, Lim Y C, Liang P P, Morency L P. Variational auto-decoder. arXiv:1903.00840, 2019. https://arxiv.org/abs/1903.00840, Jan. 2021.

  277. Deng Y, Yang J, Tong X. Deformed implicit field: Modeling 3D shapes with learned dense correspondence. arXiv:2011.13650, 2020. https://arxiv.org/abs/2011.13650, Jan. 2021.

  278. Zheng Z, Yu T, Dai Q, Liu Y. Deep implicit templates for 3D shape representation. arXiv:2011.14565, 2020. https://arxiv.org/abs/2011.14565, Jan. 2021.

  279. Wei F, Sizikova E, Sud A, Rusinkiewicz S, Funkhouser T. Learning to infer semantic parameters for 3D shape editing. In Proc. the 2020 International Conference on 3D Vision, November 2020, pp.434-442. https://doi.org/10.1109/3DV50981.2020.00053.

  280. Sung M, Jiang Z, Achlioptas P, Mitra N J, Guibas L J. DeformSyncNet: Deformation transfer via synchronized shape deformation spaces. ACM Trans. Graph., 2020, 39(6): Article No. 261. https://doi.org/10.1145/3414685.3417783.

  281. Mo K, Guerrero P, Yi L, Su H, Wonka P, Mitra N J, Guibas L J. StructEdit: Learning structural shape variations. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020, pp.8859-8868. https://doi.org/10.1109/CVPR42600.2020.00888.

  282. Mo K, Guerrero P, Yi L, Su H, Wonka P, Mitra N, Guibas L J. StructureNet: Hierarchical graph networks for 3D shape generation. ACM Trans. Graph., 2019, 38(6): Article No. 242. https://doi.org/10.1145/3355089.3356527.

  283. Gadelha M, Gori G, Ceylan D, Mech R, Carr N, Boubekeur T, Wang R, Maji S. Learning generative models of shape handles. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2020, pp.402-411. https://doi.org/10.1109/CVPR42600.2020.00048.

  284. Lin C, Fan T, Wang W, Nießner M. Modeling 3D shapes by reinforcement learning. In Proc. the 16th European Conference on Computer Vision, August 2020, pp.545-561. https://doi.org/10.1007/978-3-030-58607-2_32.

  285. Kurenkov A, Ji J, Garg A, Mehta V, Gwak J, Choy C B, Savarese S. DeformNet: Free-form deformation network for 3D shape reconstruction from a single image. In Proc. the 2018 IEEE Winter Conference on Applications of Computer Vision, March 2018, pp.858-866. https://doi.org/10.1109/WACV.2018.00099.

  286. Uy M A, Kim V G, Sung M, Aigerman N, Chaudhuri S, Guibas L. Joint learning of 3D shape retrieval and deformation. arXiv:2101.07889, 2021. https://arxiv.org/abs/2101.07889, April 2021.

  287. Wang W, Ceylan D, Mech R, Neumann U. 3DN: 3D deformation network. In Proc. the 2019 IEEE Conference on Computer Vision and Pattern Recognition, June 2019, pp.1038-1046. https://doi.org/10.1109/CVPR.2019.00113.

  288. Groueix T, Fisher M, Kim V G, Russell B C, Aubry M. Unsupervised cycle-consistent deformation for shape matching. Computer Graphics Forum, 2019, 38(5): 123-133. https://doi.org/10.1111/cgf.13794.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Gao.

Supplementary Information

ESM 1

(PDF 1114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, YJ., Lai, YK., Wu, T. et al. A Revisit of Shape Editing Techniques: From the Geometric to the Neural Viewpoint. J. Comput. Sci. Technol. 36, 520–554 (2021). https://doi.org/10.1007/s11390-021-1414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-021-1414-9

Keywords

Navigation