Nothing Special   »   [go: up one dir, main page]

Skip to main content

Planar Capacitated Dominating Set Is W[1]-Hard

  • Conference paper
Parameterized and Exact Computation (IWPEC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5917))

Included in the following conference series:

Abstract

Given a graph G together with a capacity function c : V(G) →ℕ, we call S ⊆ V(G) a capacitated dominating set if there exists a mapping f: (V(G) ∖ S) →S which maps every vertex in (V(G) ∖ S) to one of its neighbors such that the total number of vertices mapped by f to any vertex v ∈ S does not exceed c(v). In the Planar Capacitated Dominating Set problem we are given a planar graph G, a capacity function c and a positive integer k and asked whether G has a capacitated dominating set of size at most k. In this paper we show that Planar Capacitated Dominating Set is W[1]-hard, resolving an open problem of Dom et al. [IWPEC, 2008 ]. This is the first bidimensional problem to be shown W[1]-hard. Thus Planar Capacitated Dominating Set can become a useful starting point for reductions showing parameterized intractablility of planar graph problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs. Algorithmica 33(4), 46–493 (2002)

    Article  MathSciNet  Google Scholar 

  2. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)

    Article  MathSciNet  Google Scholar 

  3. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52(6), 866–893 (2005)

    Article  MathSciNet  Google Scholar 

  4. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated Domination and Covering: A Parameterized Perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  6. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized Complexity of Coloring Problems: Treewidth versus Vertex Cover. In: TAMC 2009. LNCS, vol. 5532, pp. 221–230. Springer, Heidelberg (2009)

    Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  9. Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and log\(^{\mbox{2}}\) n nondeterministic bits. J. Comput. Syst. Sci. 72(1), 34–71 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: on the price of generality. In: The Proceedings of SODA, pp. 825–834 (2009)

    Google Scholar 

  11. Fomin, F.V., Thilikos, D.M.: Dominating Sets in Planar Graphs: Branch-Width and Exponential Speed-Up. SIAM Journal on Computing 36(2), 281–309 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, J., Niedermeier, R.: Linear Problem Kernels for NP-Hard Problems on Planar Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodlaender, H.L., Lokshtanov, D., Penninkx, E. (2009). Planar Capacitated Dominating Set Is W[1]-Hard. In: Chen, J., Fomin, F.V. (eds) Parameterized and Exact Computation. IWPEC 2009. Lecture Notes in Computer Science, vol 5917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11269-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11269-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11268-3

  • Online ISBN: 978-3-642-11269-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics