Abstract
This paper investigates the optimal Hermite interpolation of Sobolev spaces \(W_{\infty }^{n}[a,b]\), \(n\in \mathbb{N}\) in space \(L_{\infty }[a,b]\) and weighted spaces \(L_{p,\omega }[a,b]\), \(1\le p< \infty \) with ω a continuous-integrable weight function in \((a,b)\) when the amount of Hermite data is n. We proved that the Lagrange interpolation algorithms based on the zeros of polynomial of degree n with the leading coefficient 1 of the least deviation from zero in \(L_{\infty }\) (or \(L_{p,\omega }[a,b]\), \(1\le p<\infty \)) are optimal for \(W_{\infty }^{n}[a,b]\) in \(L_{\infty }[a,b]\) (or \(L_{p,\omega }[a,b]\), \(1\le p<\infty \)). We also give the optimal Hermite interpolation algorithms when we assume the endpoints are included in the interpolation systems.
Similar content being viewed by others
1 Introduction and main results
Let F be a Banach space of functions defined on a compact set D that can be continuously embedded in \(C^{r}(D)\), BF be the unit ball of F, and G (⫆F) be a normed linear space with norm \(\|\cdot \|_{G}\). We want to approximate functions f from F by using a finite number of arbitrary Hermite data \(f^{(s)}(t)\) for some \(s\le r\) and \(t\in D\). We use an algorithm \(A_{n}\) that uses exactly n Hermite data to reconstruct functions from BF. The worst-case error of the algorithm \(A_{n}\) for BF in G is defined by
Let \(\Lambda _{n}\) be an algorithm class that uses exactly n Hermite data, \(\Lambda =\bigcup_{n=1}^{\infty }\Lambda _{n}\). If there exists an algorithm \(A_{n}^{*}\in \Lambda _{n}\) such that
then we call \(A_{n}^{*}\) the nth optimal algorithm for Λ in the norm G. The value \(e(BF, A_{n}^{*},G)\) is called the nth optimal worst-case error for BF in G and we denote it as \(e(n,BF ,G)\).
Let \(L_{\infty }\equiv L_{\infty }[a,b]\) be the space of measurable functions defined on \([a,b]\), for which the norm
is finite. Meanwhile, for \(1\le p< \infty \) and continuous-integrable \(\omega (x)> 0\) on \((a,b)\), let \(L_{p,\omega }\equiv L_{p,\omega }[a,b]\) be the space of measurable functions defined on \([a,b]\), for which the norm
is finite. Using \(C^{n}\equiv C^{n}[a,b]\), \(n=0,1,2,\dots \) represents the spaces of functions with an nth-order continuous derivative on \([a,b]\), respectively. Denote by \(W_{\infty }^{n} \equiv W_{\infty }^{n}[a,b]\), \(n\in \mathbb{N}\) the class of all functions f such that \(f^{(n-1)}(f^{(0)}:=f)\) are absolutely continuous and \(f^{(n)}\in L_{\infty }\).
For the construction of algorithms for approximating multivariate functions using function values, the univariate Lagrange interpolation polynomial algorithms play a key role, see [2, 5, 8, 13–15]. Recently, some papers [3, 10] have considered the algorithms for approximating multivariate functions using Hermite data. To compare the approximation errors of Lagrange interpolation and Hermite interpolation, we introduce the concept of Hermite interpolation.
Let \(x_{1},x_{2},\ldots ,x_{r}\) be r distinct points in \([a,b]\). Let \(\Delta := \{a\le x_{1}< x_{2}<\cdots <x_{r}\le b,\alpha _{i}\in \mathbb{N},n=\sum_{i=1}^{r}\alpha _{i}\}\) be a Hermite interpolation system. Then, the Hermite interpolation polynomial \(H_{\Delta }(f)\) of a function \(f\in W_{\infty }^{n}\) based on Δ is defined by
where, and in the following, \(\mathcal{P}_{n}\) represents the space of all algebraic polynomials of degree at most n. The classical Hermite interpolation formula gives
where, and in the following,
and \(\{f(x)\}_{(x_{k})}^{(s)}\) is the s-degree Taylor polynomial of f at \(x_{k}\). In particular, if \(x_{1},x_{2},\ldots ,x_{n}\) are n distinct points in \([a,b]\), i.e., \(\Delta := \{a\le x_{1}< x_{2}<\cdots <x_{n}\le b,\alpha _{i}=1,i=1,2, \ldots ,n\}\), then we obtain the well-known Lagrange interpolation
where
Choosing interpolation systems is important for interpolation algorithms. For example, given a sufficiently smooth function, if nodes are not suitably chosen, then the Lagrange interpolation polynomials do not converge to the function as the number of nodes tends to infinity. A well-known example is Runge’s phenomenon. Hence, the study of optimal Lagrange interpolation nodes is a hot research topic, see [1, 6, 9, 16] and the references therein.
The most important optimal Lagrange interpolation nodes problem is for \(C^{0}\) in \(L_{\infty }\). For \(n=3\) and \(n=4\), the results can be found in [11] and [12], respectively. For \(n\ge 5\), it is still an open problem. For \(r\ge 1\), it is well known that the rth optimal Lagrange interpolation nodes are the zeros of the rth Chebyshev polynomial of the first kind for \(C^{r}[-1,1]\) in \(L_{\infty }[-1,1]\). Recently, [16] obtained the rth optimal Lagrange interpolation nodes for \(W_{\infty }^{r}[-1,1]\) in \(L_{p,\omega }[-1,1]\), \(1\le p< \infty \).
Hermite interpolation is a kind of interpolation that is wider than Lagrange interpolation. It can use not only the function value data but also the derivatives value data. Under the condition of using the same amount of data, can increasing the use of derivatives value data make the calculation result more accurate? In general the answer is no. In the following, we give the optimal Hermite interpolation systems to show this.
Let
Furthermore, let \(W_{n,p,\omega }\in \mathcal{P}_{n} \) satisfy
Then, \(W_{n,p,\omega }\) is unique and has exactly n zeros (see Lemma 2.2)
Let
Then, \(L_{\Delta _{n,p,\omega }}(f)\) has the explicit expression
where
and
First, we obtained the following results.
Theorem 1.1
-
(1)
For \(p= \infty \), we have
$$ e\bigl(n,BW_{\infty }^{n} ,L_{\infty } \bigr)=e\bigl(BW_{\infty }^{n},L_{\Delta _{n,\infty }}, L_{\infty }\bigr)= \frac{(b-a)^{n}}{n!2^{2n-1}},$$(1.11)where
$$ \begin{aligned}[b] \Delta _{n,\infty }={}& \biggl(\frac{a+b}{2}+ \frac{b-a}{2}\cos \frac{(2n-1)\pi }{2n},\frac{a+b}{2}+ \frac{b-a}{2}\cos \frac{(2n-3)\pi }{2n}, \ldots , \\ &\frac{a+b}{2}+ \frac{b-a}{2}\cos \frac{\pi }{2n} \biggr). \end{aligned} $$(1.12) -
(2)
Let \(1\le p< \infty \) and assume that \(\omega (x)> 0\) is continuous-integrable on \((a,b)\). Then, we have
$$ e\bigl(n,BW_{\infty }^{n} , L_{p,\omega }\bigr)=e\bigl(BW_{\infty }^{n},L_{\Delta _{n,p, \omega }}, L_{p,\omega }\bigr)= \frac{E_{n,p,\omega }}{n!},$$(1.13)where \(\Delta _{n,p,\omega }\) is given by (1.8).
From Theorem 1.1 we know that the optimal Hermite interpolation is Lagrange interpolation, i.e., increasing the use of derivatives value data can not make the calculation result more accurate.
In practice one often wants to have boundary points as interpolation systems, i.e.,
Then, the following question arises: for which \(\Delta ^{*}\) of the form (1.14), we have
For the Lagrange interpolation, Hoang [6] considered this problem for \(C^{n}[-1,1]\) in \(L_{\infty }[-1,1]\). Recently, Xu and Wang [16] considered this problem for \(W_{\infty }^{n}[-1,1]\) in \(L_{\infty }[-1,1]\) and \(L_{p,\omega }[-1,1]\), \(1\le p< \infty \). In this paper, we will extend the result of [16] into Hermite interpolation and obtain the following results.
Theorem 1.2
-
(1)
Let \(p= \infty \) and \(n>2\). Then, we have
$$ \overline{e}\bigl(n,BW_{\infty }^{n}, L_{\infty }\bigr) =e\bigl(BW_{\infty }^{n}, L_{{ \Delta ^{*}_{n,\infty }}}, L_{\infty }\bigr)= \frac{(b-a)^{n}}{ (\cos \frac{\pi }{2n} )^{n}2^{2n-1}n!},$$(1.16)where
$$ \begin{aligned}[b] {\Delta ^{*}_{n,\infty }}={}& \biggl(a, \frac{a+b}{2}+\frac{b-a}{2}\cos \frac{(2n-3)\pi }{2n} \Big/\cos \frac{\pi }{2n},\ldots , \\ &\frac{a+b}{2}+ \frac{b-a}{2}\cos \frac{3\pi }{2n} \Big/\cos \frac{\pi }{2n},b \biggr). \end{aligned} $$(1.17) -
(2)
Let \(1\le p< \infty \), \(n>2\) and assume that \(\omega (x)> 0\) is continuous-integrable on \((a,b)\). Then, we have
$$ \overline{e}\bigl(n,BW_{\infty }^{n}, L_{p,\omega }\bigr) =e\bigl(BW_{\infty }^{n}, L_{ \Delta ^{*}_{n,p,\omega }}, L_{p,\omega }\bigr)= \frac{E_{n-2,p,\overline{\omega }}}{n!},$$(1.18)where
$$ \overline{\omega }(x)=(x-a)^{p}(b-x)^{p} \omega (x),\qquad \Delta ^{*}_{n,p, \omega }=(a,\xi _{1,p,\overline{\omega }},\xi _{2,p,\overline{\omega }}, \ldots ,\xi _{n-2,p,\overline{\omega }},b),$$(1.19)and \(\xi _{1,p,\overline{\omega }},\xi _{2,p,\overline{\omega }},\ldots , \xi _{n-2,p,\overline{\omega }}\) are given by (1.7) with \(n-2\).
The remainder of this paper is organized as follows. In Sect. 2, we give the proofs of Theorem 1.1 and Theorem 1.2. In Sect. 3, we give some examples to show the results.
2 Proofs of Theorem 1.1 and Theorem 1.2
To prove Theorem 1.1, we first give a lemma.
Lemma 2.1
Let \(f\in W_{\infty }^{n}\). Assume that \(\Delta := \{a\le x_{1}< x_{2}<\cdots <x_{r}\le b,\alpha _{i}\in \mathbb{N},n=\sum_{i=1}^{r}\alpha _{i}\}\) is a Hermite interpolation system. Then, the remainder \(R_{\Delta }(f,x):=f(x)-H_{\Delta }(f,x)\) for the Hermite interpolation polynomial based on Δ satisfies
where \(W_{\Delta }\) is given by (1.4). In particular, if \(f\in C^{n}\), then
for some \(\xi \in [-1,1]\) depending on x and Δ.
Proof
Since (2.1) is trivially satisfied if x coincides with one of the interpolation points \(x_{1},\ldots ,x_{r}\), we need be concerned only with the case where x does not coincide with one of the interpolation nodes. Keeping x fixed, consider \(g:[a,b]\to \mathbb{R}\) given by
By the assumption on f we know \(g\in W_{\infty }^{n}\). From (1.3) and (2.3) we conclude that g has at least \(n+1\) zeros (counting multiplicity), namely single zero x and \(\alpha _{k}\) fold zeros \(x_{k},k=1,\ldots ,r\). Then, by Rolle’s theorem, the derivative \(g'\) has at least n zeros. Repeating the argument, by induction we deduce that the derivative \(g^{(n-1)}\) has at least two zeros in \([a,b]\), which we denote by \(z_{1}\) and \(z_{2}\) (\(z_{1}< z_{2}\)), respectively. Since \(g\in W_{\infty }^{n}\), then by the Newton–Leibniz formula we obtain
It is known that \(H_{\Delta }(f)\) is an algebraic polynomial of degree at most \(n-1\). Hence, we obtain
By a direct computation we obtain
Substituting (2.5) and (2.6) into (2.4), we obtain
From (2.7) it follows that
Combining
with (2.8) we obtain (2.1). Besides, if \(f\in C^{n}\), then \(g^{(n)}\) has at least one zero ξ in \([a,b]\), i.e., \(g^{(n)}(\xi )=0\). Hence, by differentiating n times on two sides of (2.3) first, and then substituting (2.5) and (2.6) into the obtained relation, we obtain
From (2.9) we obtain (2.2). This completes the proof of Lemma 2.1. □
Lemma 2.2
Let \(1\le p< \infty \) and assume that \(\omega (x)> 0\) is continuous-integrable on \((-1,1)\). Then, there exists a unique \(W_{n,p,\omega }\in \mathcal{P}_{n} \) for all \(n\in \mathbb{N}\) such that
where \(E_{n,p,\omega }\) is given by (1.5). Furthermore, \(W_{n,p,\omega }\) has exactly n zeros given by (1.7).
Proof
The proof of the problem on \([-1,1]\) can be found in [16]. In general, we can use the variable substitution \(x=\frac{a+b}{2}+\frac{b-a}{2}t\) to refer the problem on \([a,b]\) to this on \([-1,1]\). We omit the details. □
Proof of Theorem 1.1
We consider (1) first. Let \(\Delta _{n,\infty }\) be given by (1.12). Then, for any \(f\in W_{\infty }^{n}\), it follows from (2.1) that
Let \(x=\frac{a+b}{2}+\frac{b-a}{2}t\). Then, (2.10) becomes
where \(T_{n}\) is the nth Chebyshev polynomial of the first kind, i.e., \(T_{n}(t)=\cos (n\arccos t)\). Let \(f\in BW_{\infty }^{n}\). Then, we have \(\|f^{(n)}\|_{\infty }\le 1\). Combining this fact with \(\|T_{n}\|_{\infty }=1\) as well as (2.11), we obtain
From (1.2) and (2.12) we obtain the upper estimate.
Now, we consider the lower estimate. Let \(\Delta := \{a\le x_{1}< x_{2}<\cdots <x_{r}\le b,\alpha _{i}\in \mathbb{N},n=\sum_{i=1}^{r}\alpha _{i}\}\) be an arbitrary Hermite interpolation system of cardinality n in \([a,b]\). Consider the function \(g(x)=\frac{x^{n}}{n!}\). Then, from \(g^{(n)}(x)=1\) and (2.2) it follows that \(g\in W_{\infty }^{n}\) and
Let \(x=\frac{a+b}{2}+\frac{b-a}{2}t\). Then, by (1.4) we obtain
where
Then, it follows from Theorem 6.1 in [4, Ch. 3] that
Combining (1.1), (2.13), (2.14) and (2.16), we obtain
From (1.2) and (2.17) we obtain the lower estimate.
Next, we consider (2). We consider the upper estimate first. Let \(\Delta _{n,p,\omega }\) be given by (1.8) and \(W_{n,p,\omega }\) be given by (1.6). If \(f\in BW_{\infty }^{n}\), then we have \(\|f^{(n)}\|_{\infty }\le 1\). Combining this fact with (2.1) we obtain
It follows that
From (1.1) and (2.18) we obtain
From (1.2) and (2.19) we obtain the upper estimate.
Now, we consider the lower estimate. Let \(\Delta := \{a\le x_{1}< x_{2}<\cdots <x_{r}\le b,\alpha _{i}\in \mathbb{N},n=\sum_{i=1}^{r}\alpha _{i}\}\) be an arbitrary Hermite interpolation system of cardinality n in \([a,b]\). Consider the function \(g(x)=\frac{x^{n}}{n!}\). Then, \(g\in W_{\infty }^{n}\) and (2.13) holds. From the first equality in (2.14) and (1.5) as well as (1.6) it follows that
From (1.1), (2.13) and (2.20) it follows that
From (1.2) and (2.21) we obtain the lower estimate of (2). Theorem 1.1 is proved. □
Let \(BC^{n}=\{f\in C^{n}:\|f^{(n)}\|_{\infty }\le 1\}\). Using the fact \(BW_{\infty }^{n}\subset BC^{n}\) and \(g(x)=\frac{x^{n}}{n!}\in BC^{n}\) for \(n\in \mathbb{N}\), combining the proof of Theorem 1.1, we obtained the following results.
Corollary 2.3
-
(1)
For \(p= \infty \), we have
$$ e\bigl(n,BC^{n} ,L_{\infty }\bigr)=e\bigl(BC^{n},L_{\Delta _{n,\infty }}, L_{\infty }\bigr)= \frac{(b-a)^{n}}{n!2^{2n-1}},$$(2.22)where \(\Delta _{n,\infty }\) is given by (1.12).
-
(2)
Let \(1\le p< \infty \) and assume that \(\omega (x)> 0\) is continuous-integrable on \((a,b)\). Then, we have
$$ e\bigl(n,BC^{n} , L_{p,\omega }\bigr)=e\bigl(BC^{n},L_{\Delta _{n,p,\omega }}, L_{p, \omega }\bigr)= \frac{E_{n,p,\omega }}{n!},$$(2.23)where \(\Delta _{n,p,\omega }\) is given by (1.8).
Proof of Theorem 1.2
We consider (1) first. For any \(f\in BW_{\infty }^{n}\), from (2.1) it follows that
Let \(x=\frac{a+b}{2}+\frac{b-a}{2\cos \frac{\pi }{2n}}t\). Then, we have
From (1.1), (2.24) and (2.25) it follows that
From (1.2) and (2.26) we obtain the upper estimate.
Now, we consider the lower estimate. Let \(\Delta := \{a= x_{1}< x_{2}<\cdots <x_{r}= b,\alpha _{i}\in \mathbb{N},n=\sum_{i=1}^{r}\alpha _{i}\}\) be an arbitrary Hermite interpolation system of cardinality n including the endpoints a and b. Consider the function \(g(x)=\frac{x^{n}}{n!}\). Then, \(g\in W_{\infty }^{n}\) and (2.13) holds. Let \(x=\frac{a+b}{2}+\frac{b-a}{2}t\). Denote \(t_{i}=\frac{2}{b-a} (x_{i}-\frac{a+b}{2} )\), \(i=1,\ldots ,r\). Then, by (1.4) one obtains
Let
Then, it is easy to verify that
and
Assume that
Let
Then, it is easy to verify that \(R(t)\) is a polynomial of degree at most \(n-1\). Furthermore, from (2.29) and (2.30) one can check that
Thus, the polynomial \(R(t)\) has at least \(n-2\) zeros in \((-1,1)\). As \(t_{1}=-1\), \(t_{r}=1\), it is clear that ±1 are zeros of \(R(t)\). Hence, \(R(t)\) has at least n zeros in \([-1,1]\). This, and the fact that \(R(t)\) is a polynomial of degree at most \(n-1\), implies that \(R(t)=0\). Therefore,
which contradicts (2.30). Hence, we have
From (1.1), (2.13), (2.27) and (2.31) we obtain
From (1.2) and (2.32) we obtain the lower estimate of (1).
Next, we consider (2). Let ω̅ and \(\Delta ^{*}_{n,p,\omega }\) be given by (1.19). Then, for any \(f\in BW_{\infty }^{n}\), from (2.1) it follows that
From (2.33) it follows that
From (1.1) and (2.34) we conclude that
On the other hand, let \(\Delta := \{a= x_{1}< x_{2}<\cdots <x_{r}= b,\alpha _{i}\in \mathbb{N},n=\sum_{i=1}^{r}\alpha _{i}\}\) be an arbitrary Hermite interpolation system of cardinality n including the endpoints. Consider the function \(g(x)=\frac{x^{n}}{n!}\). Then, \(g\in W_{\infty }^{n}\) and (2.13) holds. From (1.1), (2.13), (1.5) and (1.6) it follows that
From (2.35) and (2.36) as well as (1.2) we obtain the result of (2). Theorem 1.2 is proved. □
Using the fact that \(BC^{n}\subset BW_{\infty }^{n}\) and \(g(x)=\frac{x^{n}}{n!}\in BC^{n}\) for \(n\in \mathbb{N}\), combining the proof of Theorem 1.2, we obtained the following results.
Corollary 2.4
-
(1)
Let \(p= \infty \) and \(n>2\). Then, we have
$$ \overline{e}\bigl(n,BC^{n}, L_{\infty }\bigr) =e \bigl(BC^{n}, L_{{\Delta ^{*}_{n, \infty }}}, L_{\infty }\bigr)= \frac{(b-a)^{n}}{ (\cos \frac{\pi }{2n} )^{n}2^{2n-1}n!},$$where \(\Delta ^{*}_{n,\infty }\) is given by (1.17).
-
(2)
Let \(1\le p< \infty \), \(n>2\) and assume that \(\omega (x)> 0\) is continuous-integrable on \((a,b)\). Then, we have
$$ \overline{e}\bigl(n,BC^{n}, L_{p,\omega }\bigr) =e \bigl(BC^{n}, L_{\Delta ^{*}_{n,p, \omega }}, L_{p,\omega }\bigr)= \frac{E_{n-2,p,\overline{\omega }}}{n!},$$where ω̅ and \(\Delta ^{*}_{n,p,\omega }\) are given by (1.19).
Remark 2.5
When \(n\ne r\), the nth optimal Hermite interpolation system of the problems given by (1.2) and (1.15) for \(BW_{\infty }^{r}\) in \(L_{\infty }\) and \(L_{p,\omega }\) (\(1\le p<\infty \)) are open problems.
Remark 2.6
When \(n= r\), the nth optimal Birkhoff interpolation system of the problems given by (1.2) and (1.15) for \(BW_{\infty }^{n}\) in \(L_{\infty }\) and \(L_{p,\omega }\) (\(1\le p<\infty \)) are open problems.
3 Some examples
Example 1
Let \(\omega (x)=1\), \([a,b]=[-1,1]\). Then for \(1\le p< \infty \) we obtain the usual \(L_{p}\equiv L_{p}[-1,1]\) spaces. For \(p=1\), it follows from [4, pp. 87–88] that
where \(U_{n}\) is the nth Chebyshev polynomial of the second kind, i.e.,
From Theorem 1.1 it follows that
where \(\Delta _{n,1,1}= \{\cos \frac{n\pi }{n+1},\cos \frac{(n-1)\pi }{n+1},\ldots ,\cos \frac{\pi }{n+1} \}\).
Example 2
Let \(p=2\). In this case, for any continuous-integrable weight function \(\omega (x)> 0\) on \((a,b)\), there is a unique orthogonal system \(\{p_{k,\omega }\}_{k\in \mathbb{Z}_{+}}\) in \(L_{2,\omega }\) that is complete and satisfies the following conditions:
-
(1)
\(p_{k,\omega }\in \mathcal{P}_{k}\) for all \(k\in \mathbb{Z}_{+}\).
-
(2)
$$ \int _{a}^{b}p_{k,\omega }(x)p_{j,\omega }(x) \omega (x)\,dx= \textstyle\begin{cases} 0,&k\ne j; \\ 1,&k=j.\end{cases} $$(3.1)
-
(3)
The coefficient \(C_{k,\omega }\) of the leading term \(x^{k}\) of \(p_{k,\omega }\) is positive.
In this case, similar to (3.18) in [16], we have \(W_{k,2,\omega }=\frac{p_{k,\omega }}{C_{k,\omega }}\) and
Let \(\omega ^{(\alpha ,\beta )}\) be the Jacobi weights, i.e., \(\omega ^{(\alpha ,\beta )}(x)=(1-x)^{\alpha }(1+x)^{\beta }\) with \(\alpha ,\beta > -1\) on \((-1,1)\) and we denote the corresponding orthogonal system as \(\{p_{k}^{(\alpha ,\beta )} \}_{k\in \mathbb{Z}_{+}}\). It is known that the coefficient of the leading term \(x^{k}\) of \(p_{k}^{(\alpha ,\beta )}(x) \) is (see (3.21) in [16])
From Theorem 1.1, (3.2) and (3.3), it follows that
where \(\Delta _{n,2,\omega ^{(\alpha ,\beta )}}\) consists of the zeros of \(p_{n}^{(\alpha ,\beta )}\). From Theorem 1.2, (3.2), (3.3) and (3.4), it follows that for \(n>2\)
where \(\Delta ^{*}_{n,2,\omega ^{(\alpha ,\beta )}}=(-1,\xi _{1,2,\omega ^{( \alpha +2,\beta +2)}},\xi _{2,2,\omega ^{(\alpha +2,\beta +2)}}, \ldots ,\xi _{n-2,2,\omega ^{(\alpha +2,\beta +2)}},1)\), and \(\xi _{1,2,\omega ^{(\alpha +2,\beta +2)}}, \xi _{2,2,\omega ^{( \alpha +2,\beta +2)}}, \ldots ,\xi _{n-2,2,\omega ^{(\alpha +2,\beta +2)}}\) are the zeros of \(p_{n-2}^{(\alpha +2,\beta +2)}\).
Next, we list three examples.
For \(\alpha =\beta =0\), i.e., \(\omega ^{(0, 0)}(x)=1\), we have (see [7, p. 205])
where \(P_{n}\) is the nth Legendre polynomial, i.e.,
From (3.4) it follows that
where \(\Delta _{n,2,1}\) consists of the zeros of \(P_{n}\). Furthermore, from (3.5) and (3.7) it follows that for \(n>2\)
For \(\alpha =\beta =- 1/2\), i.e., \(\omega ^{(-1/2,- 1/2)}(x)=\frac{1}{\sqrt{1-x^{2}}}\), we know \(W_{n,2,\omega ^{(-1/2,- 1/2)}}(x)=\frac{T_{n}(x)}{2^{n-1}}\). From (3.4) it follows that
where \(\Delta _{n,2,\omega ^{(-1/2,-1/2)}}= \{ \cos \frac{(2n-1)\pi }{2n},\cos \frac{(2n-3)\pi }{2n},\ldots ,\cos \frac{\pi }{2n} \} \). Furthermore, from (3.5) and (3.9) it follows that for \(n>2\)
For \(\alpha =\beta = 1/2\), i.e., \(\omega ^{(1/2, 1/2)}(x)=\sqrt{1-x^{2}}\), we know \(W_{n,2,\omega ^{(1/2, 1/2)}}(x)=\frac{U_{n}(x)}{2^{n}}\). From (3.4) it follows that
where \(\Delta _{n,2,\omega ^{(1/2,1/2)}}=\Delta _{n,1,1}\). From (3.5) and (3.10) it follows that for \(n>2\)
Availability of data and materials
Not applicable.
References
Babaev, S.S., Hayotov, A.R.: Optimal interpolation formulas in \(W^{(m,m-1)}_{2}\) space. Calcolo 56, 23–45 (2019)
Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (2000)
Ben, A., Yi, S.: Compressive Hermite interpolation: sparse, high-dimensional approximation from gradient-augmented measurements. Constr. Approx. 50, 167–207 (2019)
Devore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, New York (1993)
Hinrichs, A., Novak, E., Ullrich, M.: On weak tractability of the Clenshaw–Curtis Smolyak algorithm. J. Approx. Theory 183, 31–44 (2014)
Hoang, N.S.: On node distributions for interpolation and spectral methods. Math. Comput. 85, 667–692 (2016)
Kress, R.: Numerical Analysis. Springer, New York (2003)
Liu, Y.P., Xu, G.Q., Zhang, J.: Exponential convergence of an approximation problem for infinitely differentiable multivariate functions. Math. Notes 103, 769–779 (2018)
Mastroianni, G., Occorsio, D.: Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey. J. Comput. Appl. Math. 134, 325–341 (2001)
Peng, J., Hampton, J., Doostan, A.: On polynomial chaos expansion via gradient-enhanced \(\ell _{1}\) minimization. J. Comput. Phys. 310, 440–458 (2016)
Rack, H.J., Vajda, R.: On optimal quadratic Lagrange interpolation: extremal node systems with minimal Lebesgue constant via symbolic computation. Serdica J. Comput. 8, 71–96 (2014)
Rack, H.J., Vajda, R.: Optimal cubic Lagrange interpolation: extremal node systems with minimal Lebesgue constant. Stud. Univ. Babeş–Bolyai, Math. 60(2), 151–171 (2015)
Vybíral, J.: Weak and quasi-polynomial tractability of approximation of infinitely differentiable functions. J. Complex. 30, 48–55 (2014)
Wasilkowski, G.W.: Tractability of approximation of ∞-variate functions with bounded mixed partial derivatives. J. Complex. 30, 325–346 (2014)
Xu, G.Q.: On weak tractability of the Smolyak algorithm for approximation problems. J. Approx. Theory 192, 347–361 (2015)
Xu, G.Q., Wang, H.: Sample numbers and optimal Lagrange interpolation in Sobolev spaces. Rocky Mt. J. Math. 51(1), 347–361 (2021)
Acknowledgements
Not applicable.
Authors’ information
Xu Guiqiao, male, professor, the winner of THE 2020 JOSEPH F. TRAUB PRIZE FOR ACHIEVEMENT IN INFORMATION-BASED COMPLEXITY. Yu Xiaochen, female, postgraduate.
Funding
This work was supported by the National Natural Science Foundation of China (11871006, 11671271).
Author information
Authors and Affiliations
Contributions
XG constructed the outline of the paper, YX completed the details of the paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Xu, G., Yu, X. A note on optimal Hermite interpolation in Sobolev spaces. J Inequal Appl 2022, 7 (2022). https://doi.org/10.1186/s13660-021-02741-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-021-02741-5