Abstract
Technosols represent the group of soils whose properties and functions were defined by human action, formed from technogenic diagnostic materials. In this study, we use bibliometric techniques to investigate how environmental contamination has been addressed in global Technosol research and identify research trends that contribute to adequate Technosol management. We use 567 papers on Technosols from around the world available in the Web of Science database (2006–2021). Our results indicated that 34.2% of the global research on Technosols was related to environmental contamination, with significant growth over the years (R2 = 0.88). France was responsible for 29.8% of global research in contaminated Technosols. The main contaminant agents in Technosols were the heavy metals and the polycyclic aromatic hydrocarbons (PAHs), with a higher highlight for the first. Among the polluting metals, a greater concern was directed to the Pb, followed, in descending order, by the Zn, Cu, Cd, Ni, Cr, and As. The mining tailings were the main sources of the contaminant material. The combined effects of different pollutants, such as toxic metals and PAHs, in the biological community of Technosols and the combined use of environmental restoration strategies (phytoremediation and uses of organic compound, biochar, and biofertilizers) can be considered the main research trends in contaminated Technosols. Our results can be useful for research institutions and researchers around the world that seek development of strategies for the use and management of Technosols at the global level.
Similar content being viewed by others
Data Availability
Data will be made available upon request of interested parties.
References
Alidou-Arzika, I., Lebrun, M., Miard, F., Nandillon, R., Bayçu, G., Bourgerie, S., & Morabito, D. (2021). Assessment of compost and three biochars associated with Ailanthus altissima (Miller) Swingle for lead and arsenic stabilization in a post-mining Technosol. Pedosphere, 31, 944–953. https://doi.org/10.1016/S1002-0160(21)60025-5
Allory, V., Séré, G., & Ouvrard, S. (2021). A meta-analysis of carbon content and stocks in Technosols and identification of the main governing factors. European Journal of Soil Science, 1, 1–17. https://doi.org/10.1111/ejss.13141
Anderson, S. P., Blanckenburg, F. V., & White, A. F. (2007). Physical and chemical controls on the critical zone. Elements, 3, 315–319. https://doi.org/10.2113/gselements.3.5.315
Asensio, V., Flórido, F. G., Ruiz, F., Perlatti, F., Otero, X. L., Oliveira, D. P., & Ferreira, T. O. (2019). The potential of a Technosol and tropical native trees for reclamation of copper-polluted soils. Chemosphere, 220, 892–899. https://doi.org/10.1016/j.chemosphere.2018.12.190
Bakhmatova, K. A., Matynyan, N. N., & Sheshukova, A. A. (2022). Anthropogenic soils of urban parks: A review. Eurasian Soil Science, 55, 64–80. https://doi.org/10.1134/S1064229322010021
Banwart, A. S., Nikolaidis, N. P., Zhu, Y. G., Peacock, C. L., & Sparks, D. L. (2019). Soil functions: Connecting earth’s critical zone. Annual Review of Earth and Planetary Sciences, 47, 333–359. https://doi.org/10.1146/annurev-earth-063016-020544
Borkowski, A. S., & Malina, J. K. (2017). Geostatistical modelling as an assessment tool of soil pollution based on deposition from atmospheric air. Geosciences Journal, 21, 645–653. https://doi.org/10.1007/s12303-017-0005-9
Carabassa, V., Domene, X., Diaz, E., & Alcañiz, J. M. (2020). Mid-term effects on ecosystem services of quarryrestoration with Technosols under Mediterranean conditions: 10-year impacts on soil organic carbon and vegetation development. Restoration Ecology, 28, 960–970. https://doi.org/10.1111/rec.13072
Chakrabarty, D. (2018). Anthropocene Time. History and Theory, 57, 5–32. https://doi.org/10.1111/hith.12044
Chodak, M., Sroka, K., & Pietrzykowski, M. (2021). Activity of phosphatases and microbial phosphorus under various tree species growing on reclaimed technosols. Geoderma, 401, 1–10. https://doi.org/10.1016/j.geoderma.2021.115320
Dordevic, T., Drahota, P., Kolitsch, U., Majzlan, J., Peresta, M., Kiefer, S., Stoger-Pollach, M., Tepe, N., Hofmann, T., Mikus, T., Tasev, G., Serafimovski, T., Boev, I., & Boev, B. (2021). Synergetic Tl and As retention in secondary minerals: An example of extreme arsenic and thallium pollution. Applied Geochemistry, 135, 105114. https://doi.org/10.1016/j.apgeochem.2021.105114
Ellegaard, O. (2018). The application of bibliometric analysis: Disciplinary and user aspects. Scientometric, 116, 181–202. https://doi.org/10.1007/s11192-018-2765-z
Falciglia, P. P., Puccio, V., Romano, S., & Vagliasindi, F. G. A. (2015). Performance study and influence of radiation emission energy and soil contamination level on ɤ-radiation shielding of stabilised/solidified radionuclide-polluted soils. Journal of Environmental Radioactivity, 143, 20–28. https://doi.org/10.1016/j.jenvrad.2015.01.016
FAO-UNEP (2021) Global assessment of soil pollution: Report. Rome. 846p. https://doi.org/10.4060/cb4894en
Ferronato, C., Vianello, G., Feudis, M. D., & Antisari, L. V. (2021). Technosols development in an abandoned mining area and environmental risk assessment. Applied Sciences, 11, 1–13. https://doi.org/10.3390/app11156982
Forján, R., Rodríguez-Vila, A., Cerqueira, B., & Covelo, E. F. (2018). Comparison of compost with biochar versus technosol with biochar in the reduction of metal pore water concentrations in a mine soil. Journal of Geochemical Exploration, 192, 103–111. https://doi.org/10.1016/j.gexplo.2018.06.007
García-Lorenzo, M. L., Crespo-Feo, E., Esbrí, J. M., Higueras, P., Grau, P., Crespo, I., & Sánchez-Donoso, R. (2019). Assessment of potentially toxic elements in technosols by tailings derived from Pb–Zn–Ag mining activities at San Quintín (Ciudad Real, Spain): Some insights into the importance of integral studies to evaluate metal contamination pollution hazards. Minerals, 9, 346. https://doi.org/10.3390/min9060346
García-Sánchez, A., Alonso-Rojo, P., & Santos-Francés, F. (2010). Distribution and mobility of arsenic in soils of a mining area (Western Spain). Science of the Total Environment, 408, 4194–4201. https://doi.org/10.1016/j.scitotenv.2010.05.032
Gorovtsov, A., Demin, K., Sushkova, S., Minkina, T., Grigoryeva, T., Dudnikova, T., Barbashev, A., Semenkov, I., Romanova, V., Laikov, A., Rajput, V., & Kocharovskaya, Y. (2022). Environmental Geochemistry and Health, 44, 1299–1315. https://doi.org/10.1007/s10653-021-01059-x
Hartley, W., Uffindell, L., Plumb, A., Rawlinson, H. A., Putwain, P., & Dickinson, N. M. (2008). Assessing biological indicators for remediated anthropogenic urban soils. Science of the Total Environment, 405, 358–369. https://doi.org/10.1016/j.scitotenv.2008.06.004
Hashem, A., Hasan, A., Nayan, A. H., Payel, S., Hasan, M., & Sahen, S. (2021). The environmental impacts of heavy metals in soil, certain plants and wastewater near industrial area of Brahmanbaria. Bangladesh. Environmental Monitoring and Assessment, 193, 688. https://doi.org/10.1007/s10661-021-09497-x
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102, 1.6569-1.6572. https://doi.org/10.1073/pnas.0507655102
Huot, H., Simonnot, M. O., Marion, P., Yvon, J., Donato, P. D., & Morel, J. L. (2013). Characteristics and potential pedogenetic processes of a Technosol developing on iron industry deposits. Journal of Soils and Sediments, 13, 555–568. https://doi.org/10.1007/s11368-012-0513-1
ISRIC. (2022). World soil distribution. Available in: https://www.isric.org/explore/world-soil-distribution/technosols . Accessed 02/02/2023.
IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Jordão, T. C., Prado, I. G. O., Silva, M. C. S., Diogo, N. V., Prates Junior, P., Veloso, T. G. R., Cardoso, E. B., Neves, J. C. L., Fernandes, R. B. A., & Kasuya, M. C. M. (2021). Shifts in arbuscular Mycorrhizal fungal properties due to vegetative remediation of mine spoil contamination from a dam rupture in Mariana, Brazil. Applied Soil Ecology, 162, 1–10. https://doi.org/10.1016/j.apsoil.2021.103885
Khalil, H. E., Schwartz, C., Elhamiani, O., Kubiniok, J., Morel, J. L., & Boularbah, A. (2008). Contribution of technic materials to the mobile fraction of metals in urban soils in Marrakech (Morocco). Journal of Soils and Sediments, 8, 17–22. https://doi.org/10.1065/jss2008.01.269
Khan, A., Naeem, M., Bilal, M., Khan, A., Subhan, F., Ikram, M., Shah, M. I. A., Ullah, A., & Ullah, A. (2021). Assessing the physico-chemical parameters and some metals of underground water and associated soil in the arid and semiarid regions of Tank District, Khyber Pakhtunkhwa, Pakistan. Environmental Monitoring and Assessment, 193, 610. https://doi.org/10.1007/s10661-021-09370-x
Konstantinova, E., Novoselov, A., Konstantinov, A., Minkina, T., Sushkova, S., & Loiko, S. (2021). Evaluating the effect of historical development on urban soils using microartifacts and geochemical indices. Environmental Geochemistry and Health, 210, 1–15. https://doi.org/10.1007/s10653-021-01064-0
Krechetov, P., Chernitsova, O., Sharapova, A., & Terskaya, E. (2019). Technogenic geochemical evolution of chernozems in the sulfur coal mining areas. Journal of Soils and Sediments, 19, 3139–3154. https://doi.org/10.1007/s11368-018-2010-7
Lal, R., Bouma, J., Brevik, E., Dawson, L., Field, D. J., Glaser, B., Hatano, R., Hartemink, A. E., Kosaki, T., Lascelles, B., Monger, C., Muggler, C., Ndzana, G. M., Norra, S., Pan, X., Paradelo, R., Reys-Sanchez, L. B., Sandén, T., Singh, B. R., … Zhang, J. (2021). Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Regional, 25, 1–15. https://doi.org/10.1016/j.geodrs.2021.e00398
Lebrun, M., Miard, F., Nandillon, R., Hattab-Hambli, N., Scippa, G. S., Bourgerie, S., & Morabito, D. (2018). Eco-restoration of a mine technosol according to biochar particle size and dose application: Study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis. Journal of Soils and Sediments, 18, 2188–2202. https://doi.org/10.1007/s11368-017-1763-8
Lebrun, M., Miard, F., Trakal, L., Bourgerie, S., & Morabito, D. (2022). The reduction of the As and Pb phytotoxicity of a former mine Technosol depends on the amendment type and properties. Chemosphere, 300, 134592. https://doi.org/10.1016/j.chemosphere.2022.134592
Lehmann, A., & Schad, P. (2007). WRB-Excursion on Technosols and Stagnosols through Germany in August 2007. Journal of Soils and Sediments, 7, 426–430. https://doi.org/10.1065/jss2007.11.260
Liu, Y., Wu, K., & Zhao, R. (2020). Bibliometric analysis of research on soil health from 1999 to 2018. Journal of Soils and Sediments, 20, 1513–1525. https://doi.org/10.1007/s11368-019-02519-9
Liu, S., Lei, Y., Zhao, J., Yu, S., & Wang, L. (2021). Research on ecosystem services of water conservation and soil retention: A bibliometric analysis. Environmental Science and Pollution Research, 28, 2995–3007. https://doi.org/10.1007/s11356-020-10712-4
Macías, F., & Arbestain, M. C. (2010). Soil carbon sequestration in a changing global environment. Mitigation and Adaptation Strategies for Global Change, 15, 511–529. https://doi.org/10.1007/s11027-010-9231-4
Martínez-López, S., Marínez-Sánchez, M. J., Gómez-Martínez, M. C., & Pérez-Sirvent, C. (2020). Arsenic zoning in a coastal area of the Mediterranean Sea as a base for management and recovery of areas contaminated by old mining activities. Applied Clay Science, 199, 105881. https://doi.org/10.1016/j.clay.2020.105881
Martíni, A. F., Valani, G. P., Boschi, R. S., Bovi, R. C., Silva, L. F. S., & Cooper, M. (2020). Is soil quality a concern in sugarcane cultivation? A bibliometric review. Soil and Tillage Research, 204, 1–8. https://doi.org/10.1016/j.still.2020.104751
Martins, W. B. R., Schwartz, G., Ribeiro, S. S., Ferreira, G. C., Barbosa, R. S., Paula, M. T., Barbosa, V. M., & Oliveira, F. A. (2021). Ecosystem restoration after bauxite mining: Favorable indicators for Technosols construction and soil management using liming and subsoiling. New Forest, 52, 971–994. https://doi.org/10.1007/s11056-021-09834-5
Mattei, P., Cincinelli, A., Martellini, T., Natalini, R., Pascale, E., & Renella, G. (2016). Reclamation of river dredged sediments polluted by PAHs by co-composting with green waste. Science of the Total Environment, 566, 567–574. https://doi.org/10.1016/j.scitotenv.2016.05.140
Nachtergaele, F. (2005). The “Soils” to be classified in the World Reference Base foi Soil Resources. Eurasian Soil Science, 38, 13–19.
Naumova, N., Belanov, I., Alikina, T., & Kabilov, M. (2021). Soil microbiome after nine years of fly ash dump spontaneous revegetation. Soil Res, 1, 1–13. https://doi.org/10.1071/SR20304
Norra, S., Fjer, N., Chu, X., Xie, X., & Stuben, D. (2008). The influence of different land uses on mineralogical and chemical composition and horizonation of urban soil profiles in Qingdao, China. Journal of Soils and Sediments, 8, 4–16. https://doi.org/10.1065/jss2007.08.250
Novikov, S. G., & Akhmetova, G. V. (2018). Soils of different land use categories in the city of Petrozavodsk. Eurasian Soil Science, 51, 1086–1094. https://doi.org/10.1134/S1064229318090089
Oliveira Filho, J. S. (2020). A bibliometric analysis of soil research in Brazil 1989–2018. Geoderma Regional, 23, 1–9. https://doi.org/10.1016/j.geodrs.2020.e00345
Oliveira Filho, J. S., & Pereira, M. G. (2020). Analyzing the research on phosphorus fractions and phosphorus legacy in soil: A bibliometric analysis. Journal of Soils and Sediments, 20, 3394–3405. https://doi.org/10.1007/s11368-020-02669-1
Oliveira Filho, J. S., & Pereira, M. G. (2021). Global soil science research on drylands: An analysis of research evolution, collaboration, and trends. Journal of Soils and Sediments, 5, 1–12. https://doi.org/10.1007/s11368-021-03036-4
Plak, A., Bartmiński, P., & Dębicki, R. (2017). Land-use impact on selected forms of arsenic and phosphorus in soils of different functions. International Agrophysics, 31, 525–537. https://doi.org/10.1515/intag-2016-0080
Ress, F., Dagois, R., Derrien, D., Fiorelli, J. L., Watteau, F., Morel, J. L., Schwartz, C., Simonnot, M. O., & Séré, G. (2019). Storage of carbon in constructed Technosols: In situ monitoring over a decade. Geoderma, 337, 641–648. https://doi.org/10.1016/j.geoderma.2018.10.009
Rodrigues, J., Gérard, A., Séré, G., Morel, J. L., Guimont, S., Simonnot, M. O., & Pons, M. N. (2019). Life cycle impacts of soil construction, an innovative approach to reclaim brownfields and produce nonedible biomass. Journal of Cleaner Production, 211, 36–43. https://doi.org/10.1016/j.jclepro.2018.11.152
Rodríguez-Espinosa, T., Navarro-Pedreño, J., Lucas, I. G., & Almendro-Candel, M. B. (2021). Land Recycling, Food Security and Technosols. Journal of Geographical Research, 4, 1–7. https://doi.org/10.30564/jgr.v4i3.3415
Rodríguez-Espinosa, T., Navarro-Pedreño, J., Gómez-Lucas, I., Jordán-Vidal, M. M., Bech-Borras, J., & Zorpas, A. A. (2021). Urban areas, human health and technosols for the green deal. Environmental Geochemistry and Health, 43, 5065–5086. https://doi.org/10.1007/s10653-021-00953-8
Rossiter, D. G. (2007). Classification of urban and industrial soils in the World Reference Base for Soil Resources. Journal of Soils and Sediments, 7, 96–100. https://doi.org/10.1065/jss2007.02.208
Ruiz, F., Cherubin, M. R., & Ferreira, T. O. (2020). Soil quality assessment of constructed Technosols: Towards the validation of a promising strategy for land reclamation, waste management and the recovery of soil functions. Journal of Environmental Management, 276, 1–11. https://doi.org/10.1016/j.jenvman.2020.111344
Santini, T. C., & Fey, M. V. (2018). From tailings to soil: Long-term effects of amendments on progress and trajectory of soil formation and in situ remediation in bauxite residue. Journal of Soils and Sediments, 18, 1935–1949. https://doi.org/10.1007/s11368-017-1867-1
Secu, C. V., Iancu, O. G., & Buzgar, N. (2008). Lead, zinc and cooper in the bioaccumulative horizon of soils from Iasi and the surrounding areas. Carpathian Journal of Earth and Environmental Sciences, 3, 131–144.
Séré, G., Schwartz, C., Ouvrard, S., Renat, J. C., Watteau, F., Villemin, G., & Morel, J. L. (2010). Early pedogenic evolution of constructed Technosols. Journal of Soils and Sediments, 10, 1246–1254. https://doi.org/10.1007/s11368-010-0206-6
Simonovicova, A., Ferianc, P., Vojtkova, H., Pangallo, D., Hanajik, P., Krakova, L., Feketeova, Z., Cernansky, S., Okenicova, L., Zemberyova, M., & Bujdos, M. (2017). Alkaline Technosol contaminated by former mining activity and its culturable autochthonous microbiota. Chemosphere, 171, 89–96. https://doi.org/10.1016/j.chemosphere.2016.11.131
Slukovskaya, M. V., Vasenev, V. I., Ivashchenko, K. V., Morev, D. V., Drogobuzhskaya, S. V., Ivanova, L. A., & Kremenetskaya, I. P. (2019). Technosols on mining wastes in the subarctic: Efficiency of remediation under Cu-Ni atmospheric pollution. International Soil and Water Conservation Research, 7, 297–307. https://doi.org/10.1016/j.iswcr.2019.04.002
Sokolov, D. A., Morozov, S. V., Abakumov, E. V., & Androkhanov, V. A. (2021). Polycyclic aromatic hydrocarbons in soils of anthracite deposit dumps in Siberia. Eurasian Soil Science, 54, 875–887. https://doi.org/10.1134/S1064229321060120
Song, Y., Li, R., Chen, G., Yan, B., Zhong, L., Wang, Y., Li, Y., Li, J., & Zhang, Y. (2021). Bibliometric analysis of current status on bioremediation of petroleum contaminated soils during 2000–2019. International Journal of Environmental Research, 18, 1–20. https://doi.org/10.3390/ijerph18168859
Thouin, H., Battaglia-Brunet, F., Norini, M. P., Joulian, C., Hellal, J., Forestier, L. L., Dupraz, S., & Gautret, P. (2019). Microbial community response to environmental changes in a technosol historically contaminated by the burning of chemical ammunitions. Science of the Total Environment, 697, 134108. https://doi.org/10.1016/j.scitotenv.2019.134108
Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538. https://doi.org/10.1007/s11192-009-0146-3
Vieira, A. F., Moura, M., & Silva, L. (2021). Soil metagenomics in grasslands and forests – A review and bibliometric analysis. Applied Soil Ecology, 167, 1–13. https://doi.org/10.1016/j.apsoil.2021.104047
Wechtler, L., Henry, S., Falla, J., Walderdorff, L., Bonnefoy, A., & Laval-Gilly, P. (2020). Polycyclic aromatic hydrocarbons (PAHs) dissipation from a contaminated technosol composed of dredged sediments with Miscanthus x giganteus and Trifolium repens L. in mono- and co-culture. Journal of Soils and Sediments, 20, 2893–2902. https://doi.org/10.1007/s11368-020-02648-6
Wechtler, L., Henry, S., Malladi, S., Bonnefoy, A., Falla-Angel, J., & Laval-Gilly, P. (2022). Influence of Miscanthus × giganteus and Trifolium repens L. on microflora and PAH-degrading bacteria in contaminated technosol. Journal of Soils and Sediments, 22, 208–217. https://doi.org/10.1007/s11368-021-03055-1
Yan, T., Xue, J., Zhou, Z., & Wu, Y. (2020). The trends in research on the effects of biochar on soil. Sustainability, 12, 1–23. https://doi.org/10.3390/su12187810
Yavari, S., Courchesne, F., & Brisson, J. (2021). Nutrient-assisted phytoremediation of wood preservative-contaminated technosols with co-planting of Salix interior and Festuca arundinacea. Environmental Science and Pollution Research, 1, 1–13. https://doi.org/10.1007/s11356-021-14076-1
Zamulina, I. V., Gorovtsov, A. V., Minkina, T. M., Mandzhieva, S. S., Burachevskaya, M. V., & Bauer, T. V. (2022). Soil organic matter and biological activity under long-term contamination with copper. Environmental Geochemistry and Health, 44, 387–398. https://doi.org/10.1007/s10653-021-01044-4
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by José de Souza Oliveira Filho. The first draft of the manuscript was written by José de Souza Oliveira Filho and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethical Approval
Not applicable.
Consent to Participate
Not applicable.
Consent to Publish
Not applicable.
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Oliveira Filho, J.d.S., Pereira, M.G. Is Environmental Contamination a Concern in Global Technosols? A Bibliometric Analysis. Water Air Soil Pollut 234, 142 (2023). https://doi.org/10.1007/s11270-023-06171-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-023-06171-5