Abstract
Purpose
Brazilian territory is divided into six biomes (Amazon, Atlantic Forest, Cerrado, Caatinga, Pantanal, and Pampa) that represent important global biodiversity hotspots. Research into soil science in these environments has increased in recent years, but a quantitative and qualitative mapping of research into the soils of Brazilian biomes has never been carried out. In this study, research on soil science in the Brazilian biomes were analyzed to map the evolution, scientific collaboration, current status, research trends and impact over the last 50 years (1972–2022).
Methods
The database was obtained from the Core Collection of Web of Science. The data was quantitatively analyzed through descriptive statistics and linear regression using Microsoft Excel, and qualitatively using the bibliometric software VOSviewer.
Results
A total of 11,231 papers were obtained. The results indicated a significant increase in soil science research across all biomes (polynomial growth), with greater emphasis for research in the Cerrado (R2 = 0.9361), Amazon (R2 = 0.9170) and Atlantic Forest (R2 = 0.9104) biomes. Soil science research in the Amazon accounted for 47.0% of the research conducted in all Brazilian biomes. While in the Amazon (38.8%), Atlantic Forest (34.8%), and Pantanal (36.7%), most of the research was related to environmental sciences and ecology, in the Cerrado (47.4%), Caatinga (58.2%), and Pampa biome (48.9%), research in the field of agriculture was more significant. For all biomes, except for the Caatinga (a dry climate biome), a significant participation of international researchers and institutions was evident in the overall publications. This demonstrates a lower global interest in soil science research in the Brazilian dry ecosystem.
Conclusion
Soil science research in the Brazilian biomes is disproportionate, with greater interest in the soils of the larger forest biomes and less interest in the dry and flooded areas. The results of this study can be useful for the development of public policies, research and scientific collaboration aimed at soil conservation in Brazilian terrestrial biomes.
Similar content being viewed by others
References
Ab’Sáber AN (2003) Os domínios de natureza no Brasil: potencialidades paisagísticas. Ateliê Editorial, São Paulo. 153 p
Agnew D, Fryirs KA, Ralph TJ, Kobayashi T (2021) Soil carbon dynamics and aquatic metabolism of a wet–dry tropics wetland system. Wetl Ecol Manag 29:1–25. https://doi.org/10.1007/s11273-020-09745-w
Alho CJR (2008) Biodiversity of the Pantanal: response to seasonal flooding regime and to environmental degradation. Braz J Biol 68:957–966. https://doi.org/10.1590/S1519-69842008000500005
Alvarez R, Steinbach HS (2009) A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res 104:1–15. https://doi.org/10.1016/j.still.2009.02.005
Alves LA, Tiecher TL, Flores JPM, Filippi D, Gatiboni LC, Bayer C, Pias OHC, Marquez AA, Bordignon V, Goulart RZ, Tiecher T (2021) Soil chemical properties and crop response to gypsum and limestone on a coarse-textured Ultisol under no-till in the Brazilian Pampa biome. Geoderma Reg 25:e00372. https://doi.org/10.1016/j.geodrs.2021.e00372
Alves KJ, Pylro VS, Nakayama CR, Vital VG, Taketani RG, Santos DG, Rodrigues JLM, Tsai SM, Andreote FD (2022) Methanogenic communities and methane emissions from enrichments of Brazilian Amazonia soils under land-use change. Microbiol Res 265:127178. https://doi.org/10.1016/j.micres.2022.127178
Barbosa DR, Pinheiro HS, Santos, (2019) Seasonal variability of trace elements by soil depth in a protected area. Floresta Ambient 26:e20170203. https://doi.org/10.1590/2179-8087.020317
Bolzani VS, Valli M, Pivatto M, Viegas C Jr (2012) Natural products from Brazilian biodiversity as a source of new models for medicinal chemistry. Pure Appl Chem 84:1837–1846. https://doi.org/10.1351/PAC-CON-12-01-11
Bonfim JA, Vasconcellos RLF, Gumiere T, Mescolotti DLC, Oehl F, Cardoso EJBN (2016) Diversity of arbuscular mycorrhizal fungi in a brazilian atlantic forest toposequence. Microb Ecol 71:164–177. https://doi.org/10.1007/s00248-015-0661-0
Cabarello CB, Ruhoff A, Biggs T (2022) Land use and land cover changes and their impacts on surface-atmosphere interactions in Brazil: a systematic review. Sci Total Environ 808:152134. https://doi.org/10.1016/j.scitotenv.2021.152134
Cabarello CB, Biggs TW, Vergopolan N, West TAP, Ruhoff A (2023) Transformation of Brazil’s biomes: the dynamics and fate of agriculture and pasture expansion into native vegetation. Sci Total Environ 896:166323. https://doi.org/10.1016/j.scitotenv.2023.166323
Caló LO, Caldeira MVW, Silva CF, Camara R, Castro KC, Lima SS, Pereira MG, Aquino AM (2022) Epigeal fauna and edaphic properties as possible soil quality indicators in forest restoration areas in Espírito Santo. Brazil Acta Oecol 117:103870. https://doi.org/10.1016/j.actao.2022.103870
Campos JA, Silva DD, Moreira MC, Menezes Filho FCM (2021) Environmental fragility and land use capacity as instruments of environmental planning, Caratinga River basin. Brazil Environ Earth Sci 80:264. https://doi.org/10.1007/s12665-021-09553-2
Cardoso D et al (2017) Amazon plant diversity revealed by a taxonomically verified species list. Proc Natl Acad Sci USA 114:10695–10700. https://doi.org/10.1073/pnas.1706756114
Carvalho JLL, Avanzi JC, Silva MLN, Mello CR, Cerri CEP (2010) Potencial de sequestro de carbono em diferentes biomas do Brasil. Rev Bras Cienc Solo 34:277–289. https://doi.org/10.1590/S0100-06832010000200001
Castellón SEM, Cattanio JH, Berrêdo JF, Rollnic M, Ruivo ML, Noriega C (2022) Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary. Biogeosciences 19:5483–5497. https://doi.org/10.5194/bg-19-5483-2022
Chaddad F, Mello FAO, Tayebi M, Safanelli JL, Campos LR, Amorim MTA, Sousa GPB, Ferreira TO, Ruiz F, Perlatti F, Greschuk LT, Rosin NA, Rosas JTF, Demattê JAM (2022) Impact of mining-induced deforestation on soil surface temperature and carbon stocks: a case study using remote sensing in the Amazon rainforest. J South Am Earth Sci 119:103983. https://doi.org/10.1016/j.jsames.2022.103983
Colman CB, Oliveira PTS, Almagro A, Soares-Filho BS, Rodrigues DBB (2019) Effects of climate and land-cover changes on soil erosion in brazilian pantanal. Sustainability 11:7053. https://doi.org/10.3390/su11247053
Conceição CG, Robaina AD, Peiter MX, Bem LHB, Ferreira LD, Parizi ARC (2022) Performance of the AquaCrop model for corn hybrids under different irrigation strategies. Rev Bras Eng Agríc Ambiental 26:441–450. https://doi.org/10.1590/1807-1929/agriambi.v26n6p441-450
Crespo C, Martínez RD, Wyngaard N, Divito G, Cuesta NM, Barbieri P (2022) Nitrogen diagnosis for double-cropped maize. Eur J Agron 140:126600. https://doi.org/10.1016/j.eja.2022.126600
Delgado-Baquerizo M et al (2020) The influence of soil age on ecosystem structure and function across biomes. Nat Commun 11:4721. https://doi.org/10.1038/s41467-020-18451-3
Dick M, Silva MA, Silva RRF, Ferreira OGL, Maia MS, Lima SF, Paiva Neto VB, Dewes H (2021) Environmental impacts of Brazilian beef cattle production in the Amazon, Cerrado, Pampa, and Pantanal biomes. J Clean Prod 311:127750. https://doi.org/10.1016/j.jclepro.2021.127750
Ellwanger JH, Nobre CA, Chies JAB (2023) Brazilian biodiversity as a source of power and sustainable development: a neglected opportunity. Sustainability 15:482. https://doi.org/10.3390/su15010482
Fabrizzi KP, García FO, Costa JL, Picone LI (2005) Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil Tillage Res 81:57–69. https://doi.org/10.1016/j.still.2004.05.001
Fearnside PM, Laurance W (2004) Tropical deforestation and greenhouse-gas emissions. Ecol Appl 14:982–986. https://doi.org/10.1890/03-5225
Florio EL, Nosetto MD (2022) A modeling approach to explore the influence of different crop rotations on water-table depths and crop yields in the Pampas. Soil Tillage Res 223:105496. https://doi.org/10.1016/j.still.2022.105496
Frene JP, Figuerola E, Gabbarini LA, Erijman L, Wall LG (2022) Impact of diversification and intensification of crop rotation (DICR) in soil bacterial microbiota in on-farm study after four and seven years. Appl Soil Ecol 179:104592. https://doi.org/10.1016/j.apsoil.2022.104592
FUNCEME-Fundação Cearense de Meteorologia e Recursos Hídricos (2012) Levantamento de reconhecimento de média intensidade dos solos - Mesorregião do Sul Cearense. http://www.funceme.br/wp-content/uploads/2019/02/LEVANTAMENTO_DE_RECONHECIMENTO_DOS_SOLOS.pdf. Accessed 25 July 2023
Giacomeli R, Carlesso R, Petry MT, Chechi L, Beutler NA, Fulaneti FS, Ferrazza CF (2022) Improving irrigation, crop, and soil management for sustainable soybean production in Southern Brazilian lowlands. Sci Agric 79:e20210115. https://doi.org/10.1590/1678-992X-2021-0115
Grace J, José JS, Meir P, Miranda HS, Montes RA (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33:387–400. https://doi.org/10.1111/j.1365-2699.2005.01448.x
Guimarães JRD, Meili M, Hylander LD, Silva EC, Roulet M, Mauro JBN, Lemos RA (2000) Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils. Sci Total Environ 261:99–107. https://doi.org/10.1016/S0048-9697(00)00628-8
Guo L, Nkoh JN, Xu R (2023) A critical review of the interactions of organic carbon components with soil minerals: Insight from bibliometric analysis of the environmental behaviors of heavy metal(loid)s. J Soils Sediments 23:2396–2416. https://doi.org/10.1007/s11368-023-03502-1
Haque KMS, Uddin M, Ampah JD, Haque MK, Hossen MS, Rokonuzzaman M, Hossain MY, Hossain MS, Rahman MZ (2023) Wildfres in Australia: a bibliometric analysis and a glimpse on ‘Black Summer’ (2019/2020) disaster. Environ Sci Pollut Res 30:73061–73086. https://doi.org/10.1007/s11356-023-27423-1
Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA 102: 16.569–16.572. https://doi.org/10.1073/pnas.0507655102
Hoorn C, Wesselingh FP, Steege HT, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931. https://doi.org/10.1126/science.1194585
IBGE-Instituto Brasileiro de Geografia e Estatística (2011) Evolução da Divisão Territorial do Brasil 1872–2010. Documentos para Disseminação (Memória Institucional 17): Rio de Janeiro, 261p. Available in: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=284481. Accessed 24 July 2023
IBGE-Instituto Brasileiro de Geografia e Estatística (2018) Resolução n. 1, de 28 de junho de 2018. [Área territorial oficial]. Available in: https://atlasescolar.ibge.gov.br/images/atlas/mapas_mundo/mundo_paises_mais_extensos.pdf . Accessed 24 July 2023
IBGE-Instituto Brasileiro de Geografia e Estatística (2019) Biomas e sistema costeiro-marinho do Brasil: compatível com a escala 1:250 000. IBGE: Rio de Janeiro. 164p. Available in: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101676. Accessed 24 July 2023
Jiang X, Sun Y, Qu Y, Zeng H, Yang J, Zhang K, Liu L (2023) The development and future frontiers of global ecological restoration projects in the twenty-first century: a systematic review based on scientometrics. Environ Sci Pollut Res 30:32230–32245. https://doi.org/10.1007/s11356-023-25615-3
Kauffman JB, Sanford RL Jr, Cummings DL, Salcedo IH, Sampaio EVSB (1997) Biomass and nutrient dynamics associated with slash fires in neotropical dry forests. Ecology 74:140–151. https://doi.org/10.2307/1939509
Kraemer FB, Catiglioni MG, Chagas CI, De Paula R, Sainz DS, De Gerónimo E, Aparicio V, Ferraro DO (2022) Pesticide dynamics in agroecosystems: assessing climatic and hydro-physical effects in a soybean cycle under no-tillage. Soil Tillage Res 223:105489. https://doi.org/10.1016/j.still.2022.105489
Leal IR, Silva JMC, Tabarelli M, Lacher TE Jr (2005) Changing the course of biodiversity conservation in the caatinga of northeastern Brazil. Conserv Biol 19:701–706. https://doi.org/10.1111/j.1523-1739.2005.00703.x
Lehmann J, Cravo MS, Zech W (2001) Organic matter stabilization in a Xanthic Ferralsol of the central Amazon as affected by single trees: chemical characterization of density, aggregate, and particle size fractions. Geoderma 99:147–168. https://doi.org/10.1016/S0016-7061(00)00070-7
Lehmann J, Silva Junior JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357. https://doi.org/10.1023/A:1022833116184
Leite MFA, Liu B, Cardozo EG, Silva HR, Luz RL, Muchavisoy KHM, Moraes FHR, Rousseau GX, Kowalchuk G, Gehring C, Kuramae EE (2023) Microbiome resilience of amazonian forests: Agroforest divergence to bacteria and secondary forest succession convergence to fungi glob chang biol 29:1314–1327. https://doi.org/10.1111/gcb.16556
Li T, Cui L, Xu Z, Hu R, Joshi PK, Song X, Tang L, Xia A, Wang Y, Guo D, Zhu J, Hao Y, Song L (2021) Quantitative analysis of the research trends and areas in grassland remote sensing: A scientometrics analysis of web of science from 1980 to 2020. Remote Sens 13:1279. https://doi.org/10.3390/rs13071279
Li T, Cui L, Scotton M, Dong J, Xu Z, Che R, Tang L, Cai S, Wu W, Andreatta D, Wang Y, Song X, Hao Y, Cui X (2022a) Characteristics and trends of grassland degradation research. J Soils Sediments 22:1901–1912. https://doi.org/10.1007/s11368-022-03209-9
Li T, Cui L, Liu L, Wang H, Dong J, Wang F, Song X, Che R, Li C, Tang L, Xu Z, Wang Y, Du J, Hao Y, Cui X (2022b) Characteristics of nitrogen deposition research within grassland ecosystems globally and its insight from grassland microbial community changes in China. Front Plant Sci 13:947279. https://doi.org/10.3389/fpls.2022.947279
Li T, Cui L, Liu L, Chen Y, Liu H, Song X, Xu Z (2023a) Advances in the study of global forest wildfires. J Soils Sediments 23:2654–2668. https://doi.org/10.1007/s11368-023-03533-8
Li X, Wen Z, Cui L, Chen Y, Li T, Liu H, Xu Z, Cui X, Song X (2023b) Quantitatively mapping the research status and trends of vegetation responses to climate change with bibliometric analysis. J Soils Sediments 23:2963–2979. https://doi.org/10.1007/s11368-023-03583-y
Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill N, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730. https://doi.org/10.2136/sssaj2005.0383
Lima FF, Duda GP, Medeiros E, Marques MC, Costa DP, Hammecker C, Santos UJ (2023) Land use regulates microbial biomass and activity in highly degraded soil from Brazilian dry tropical forest. Arch Agron Soil Sci 69:1519–1534. https://doi.org/10.1080/03650340.2022.2099845
Lombardo et at (2022) Evidence confirms an anthropic origin of Amazonian Dark Earths. Nat Commun 13:3444. https://doi.org/10.1038/s41467-022-31064-2
Lucas KRG, Antón A, Ventura UM, Andrade EP, Ralisch R (2021) Using the available indicators of potential biodiversity damage for Life Cycle Assessment on soybean crop according to Brazilian ecoregions. Ecol Indic 127:107809. https://doi.org/10.1016/j.ecolind.2021.107809
Malhi Y, Roberts T, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the amazon. Science 319:169–172. https://doi.org/10.1126/science.1146961
Matos AMS, Bonini CSB, Moreira BRA, Andreotti M, Heinrichs R, Silva DT, Souza JAL, Santos MA, Andrighetto C, Pavan GM, Barreto VCM, Neto AB (2022) Long-term integrated crop–livestock–forestry systems recover the structural quality of ultisol soil. Agronomy 12:2961. https://doi.org/10.3390/agronomy12122961
Medeiros AS, Santos TC, Maia SMF (2022) Effect of long-term and soil depth on soil organic carbon stocks after conversion from native vegetation to conventional tillage systems in Brazil. Soil Tillage Res 219:105336. https://doi.org/10.1016/j.still.2022.105336
Melo VF, Barros LS, Silva MCS, Veloso TGR, Senwo ZN, Matos KS, Nunes TKO (2021) Soil bacterial diversities and response to deforestation, land use and burning in North Amazon. Brazil Appl Soil Ecol 158:103775. https://doi.org/10.1016/j.apsoil.2020.103775
Meng L, Chambers J, Koven C, Pastorello G, Gimenez B, Jardine K, Tang Y, McDowell N, Negron-Juarez R, Longo M, Araújo A, Tomasella J, Fontes C, Mohan M, Higuchi N (2022) Soil moisture thresholds explain a shift from light-limited to water-limited sap velocity in the Central Amazon during the 2015–16 El Niño drought. Environ Res Lett 17:064023. https://doi.org/10.1088/1748-9326/ac6f6d
MMA-Ministério do Meio Ambiente (1999) First National Report for the Convention on Biological Diversity, Brazil. Brasília-DF: Secretaria de Biodiversidade e Florestas. 272p. Available in: https://www.cbd.int/doc/world/br/br-nr-01-p1-en.pdf. Accessed 04 Jan 2024
MMA-Ministério do Meio Ambiente (2011) Monitoramento do desmatamento dos biomas brasileiros por satélite: monitoramento do bioma Caatinga 2008–2009. Brasília-DF: Centro de Sensoriamento Remoto – IBAMA. 57p. Available in: https://www.acaatinga.org.br/wp-content/uploads/Conhe%C3%A7a_e_Conserve_a_Caatinga__Volume_1__O_Bioma_Caatinga.pdf. Accessed 24 July 2023
Mora KE, Burbano NM, Aburto F, Matus-Baeza F, Fernandez IJ, Cuevas PD, Dorner J, Dippold MA, Guzman CM (2023) Four decades in fires research – A bibliometric analysis about the impact on mineralogy and nutrients. CATENA 226:107065. https://doi.org/10.1016/j.catena.2023.107065
Morrás H, Kremer FB, Sainz D, Fernández P, Chagas C (2022) Soil structure and glyphosate fate under no-till management in the Pampa region. II. Glyphosate and AMPA persistence and spatial distribution in the long-term. A conceptual model. Soil Tillage Res 223:105471. https://doi.org/10.1016/j.still.2022.105471
Muylaert RL, Vancine MH, Bernardo R, Oshima JEF, Sobral-Souza T, Tonetti VR, Niebuhr BB, Ribeiro MC (2018) Uma nota sobre os limites territoriais da Mata Atlântica. Oecol Aust 22:302–311. https://doi.org/10.4257/oeco.2018.2203.09
Nepstad DC, Carvalho CR, Davidson EA (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669. https://doi.org/10.1038/372666a0
Oliveira Filho JS (2020) A bibliometric analysis of soil research in Brazil 1989–2018. Geoderma Reg 23:e00345. https://doi.org/10.1016/j.geodrs.2020.e00345
Oliveira Filho JS (2023) How do climate and land-use affect soil carbon and nitrogen stocks and the chemical properties of floodplain soils in tropical drylands? CATENA 231:107289. https://doi.org/10.1016/j.catena.2023.107289
Oliveira Filho JS, Pereira MG (2021) Global soil science research on drylands: an analysis of research evolution, collaboration, and trends. J Soils Sediments 21:3856–3867. https://doi.org/10.1007/s11368-021-03036-4
Oliveira Filho JS, Pinheiro Junior CR, Pereira MG, Valladares GS, Camara R (2020) Sodification and solodization processes: pedogenesis or natural soil degradation? J South Am Earth Sci 104:102909. https://doi.org/10.1016/j.jsames.2020.102909
Oliveira Filho JS, Barrozo MVS, Bastos FH, Pereira MG (2023) Effects of climate and land-use on physicochemical properties of gneiss-derived soils in tropical drylands: evidence from northeastern Brazil. Geoderma Reg 33:e00639. https://doi.org/10.1016/j.geodrs.2023.e00639
Oliveira Filho JS, Pereira MG (2023) Is Environmental contamination a concern in global technosols? a bibliometric analysis. Water Air Soil Pollut 234:142. https://doi.org/10.1007/s11270-023-06171-5
Paula BV, Rozane DE, Santos EMH, Vitto BB, Hindersmann J, Antunes LEC, Nava G, Loss A, Melo GWB, Nicoloso FT, Brunetto G (2022) Nitrogen sources in young peach trees in the presence and absence of paspalum notatum co-cultivation. Agronomy 12:2669. https://doi.org/10.3390/agronomy12112669
Pedrinho A, Mendes LW, Barros FMR, Merloti LF, Martins MM, Cotta SR, Andreote FD, Tsai SM (2023) Impacts of deforestation and forest regeneration on soil bacterial communities associated with phosphorus transformation processes in the Brazilian Amazon region. Ecol Indic 146:109779. https://doi.org/10.1016/j.ecolind.2022.109779
Pereira CMR, Silva DKA, Ferreira ACA, Goto BT, Maia LC (2014) Diversity of arbuscular mycorrhizal fungi in Atlantic Forest areas under different land uses. Agric Ecosyst Environ 185:245–252. https://doi.org/10.1016/j.agee.2014.01.005
Pereira APA, Mendes LW, Oliveira FAZ, Antunes JEL, Melo VMM, Araujo ASF (2022) Land degradation affects the microbial communities in the Brazilian Caatinga biome. CATENA 211:105961. https://doi.org/10.1016/j.catena.2021.105961
Pinheiro Junior CR, Salvador CA, Tavares TR, Abreu MC, Fagundes HS, Almeida WS, Silva Neto EC, Anjos LHC, Pereira MG (2022) Lithic soils in the semi-arid region of Brazil: edaphic characterization and susceptibility to erosion. J Arid Land 14:56–69. https://doi.org/10.1007/s40333-022-0002-3
Pires GC, Denardin LGO, Silva LS, Freitas CM, Gonçalves EC, Camargo TA, Bremm C, Carvalho PCF, Souza ED (2022) System fertilization increases soybean yield through soil quality improvements in integrated crop-livestock system in tropical soils. J Soil Sci Plant Nutr 22:4487–4495. https://doi.org/10.1007/s42729-022-01050-0
Reale R, Ribas LC, Lindenkamp TCM (2022) Ecosystem services as a ballast to guide sustained economic growth by biodiversity conservation actions. J Clean Prod 358:131846. https://doi.org/10.1016/j.jclepro.2022.131846
Ribeiro S, Moreira LFB, Overbeck GE, Maltchik L (2021) Protected Areas of the Pampa biome presented land use incompatible with conservation purposes. J Land Use Sci 16:260–272. https://doi.org/10.1080/1747423X.2021.1934134
Richter L, Hernández AH, Pessôa GS, Arruda MAZ, Rezende-Filho AT, Almeida RB, Menezes HÁ, Valles V, Barbiero L, Fostier AH (2019) Dissolved arsenic in the upper Paraguay River basin and Pantanal wetlands. Sci Total Environ 687:917–928. https://doi.org/10.1016/j.scitotenv.2019.06.147
Rodrigues M, Soltangheisi A, Abdala DB, Ebuele VO, Thoss V, Withers PJA, Pavinato PS (2023) Long-term land use and tillage influence on phosphorus species in Brazilian Oxisols: A multi-technique assessment by chemical P fractionation, 31P NMR and P K-edge XANES spectroscopies. Soil Tillage Res 229:105683. https://doi.org/10.1016/j.still.2023.105683
Rossi JB, Ruhoff A, Fleischmann AS, Laipelt L (2023) Drought propagation in brazilian biomes revealed by remote sensing. Remote Sens 15:454. https://doi.org/10.3390/rs15020454
Scarano FR, Ceotto P (2015) Brazilian atlantic forest: Impact, vulnerability, and adaptation to climate change. Biodivers Conserv 24:2319–2331. https://doi.org/10.1007/s10531-015-0972-y
Serafim ME, Mendes IC, Wu J, Ono FB, Zancanaro L, Valendorff JDP, Zeviani WM, Pierangeli MAP, Fan M, Lal R (2023) Soil physicochemical and biological properties in soybean areas under no-till Systems in the Brazilian Cerrado. Sci Total Environ 826:160674. https://doi.org/10.1016/j.scitotenv.2022.160674
Silva CEM (2009) Ordenamento Territorial no Cerrado brasileiro: da fronteira monocultora a modelos baseados na sociobiodiversidade. Desenvolv Meio Ambiente 19:89–109. https://doi.org/10.5380/dma.v19i0.16407
Silva JSV, Abdon MM (1998) Delimitação do Pantanal brasileiro e suas sub-regiões. Pesq Agrop Brasileira 33:1703–1711
Silva LCR, Correa RS, Wright JL, Bomfim B, Hendricks L, Gavin DG, Muniz WA, Martins GC, Motta ACV, Barbosa JZ, Melo VF, Young SD, Broadley MR, Santos RV (2021) A new hypothesis for the origin of Amazonian Dark Earths. Nat Commun 12:127. https://doi.org/10.1038/s41467-020-20184-2
Silva RB, Rosa JS, Packer AP, Bento CB, Silva FAM (2022) A soil quality physical–chemical approach 30 years after land-use change from forest to banana plantation. Environ Monit Assess 194:482. https://doi.org/10.1007/s10661-022-10167-9
Silva IC, Rodríguez NL (2021) Formação territorial, economia e projetos de integração regional da Pan-Amazônia. Rev Tempo Mundo 27:19–43. https://doi.org/10.38116/rtm27art1
Sousa MG, Araujo JKS, Ferreira TO, Andrade GRP, Araújo Filho JC, Fracetto GGM, Santos JGB, Fracetto FJC, Lima GK, Souza Junior V (2021) Long-term effects of irrigated agriculture on Luvisol pedogenesis in semi-arid region, northeastern Brazil. CATENA 206:105529. https://doi.org/10.1016/j.catena.2021.105529
Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538. https://doi.org/10.1007/s11192-009-0146-3
Van Eck NJ, Waltman L (2014) Visualizing bibliometric networks. In: Ding Y, Rousseau R, Wolfram D (eds) Measuring scholarly impact: Methods and practice. Springer, pp 285–320. https://doi.org/10.1007/978-3-319-10377-8_13
Vasconcelos TC, Londe V, Velasquez E, Lavelle P, Rodrigues RR (2023) Atlantic Forest restoration recovers physical and biological properties in the short term, but not the general soil quality. Land Degrad Dev 34:1842–1858. https://doi.org/10.1002/ldr.4573
Viana JLM, Souza AF, Hernández AH, Elias LP, Eismann CE, Resende-Filho AT, Barbiero L, Menegario AA, Fostier AH (2022) In situ arsenic speciation at the soil/water interface of saline-alkaline lakes of the Pantanal, Brazil: A DGT-based approach. Sci Total Environ 804:150113. https://doi.org/10.1016/j.scitotenv.2021.150113
Viglizzo EF, Frank FC, Carreño LV, Jobbágys EG, Pereyra H, Clatt J, Pincén D, Ricard F (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob Chang Biol 17:959–973. https://doi.org/10.1111/j.1365-2486.2010.02293.x
Wang LQ, Ali A (2021) Climate regulates the functional traits – aboveground biomass relationships at a community-level in forests: a global meta-analysis. Sci Total Environ 761:143238. https://doi.org/10.1016/j.scitotenv.2020.143238
Zhou S, Williams AP, Lintner BR, Findell KL, Keenan TF, Zhang Y, Gentine P (2022) Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture–atmosphere feedbacks. Nat Commun 13:5756. https://doi.org/10.1038/s41467-022-33473-9
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares no competing interests.
Additional information
Responsible editor: Claudio Colombo
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Oliveira Filho, J. Soil science research in Brazilian terrestrial biomes: A review of evolution, collaboration, current topics, and impact. J Soils Sediments 24, 2023–2039 (2024). https://doi.org/10.1007/s11368-024-03778-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11368-024-03778-x