Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Basically, this chapter tries to find answers for the following fundamental questions in experimental research.

  1. (Q-1)

    How can problem instances be generated?

  2. (Q-2)

    How can experimental results be generalized?

The chapter is structured as follows. Section 56.2 introduces real-world and artificial optimization problems. Algorithms are described in Sect. 56.3. Objective functions and statistical models are introduced in Sect. 56.4; these models take problem and algorithm features into consideration. Section 56.5 presents case studies that illustrate our methodology. The chapter closes with a summary and an outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

CI:

computational intelligence

EA:

evolutionary algorithm

ES:

evolution strategy

FX:

foreign exchange

i.i.d.:

independent, identically distributed

MAMP:

multiple algorithms, multiple problems

MAMS:

multiple algorithms and multiple problem instances

MASP:

multiple algorithms and one single problem

MSG:

max-set of Gaussian landscape generator

Q–Q:

quantile–quantile

REML:

restricted maximum likelihood estimator

SAMP:

one single algorithm and multiple problems

SASP:

one single algorithm and one single problem

SPOT:

sequential parameter optimization toolbox

US  EPA:

United States Environmental Protection Agency

References

  1. P.J. Brockwell, R.A. Davis: Introduction to Time Series and Forecasting (Springer, New York 2002)

    Book  MATH  Google Scholar 

  2. D.C. Montgomery: Design and Analysis of Experiments (Wiley, New York 2001)

    Google Scholar 

  3. M. Chiarandini, Y. Goegebeur: Mixed models for the analysis of optimization algorithms. In: Experimental Methods for the Analysis of Optimization Algorithms, ed. by T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss (Springer, Berlin Heidelberg 2010) pp. 225–264, preliminary version available as Tech. Rep. DMF-2009-07-001 at the The Danish Mathematical Society

    Chapter  Google Scholar 

  4. C.C. McGeoch: Toward an experimental method for algorithm simulation, INFORMS J. Comput. 8(1), 1–15 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Birattari: On the Estimation of the Expected Performance of a Metaheuristic on a Class of Instances 2004), Tech. Rep. (IRIDIA, Bruxelles 2004)

    Google Scholar 

  6. M. Gallagher, B. Yuan: A general-purpose tunable landscape generator, IEEE Trans. Evol. Comput. 10(5), 590–603 (2006)

    Article  Google Scholar 

  7. I. Castiñeiras, M.D. Cauwer, B. O'Sullivan: Weibull-based benchmarks for bin packing, Lect. Notes Comput. Sci. 7514, 207–222 (2012)

    Article  Google Scholar 

  8. G.E.P. Box, G.M. Jenkins, G.C. Reinsel: Time Series Analysis, Forecasting and Control (Holden-Day, San Francisco 1976)

    MATH  Google Scholar 

  9. T. Bartz-Beielstein: Beyond Particular Problem Instances: How to Create Meaningful and Generalizable Results, Tech. Rep. TR 03/2012 (Cologne University of Applied Sciences, 2012)

    Google Scholar 

  10. T. Bartz-Beielstein, M. Friese, B. Naujoks, M. Zaefferer: SPOT applied to non-stochastic optimization problems – An experimental study, Genet. Evol. Comput. Conf. (GECCO 2012) (ACM, Philadelphia 2012)

    Google Scholar 

  11. M. Zaefferer: Optimization and Empirical Analysis of an Event Detection Software for Water Quality Monitoring, Master Thesis (University of Applied Sciences, Cologne 2012)

    Google Scholar 

  12. O. Flasch, T. Bartz-Beielstein, D. Bicker, W. Kantschik, C. von Strachwitz: Results of the GECCO 2011 Industrial Challenge: Optimizing Foreign Exchange Trading Strategies. CIOP Tech. Rep. 10/11, Res. Center CIOP (Cologne University of Applied Science, Cologne 2011)

    Google Scholar 

  13. E. Vladislavleva: Model–based Problem Solving through Symbolic Regression via Pareto Genetic Programming, Ph.D. Thesis (Tilburg University, Tilburg 2008)

    Google Scholar 

  14. H.-G. Beyer, H.-P. Schwefel: Evolution strategies – A comprehensive introduction, Nat. Comput. 1, 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. H.-P. Schwefel: Numerical Optimization of Computer Models (Wiley, Chichester 1981)

    MATH  Google Scholar 

  16. T. Bartz-Beielstein: Experimental Research in Evolutionary Computation – The New Experimentalism, Natural Computing Series (Springer, Berlin, Heidelberg, New York 2006)

    MATH  Google Scholar 

  17. T. Bartz-Beielstein, M. Preuss: Automatic and interactive tuning of algorithms, Proc. 13th Annu. Conf. Companion Genet. Evol. Comput. (GECCO) (ACM, New York 2011) pp. 1361–1380

    Google Scholar 

  18. J. Pinheiro, D. Bates: Mixed-Effects Models in S and S-PLUS (Springer, New York 2000)

    Book  MATH  Google Scholar 

  19. T. Bartz-Beielstein, M. Zaefferer: A Gentle Introduction to Sequential Parameter Optimization, Tech. Rep. TR 01/2012 CIplus Bd. 1/2012 (Cologne University of Applied Sciences, Cologne 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bartz-Beielstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartz-Beielstein, T. (2015). How to Create Generalizable Results. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics