Abstract
Given a graph G together with a capacity function c : V(G) →ℕ, we call S ⊆ V(G) a capacitated dominating set if there exists a mapping f: (V(G) ∖ S) →S which maps every vertex in (V(G) ∖ S) to one of its neighbors such that the total number of vertices mapped by f to any vertex v ∈ S does not exceed c(v). In the Planar Capacitated Dominating Set problem we are given a planar graph G, a capacity function c and a positive integer k and asked whether G has a capacitated dominating set of size at most k. In this paper we show that Planar Capacitated Dominating Set is W[1]-hard, resolving an open problem of Dom et al. [IWPEC, 2008 ]. This is the first bidimensional problem to be shown W[1]-hard. Thus Planar Capacitated Dominating Set can become a useful starting point for reductions showing parameterized intractablility of planar graph problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs. Algorithmica 33(4), 46–493 (2002)
Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52(6), 866–893 (2005)
Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated Domination and Covering: A Parameterized Perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)
Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized Complexity of Coloring Problems: Treewidth versus Vertex Cover. In: TAMC 2009. LNCS, vol. 5532, pp. 221–230. Springer, Heidelberg (2009)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and log\(^{\mbox{2}}\) n nondeterministic bits. J. Comput. Syst. Sci. 72(1), 34–71 (2006)
Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: on the price of generality. In: The Proceedings of SODA, pp. 825–834 (2009)
Fomin, F.V., Thilikos, D.M.: Dominating Sets in Planar Graphs: Branch-Width and Exponential Speed-Up. SIAM Journal on Computing 36(2), 281–309 (2006)
Guo, J., Niedermeier, R.: Linear Problem Kernels for NP-Hard Problems on Planar Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bodlaender, H.L., Lokshtanov, D., Penninkx, E. (2009). Planar Capacitated Dominating Set Is W[1]-Hard. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-11269-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11268-3
Online ISBN: 978-3-642-11269-0
eBook Packages: Computer ScienceComputer Science (R0)