Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Initial assessment of BDS-3 preliminary system signal-in-space range error

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The basic constellation of the BeiDou global satellite navigation system (BDS-3) had been successfully completed by the end of 2018. It included 18 medium earth orbit satellites and 1 geostationary orbit satellite. An initial assessment of BDS-3 broadcast orbit and clock accuracy based on 55 days of broadcast message data is presented in this contribution. Satellite positions and clock offsets derived from broadcast ephemeris are compared with precise orbit determination orbits and clock offsets. Furthermore, the corresponding signal-in-space range error (SISRE), which is of most interest to navigation users, is computed. Thanks to the new inter-satellite link payloads on BDS-3 satellites, the statistics of age-of-data-ephemeris and age-of-data-clock demonstrate that more than 98% of ephemerides and 93% of clock parameters are updated within only one hour. Experimental results show that the 3D root mean square (RMS) of broadcast orbit errors is less than 0.6 m for the overall constellation. The broadcast orbit is also assessed by satellite laser ranging measurements, giving an RMS of 7.3 cm. The orbit-only SISRE is about 0.1 m. With respect to clock errors, the timescale differences between two clock products are eliminated to assess the accuracy of broadcast clock offsets. The standard deviation value of 0.25 m shows a good performance, but the RMS value is regrettably nearly 0.5 m due to a nonzero mean bias. RMS of BDS-3 SISRE amounts to approximately 0.5 m, which is largely attributed to clock errors. Finally, a positioning experiment is conducted to analyze the accuracy of single point positioning (SPP). With 95% confidence level, the horizontal accuracy is less than 5 m, and the vertical accuracy is close to 6 m. Considering that the nonzero mean bias in clock errors may affect the performance of SPP, we correct the nonzero mean value by a satellite-specific constant to analyze the influence of clock bias on the SPP performance. The results show that improvement in the 3D position accuracy can be up to 11%, especially in the up direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (Nos. 41674004, 41974036, 41774035) and Natural Science Foundation of Hubei Province (No. 2019CFA051). The MGEX and iGMAS are greatly acknowledged for providing the BDS-3 ground tracking data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Geng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Geng, T., Zhao, Q. et al. Initial assessment of BDS-3 preliminary system signal-in-space range error. GPS Solut 24, 16 (2020). https://doi.org/10.1007/s10291-019-0928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-019-0928-x

Keywords

Navigation