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Abstract. In this paper, the first kind of Chebyshev interpolation in the Wiener 
space are discussed. under the pL  norm, the convergence properties of 

Chebyshev interpolation polynomials base on the zeros of the Chebyshev 
polynomials are proved. Furthermore, the estimation for the average error of the 
first kind of Chebyshev interpolation polynomials are weakly equivalent to the 
average errors of the corresponding best polynomial approximation. while 

4p = ,the weakly asypmtotic order 4
4( , ) 1 /ne H G n≈  of the average 

error in the Wiener space is obtained. 
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1 Introduction 

Let F be a real separable Banach space equipped with a probability measures μ  on 

the Borelsets of F. Let G  be another normed space such that F  is continuously 

embedded in G  By •  we denote the norm in G . Any :A F G→  such 

that ( )f f A f−  is a measurable mapping called an approximation operator 

(or just approximation). The average error of A is defined as 
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Since the target function in practical problems is usually given by its(exact or noisy) 
values at finitely many points, the approximation operator ( )A f  is often considered 

depending on some function values about f  only. Many papers such as [1], [2] 

studied the complexity of computing an ε-approximation in average case setting. 
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Papers [3], [4] obtained the weak asymptotic order of the average error of Lagrange 
interpolation and Hermite-Fej´er interpolation in the Wiener space. 

In this paper, we will show an estimation of the average error (in the 2L norm− ) 

of Chebyshev polynomial of the first kind in the Wiener space when 4p = . Now 

we turn to show the result.     
Let X  be the space of continuous function f defined on [0,1]  such that 

(0) 0f = . The space X  is equipped with the sup norm. The Wiener measure ω is 

uniquely defined by the following property 
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 (1.2) 

For every 10 210 ≤<<<<= ntttt with 0 0u =  and )(,1 nBn ℜΒ∈≥ , in 

which ( )nΒ ℜ  is the class of all Borel subsets of nℜ . It follows from [1] that: 

1 2 1 2 1 2( ) ( ) ( ) min{ , }, , [0,1]
X

f x f x ud f x x x x= ∀ ∈  (1.3) 

Let { [ 1,1] : ( ) (2 1) }F f C g t f t X= ∈ − = − ∈  and for every measurable subset 

A F⊂ , we define  

{ }):)12()(()( AftftgA ∈−== ωμ  (1.4) 

Where 1 p≤ ≤ ∞ , let [ 1,1]pG −  be the linear normed space of all 

intpL egrable−  functions f  on [ 1,1]−  with the following finite norm 
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Let cos , 1, 2,
1k nk

k
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 be the zeros of ( ) cos ,nT x nθ=  

cosx θ=  which is the n-th degree Chebyshev polynomial of the first kind. The 
Chebyshev interpolation polynomial based on the zeros above is as follows 


