Abstract
In this paper, the first kind of Chebyshev interpolation in the Wiener space are discussed. under the L p norm, the convergence properties of Chebyshev interpolation polynomials base on the zeros of the Chebyshev polynomials are proved. Furthermore, the estimation for the average error of the first kind of Chebyshev interpolation polynomials are weakly equivalent to the average errors of the corresponding best polynomial approximation. while p = 4, the weakly asypmtotic order \(e^{4} (H_{n}, G_{4}) \approx 1 / \sqrt{n}\) of the average error in the Wiener space is obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Traub, J.F., Wasilkowski, G.W., Wozniakowski, H.: Information-Based Complexity. Academic Press, New York (1988)
Klaus, R.: Approximation and optimization on the wiener space. J. Complexity 6, 337–364 (1990)
Xu, G.-Q.: An average error of lagrange interpolation and Hermite-Fejér interpolation in the wienerspace. Acta Mathematica Sinica in Chinese 50(5), 1–3 (2007)
Zhao, H.-J.: An average error of lagrange interpolation in the wiener space. Journal of Tianjin NormalUniversity (Natural Science Edition) 27(1), 1–2 (2007)
Xu, G.-Q.: The rate of weighted Lp convergence of interpolators operators. Chinese Journal of Engineering Mathematics 5, 1–3 (2006) (in Chinese)
Liu, Y., Xu, G.-Q.: An Estimation for the Average Error of the Quasi-Grünwald Interpolation in the Wiener Space. Chin. Quart. J. of Math. 24(1), 94–101 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xiong, L., Dianxuan, G. (2011). An Estimation for the Average Error of the Chebyshev Interpolation in Wiener Space. In: Liu, C., Chang, J., Yang, A. (eds) Information Computing and Applications. ICICA 2011. Communications in Computer and Information Science, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27503-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-27503-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27502-9
Online ISBN: 978-3-642-27503-6
eBook Packages: Computer ScienceComputer Science (R0)