Nothing Special   »   [go: up one dir, main page]

Skip to main content

Visualizing Bibliometric Networks

  • Chapter
  • First Online:
Measuring Scholarly Impact

Abstract

This chapter provides an introduction to the topic of visualizing bibliometric networks. First, the most commonly studied types of bibliometric networks (i.e., citation, co-citation, bibliographic coupling, keyword co-occurrence, and coauthorship networks) are discussed, and three popular visualization approaches (i.e., distance-based, graph-based, and timeline-based approaches) are distinguished. Next, an overview is given of a number of software tools that can be used for visualizing bibliometric networks. In the second part of the chapter, the focus is specifically on two software tools: VOSviewer and CitNetExplorer. The techniques used by these tools to construct, analyze, and visualize bibliometric networks are discussed. In addition, tutorials are offered that demonstrate in a step-by-step manner how both tools can be used. Finally, the chapter concludes with a discussion of the limitations and the proper use of bibliometric network visualizations and with a summary of some ongoing and future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The data collection took place on November 7, 2013.

  2. 2.

    To improve the visualization, the Size variation parameter in the Options dialog box has been set to a value of 0.40. In addition, the No. of lines parameter has been set to a value of 500. This has the effect that 500 lines, representing the 500 strongest co-citation relations between journals, are displayed in the visualization.

  3. 3.

    The resolution parameter of VOSviewer’s clustering technique is set to its default value of 1.00, not to the value of 0.50 that was used in the case of the author bibliographic coupling network.

  4. 4.

    To improve the visualization, the Size variation parameter in the Options dialog box has been set to a value of 0.40. A few terms in the upper part of the visualization are not visible in Fig. 13.6.

  5. 5.

    Notice that in the visualization shown in Fig. 13.9, publications are displayed in green rather than in gray. This is because the publications included in the visualization all belong to the same cluster identified by CitNetExplorer’s clustering technique.

References

  • Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media [Online]

    Google Scholar 

  • Bollen, J., Van de Sompel, H., Hagberg, A., Bettencourt, L., Chute, R., Rodriguez, M. A., et al. (2009). Clickstream data yields high-resolution maps of science. PLoS ONE, 4(3), e4803.

    Article  Google Scholar 

  • Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling (2nd ed.). New York, NY: Springer.

    MATH  Google Scholar 

  • Börner, K. (2010). Atlas of science: Visualizing what we know. Cambridge, MA: MIT Press.

    Google Scholar 

  • Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255.

    Article  Google Scholar 

  • Börner, K., Klavans, R., Patek, M., Zoss, A. M., Biberstine, J. R., Light, R. P., et al. (2012). Design and update of a classification system: The UCSD map of science. PLoS ONE, 7(7), e39464.

    Article  Google Scholar 

  • Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation. Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389–2404.

    Article  Google Scholar 

  • Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.

    Article  Google Scholar 

  • Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235.

    Article  Google Scholar 

  • Callon, M., Law, J., & Rip, A. (Eds.). (1986). Mapping the dynamics of science and technology. London: MacMillan.

    Google Scholar 

  • Chen, C. (1999). Visualising semantic spaces and author co-citation networks in digital libraries. Information Processing & Management, 35(3), 401–420.

    Article  Google Scholar 

  • Chen, C. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences, 101(suppl. 1), 5303–5310.

    Article  Google Scholar 

  • Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.

    Article  Google Scholar 

  • Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402.

    Article  Google Scholar 

  • De Moya-Anegón, F., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Munoz-Fernández, F. J., & Herrero-Solana, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58(14), 2167–2179.

    Article  Google Scholar 

  • De Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164.

    Google Scholar 

  • Garfield, E. (2004). Historiographic mapping of knowledge domains literature. Journal of Information Science, 30(2), 119–145.

    Article  Google Scholar 

  • Garfield, E., Pudovkin, A. I., & Istomin, V. S. (2003). Why do we need algorithmic historiography? Journal of the American Society for Information Science and Technology, 54(5), 400–412.

    Article  Google Scholar 

  • Griffith, B. C., Small, H., Stonehill, J. A., & Dey, S. (1974). The structure of scientific literatures II: Toward a macro- and microstructure for science. Science Studies, 4(4), 339–365.

    Article  Google Scholar 

  • Healy, P., & Nikolov, N. S. (2013). Hierarchical drawing algorithms. In R. Tamassia (Ed.), Handbook of graph drawing and visualization (pp. 409–453). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11(1), 39–63.

    Article  Google Scholar 

  • Jarneving, J. (2007). Bibliographic coupling and its application to research-front and other core documents. Journal of Informetrics, 1(4), 287–307.

    Article  Google Scholar 

  • Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7–15.

    Article  MATH  MathSciNet  Google Scholar 

  • Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10–25.

    Article  Google Scholar 

  • Klavans, R., & Boyack, K. W. (2006). Quantitative evaluation of large maps of science. Scientometrics, 68(3), 475–499.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2012). Interactive overlays: A new method for generating global journal maps from Web-of-Science data. Journal of Informetrics, 6(2), 318–332.

    Article  Google Scholar 

  • Luukkonen, T., Tijssen, R. J. W., Persson, O., & Sivertsen, G. (1993). The measurement of international scientific collaboration. Scientometrics, 28(1), 15–36.

    Article  Google Scholar 

  • Marshakova, I. (1973). System of documentation connections based on references (SCI). Nauchno-TekhnicheskayaInformatsiya Seriya, 2(6), 3–8.

    Google Scholar 

  • McCain, K. W. (1991). Mapping economics through the journal literature: An experiment in journal cocitation analysis. Journal of the American Society for Information Science, 42(4), 290–296.

    Article  Google Scholar 

  • Morris, S. A., Yen, G., Wu, Z., & Asnake, B. (2003). Time line visualization of research fronts. Journal of the American Society for Information Science and Technology, 54(5), 413–422.

    Article  Google Scholar 

  • Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6), 066133.

    Article  Google Scholar 

  • Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.

    Article  Google Scholar 

  • Persson, O. (2010). Identifying research themes with weighted direct citation links. Journal of Informetrics, 4(3), 415–422.

    Article  Google Scholar 

  • Peters, H. P. F., & Van Raan, A. F. J. (1993). Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling. Research Policy, 22(1), 23–45.

    Article  Google Scholar 

  • Schvaneveldt, R. W., Dearholt, D. W., & Durso, F. T. (1988). Graph theoretic foundations of pathfinder networks. Computers & Mathematics with Applications, 15(4), 337–345.

    Article  MATH  MathSciNet  Google Scholar 

  • Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.

    Article  MathSciNet  Google Scholar 

  • Skupin, A., Biberstine, J. R., & Börner, K. (2013). Visualizing the topical structure of the medical sciences: A self-organizing map approach. PLoS ONE, 8(3), e58779.

    Article  Google Scholar 

  • Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269.

    Article  Google Scholar 

  • Small, H. (1997). Update on science mapping: Creating large document spaces. Scientometrics, 38(2), 275–293.

    Article  MathSciNet  Google Scholar 

  • Small, H., & Griffith, B. C. (1974). The structure of scientific literatures I: Identifying and graphing specialties. Science Studies, 4(1), 17–40.

    Article  Google Scholar 

  • Van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651.

    Article  Google Scholar 

  • Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.

    Article  Google Scholar 

  • Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. ISSI Newsletter, 7(3), 50–54.

    Google Scholar 

  • Van Eck, N. J., Waltman, L., Dekker, R., & Van den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405–2416.

    Article  Google Scholar 

  • Van Eck, N. J., Waltman, L., Van Raan, A. F. J., Klautz, R. J. M., & Peul, W. C. (2013). Citation analysis may severely underestimate the impact of clinical research as compared to basic research. PLoS ONE, 8(4), e62395.

    Article  Google Scholar 

  • Waltman, L., & Van Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology, 63(12), 2378–2392.

    Article  Google Scholar 

  • Waltman, L., & Van Eck, N. J. (2013). A smart local moving algorithm for large-scale modularity-based community detection. European Physical Journal B, 86, 471.

    Article  Google Scholar 

  • Waltman, L., Van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.

    Article  Google Scholar 

  • White, H. D. (2003). Pathfinder networks and author cocitation analysis: A remapping of paradigmatic information scientists. Journal of the American Society for Information Science and Technology, 54(5), 423–434.

    Article  Google Scholar 

  • White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163–171.

    Article  Google Scholar 

  • White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355.

    Google Scholar 

  • Zhao, D., & Strotmann, A. (2008). Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic-coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070–2086.

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank Katy Börner and Ismael Rafols for their very helpful comments on an earlier draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nees Jan van Eck .

Editor information

Editors and Affiliations

Appendix: Normalization, Mapping, and Clustering Techniques Used by VOSviewer

Appendix: Normalization, Mapping, and Clustering Techniques Used by VOSviewer

In this appendix, we provide a more detailed description of the normalization, mapping, and clustering techniques used by VOSviewer.

1.1 Normalization

We first discuss the association strength normalization (Van Eck & Waltman, 2009) used by VOSviewer to normalize for differences between nodes in the number of edges they have to other nodes. Let a ij denote the weight of the edge between nodes i and j, where a ij  = 0 if there is no edge between the two nodes. Since VOSviewer treats all networks as undirected, we always have a ij  = a ji . The association strength normalization constructs a normalized network in which the weight of the edge between nodes i and j is given by

$$ {s}_{ij}=\frac{2m{a}_{ij}}{k_i{k}_j}, $$
(1)

where k i (k j ) denotes the total weight of all edges of node i (node j) and m denotes the total weight of all edges in the network. In mathematical terms,

$$ {k}_i={\displaystyle \sum_j{a}_{ij}}\kern1em \mathrm{and}\kern1em m=\frac{1}{2}{\displaystyle \sum_i{k}_i}. $$
(2)

We sometimes refer to s ij as the similarity of nodes i and j. For an extensive discussion of the rationale of the association strength normalization, we refer to Van Eck and Waltman (2009).

1.2 Mapping

We now consider the VOS mapping technique used by VOSviewer to position the nodes in the network in a two-dimensional space. The VOS mapping technique minimizes the function

$$ V\left({\mathbf{x}}_1,\dots, {\mathbf{x}}_n\right)={\displaystyle \sum_{i<j}{s}_{ij}{\left\Vert {\mathbf{x}}_i-{\mathbf{x}}_j\right\Vert}^2} $$
(3)

subject to the constraint

$$ \frac{2}{n\left(n-1\right)}{\displaystyle \sum_{i<j}\left\Vert {\mathbf{x}}_i-{\mathbf{x}}_j\right\Vert }=1, $$
(4)

where n denotes the number of nodes in a network, x i denotes the location of node i in a two-dimensional space, and ||x i  − x j || denotes the Euclidean distances between nodes i and j. VOSviewer uses a variant of the SMACOF algorithm (e.g., Borg & Groenen, 2005) to minimize (3) subject to (4). We refer to Van Eck et al. (2010) for a more extensive discussion of the VOS mapping technique, including a comparison with multidimensional scaling.

1.3 Clustering

Finally, we discuss the clustering technique used by VOSviewer. Nodes are assigned to clusters by maximizing the function

$$ V\left({c}_1,\dots, {c}_n\right)={\displaystyle \sum_{i<j}\delta \left({c}_i,{c}_j\right)\left({s}_{ij}-\gamma \right)}, $$
(5)

where c i denotes the cluster to which node i is assigned, δ(c i , c j ) denotes a function that equals 1 if c i  = c j and 0 otherwise, and γ denotes a resolution parameter that determines the level of detail of the clustering. The higher the value of γ, the larger the number of clusters that will be obtained. The function in (5) is a variant of the modularity function introduced by Newman and Girvan (2004) and Newman (2004) for clustering the nodes in a network. There is also an interesting mathematical relationship between on the one hand the problem of minimizing (3) subject to (4) and on the other hand the problem of maximizing (5). Because of this relationship, the mapping and clustering techniques used by VOSviewer constitute a unified approach to mapping and clustering the nodes in a network. We refer to Waltman et al. (2010) for more details. We further note that VOSviewer uses the recently introduced smart local moving algorithm (Waltman & Van Eck, 2013) to maximize (5).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Eck, N.J., Waltman, L. (2014). Visualizing Bibliometric Networks. In: Ding, Y., Rousseau, R., Wolfram, D. (eds) Measuring Scholarly Impact. Springer, Cham. https://doi.org/10.1007/978-3-319-10377-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10377-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10376-1

  • Online ISBN: 978-3-319-10377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics