Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Estimation for the Average Error of the Chebyshev Interpolation in Wiener Space

  • Conference paper
Information Computing and Applications (ICICA 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 243))

Included in the following conference series:

  • 2270 Accesses

Abstract

In this paper, the first kind of Chebyshev interpolation in the Wiener space are discussed. under the L p norm, the convergence properties of Chebyshev interpolation polynomials base on the zeros of the Chebyshev polynomials are proved. Furthermore, the estimation for the average error of the first kind of Chebyshev interpolation polynomials are weakly equivalent to the average errors of the corresponding best polynomial approximation. while p = 4, the weakly asypmtotic order \(e^{4} (H_{n}, G_{4}) \approx 1 / \sqrt{n}\) of the average error in the Wiener space is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Traub, J.F., Wasilkowski, G.W., Wozniakowski, H.: Information-Based Complexity. Academic Press, New York (1988)

    MATH  Google Scholar 

  2. Klaus, R.: Approximation and optimization on the wiener space. J. Complexity 6, 337–364 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xu, G.-Q.: An average error of lagrange interpolation and Hermite-Fejér interpolation in the wienerspace. Acta Mathematica Sinica in Chinese 50(5), 1–3 (2007)

    Google Scholar 

  4. Zhao, H.-J.: An average error of lagrange interpolation in the wiener space. Journal of Tianjin NormalUniversity (Natural Science Edition) 27(1), 1–2 (2007)

    MathSciNet  Google Scholar 

  5. Xu, G.-Q.: The rate of weighted Lp convergence of interpolators operators. Chinese Journal of Engineering Mathematics 5, 1–3 (2006) (in Chinese)

    Google Scholar 

  6. Liu, Y., Xu, G.-Q.: An Estimation for the Average Error of the Quasi-Grünwald Interpolation in the Wiener Space. Chin. Quart. J. of Math. 24(1), 94–101 (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiong, L., Dianxuan, G. (2011). An Estimation for the Average Error of the Chebyshev Interpolation in Wiener Space. In: Liu, C., Chang, J., Yang, A. (eds) Information Computing and Applications. ICICA 2011. Communications in Computer and Information Science, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27503-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27503-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27502-9

  • Online ISBN: 978-3-642-27503-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics