Abstract
Algorithm selection (AS) deals with the automatic selection of an algorithm from a fixed set of candidate algorithms most suitable for a specific instance of an algorithmic problem class, e.g., choosing solvers for SAT problems. Benchmark suites for AS usually comprise candidate sets consisting of at most tens of algorithms, whereas in algorithm configuration (AC) and combined algorithm selection and hyperparameter optimization (CASH) problems the number of candidates becomes intractable, impeding to learn effective meta-models and thus requiring costly online performance evaluations. In this paper, we propose the setting of extreme algorithm selection (XAS), which, despite assuming limited time resources and hence excluding online evaluations at prediction time, allows for considering thousands of candidate algorithms and thereby facilitates meta learning. We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic representation, in which both problem instances and algorithms are described in terms of feature vectors. We find this approach to significantly improve over the current state of the art in various metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
https://docs.openml.org/benchmark/#openml-cc18 (Excluding datasets 554, 40923, 40927, 40996 due to technical issues.).
- 3.
The standard deviation of the performance values per dataset is on average 0.101, minimum 0.0064 and maximum 0.33.
References
Bengio, S., Dembczynski, K., Joachims, T., Kloft, M., Varma, M.: Extreme classification (dagstuhl seminar 18291). Dagstuhl Reports 8(7), 62–80 (2018)
Bischl, B., et al.: Aslib: a benchmark library for algorithm selection. Artif. Intell. 237, 41–58 (2016)
Cao, Z., Qin, T., Liu, T., Tsai, M., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: ICML (2007)
Cheng, W., Hüllermeier, E., Dembczynski, K.J.: Label ranking methods based on the plackett-luce model. In: ICML (2010)
Cunha, T., Soares, C., de Carvalho, A.C.: A label ranking approach for selecting rankings of collaborative filtering algorithms. In: SAC (2018)
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: NIPS (2015)
Frank, E., Hall, M., Witten, I.: The WEKA Workbench. Data Mining (2016)
Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)
Haim, S., Walsh, T.: Restart strategy selection using machine learning techniques. In: SAT (2009)
Happe, M., Meyer auf der Heide, F., Kling, P., Platzner, M., Plessl, C.: On-the-fly computing: a novel paradigm for individualized it services. In: ISORC (2013)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: LION (2011)
Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithmselection: Survey and perspectives. ECJ 27(1), 3–45 (2019)
Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of optimization problems: the case of combinatorial auctions. In: CP (2002)
Malitsky, Y., O’Sullivan, B.: Latent features for algorithm selection. In: SOCS (2014)
Mısır, M., Sebag, M.: Alors: an algorithm recommender system. Artif. Intell. 244, 219–344 (2017)
Mohr, F., Wever, M., Hüllermeier, E.: ML-Plan: automated machine learning via hierarchical planning. Mach. Learn. 107(8), 1495–1515 (2018). https://doi.org/10.1007/s10994-018-5735-z
Mohr, F., Wever, M., Tornede, A., Hüllermeier, E.: From automated to on-the-fly machine learning. In: INFORMATIK (2019)
Nguyen, P., Hilario, M., Kalousis, A.: Using meta-mining to support data mining workflow planning and optimization. JAIR 51, 605–644 (2014)
Oentaryo, R.J., Handoko, S.D., Lau, H.C.: Algorithm selection via ranking. In: AAAI (2015)
Rice, J.R.: The algorithm selection problem. In: Advances in computers, vol. 15. Elsevier (1976)
Schäfer, D., Hüllermeier, E.: Dyad ranking using plackett-lucemodels based on joint feature representations. Mach. Learn. 107(5), 903–941 (2018)
Schneider, M., Hoos, H.H.: Quantifying homogeneity of instance sets for algorithm configuration. In: LION (2012)
Stern, D.H., Samulowitz, H., Herbrich, R., Graepel, T., Pulina, L., Tacchella, A.: Collaborative expert portfolio management. In: AAAI (2010)
Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: combined selection and hyperparameter optimization of classification algorithms. In: SIGKDD (2013)
Tornede, A., Wever, M., Hüllermeier, E.: Algorithm selection as recommendation: from collaborative filtering to dyad ranking. In: CI Workshop, Dortmund (2019)
Tornede, A., Wever, M., Werner, S., Mohr, F., Hüllermeier, E.: Run2survive: a decision-theoretic approach to algorithm selection based on survival analysis. CoRR abs/2007.02816 (2020)
Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science in machine learning. SIGKDD Explorations 15(2), 49–60 (2013)
Vembu, S., Gärtner, T.: Label ranking algorithms: a survey. In: Preference Learning. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14125-6_3
Wang, W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: settings, methods, and applications. ACM TIST (2019)
Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T.: A theoretical analysis of NDCG ranking measures. In: COLT (2013)
Weimer, M., Karatzoglou, A., Le, Q.V., Smola, A.J.: Cofi rank-maximum margin matrix factorization for collaborative ranking. In: NIPS (2008)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algorithm selection for sat. JAIR 32, 565–606 (2008)
Acknowledgements
This work was supported by the German Research Foundation (DFG) within the Collaborative Research Center “On-The-Fly Computing” (SFB 901/3 project no. 160364472) and by the Paderborn Center for Parallel Computing (PC\(^2\)) through computing time.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Tornede, A., Wever, M., Hüllermeier, E. (2020). Extreme Algorithm Selection with Dyadic Feature Representation. In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S. (eds) Discovery Science. DS 2020. Lecture Notes in Computer Science(), vol 12323. Springer, Cham. https://doi.org/10.1007/978-3-030-61527-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-61527-7_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61526-0
Online ISBN: 978-3-030-61527-7
eBook Packages: Computer ScienceComputer Science (R0)