Abstract
Most state-of-the-art algorithms for large-scale optimization problems expose free parameters, giving rise to combinatorial spaces of possible configurations. Typically, these spaces are hard for humans to understand. In this work, we study a model-based approach for identifying a small set of both algorithm parameters and instance features that suffices for predicting empirical algorithm performance well. Our empirical analyses on a wide variety of hard combinatorial problem benchmarks (spanning SAT, MIP, and TSP) show that—for parameter configurations sampled uniformly at random—very good performance predictions can typically be obtained based on just two key parameters, and that similarly, few instance features and algorithm parameters suffice to predict the most salient algorithm performance characteristics in the combined configuration/feature space. We also use these models to identify settings of these key parameters that are predicted to achieve the best overall performance, both on average across instances and in an instance-specific way. This serves as a further way of evaluating model quality and also provides a tool for further understanding the parameter space. We provide software for carrying out this analysis on arbitrary problem domains and hope that it will help algorithm developers gain insights into the key parameters of their algorithms, the key features of their instances, and their interactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A further advantage of forward selection is that it can be used in combination with arbitrary modeling techniques. Although here, we focus on using our best-performing model, random forests, we also provide summary results for other model types.
- 2.
In fact, it also applies to classification algorithms and has, e.g., been used to derive classifiers for predicting the solubility of SAT instances based on 1–2 features [30].
- 3.
In fact, in many cases, the best setting of the key parameters were their default values.
References
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Proceedings of CPAIOR-10, pp. 186–202 (2010)
Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolutionary algorithm parameters. In: Proceedings of IJCAI-07, pp. 975–980 (2007)
Ansotegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of solvers. In: Proceedings of CP-09, pp. 142–157 (2009)
Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Empirical Methods for the Analysis of Optimization Algorithms. Springer, Heidelberg (2010)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. JAIR 36, 267–306 (2009)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 55–70. Springer, Heidelberg (2012)
Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic tuning of decision procedures. In: Proceedings of FMCAD-07, pp. 27–34 (2007)
Chiarandini, M., Fawcett, C., Hoos, H.: A modular multiphase heuristic solver for post enrolment course timetabling. In: Proceedings of PATAT-08 (2008)
Vallati, M., Fawcett, C., Gerevini, A.E., Hoos, H.H., Saetti, A.: Generating fast domain-optimized planners by automatically configuring a generic parameterised planner. In: Proceedings of ICAPS-PAL11 (2011)
Ridge, E., Kudenko, D.: Sequential experiment designs for screening and tuning parameters of stochastic heuristics. In: Proceedings of PPSN-06, pp. 27–34 (2006)
Chiarandini, M., Goegebeur, Y.: Mixed models for the analysis of optimization algorithms. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 225–264. Springer, Berlin (2010)
Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation: The New Experimentalism. Natural Computing Series. Springer, Berlin (2006)
Finkler, U., Mehlhorn, K.: Runtime prediction of real programs on real machines. In: Proceedings of SODA-97, pp. 380–389 (1997)
Fink, E.: How to solve it automatically: selection among problem-solving methods. In: Proceedings of AIPS-98, pp. 128–136. AAAI Press (1998)
Howe, A.E., Dahlman, E., Hansen, C., Scheetz, M., Mayrhauser, A.: Exploiting competitive planner performance. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 62–72. Springer, Heidelberg (2000)
Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the Empirical Hardness of Optimization Problems. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)
Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009)
Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial optimization problems. Comput. Oper. Res. 39(5), 875–889 (2012)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. JAIR 32, 565–606 (2008)
Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)
Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: the state of the art. CoRR, abs/1211.0906 (2012)
Smith-Miles, K., van Hemert, J.: Discovering the suitability of optimisation algorithms by learning from evolved instances. AMAI 61, 87–104 (2011)
Bartz-Beielstein, T., Markon, S.: Tuning search algorithms for real-world applications: a regression tree based approach. In: Proceedings of CEC-04, pp. 1111–1118 (2004)
Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: methodology and a case study on combinatorial auctions. J. ACM 56(4), 1–52 (2009)
Xu, L., Hoos, H.H., Leyton-Brown, K.: Predicting satisfiability at the phase transition. In: Proceedings of AAAI-12 (2012)
Friedman, J.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–141 (1991)
IBM Corp.: IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/ (2012). Accessed 27 Oct 2012
Babić, D., Hutter, F.: Spear theorem prover. Solver description SAT competition (2007)
Helsgaun, K.: General \(k\)-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program. Comput. 1(2–3), 119–163 (2009)
Styles, J., Hoos, H.H., Müller, M.: Automatically configuring algorithms for scaling performance. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 205–219. Springer, Heidelberg (2012)
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. JMLR 13, 281–305 (2012)
Wang, Z., Zoghi, M., Hutter, F., Matheson, D., de Freitas, N.: Bayesian optimization in a billion dimensions via random embeddings. ArXiv e-prints, January (2013). arXiv:1301.1942
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hutter, F., Hoos, H.H., Leyton-Brown, K. (2013). Identifying Key Algorithm Parameters and Instance Features Using Forward Selection. In: Nicosia, G., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2013. Lecture Notes in Computer Science(), vol 7997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44973-4_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-44973-4_40
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-44972-7
Online ISBN: 978-3-642-44973-4
eBook Packages: Computer ScienceComputer Science (R0)