Nothing Special   »   [go: up one dir, main page]

Skip to main content

Capacitated Domination and Covering: A Parameterized Perspective

  • Conference paper
Parameterized and Exact Computation (IWPEC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5018))

Included in the following conference series:

  • 761 Accesses

Abstract

Capacitated versions of Vertex Cover and Dominating Set have been studied intensively in terms of polynomial time approximation algorithms. Although the problems Dominating Set and Vertex Cover have been subjected to considerable scrutiny in the parameterized complexity world, this is not true for their capacitated versions. Here we make an attempt to understand the behavior of the problems Capacitated Dominating Set and Capacitated Vertex Cover from the perspective of parameterized complexity.

The original, uncapacitated versions of these problems, Vertex Cover and Dominating Set, are known to be fixed parameter tractable when parameterized by a structure of the graph called the treewidth (tw). In this paper we show that the capacitated versions of these problems behave differently. Our results are:

Capacitated Dominating Set is W1-hard when parameterized by treewidth. In fact, Capacitated Dominating Set is W1-hard when parameterized by both treewidth and solution size k of the capacitated dominating set.

– Capacitated Vertex Cover is W1-hard when parameterized by treewidth.

– Capacitated Vertex Cover can be solved in time 2O(tw logk) n O(1) where tw is the treewidth of the input graph and k is the solution size. As a corollary, we show that the weighted version of Capacitated Vertex Cover in general graphs can be solved in time 2O(k logk) n O(1). This improves the earlier algorithm of Guo et al. [15] running in time \(O(1.2^{k^2}+n^2)\). Capacitated Vertex Cover is, therefore, to our knowledge the first known “subset problem” which has turned out to be fixed parameter tractable when parameterized by solution size but W1-hard when parameterized by treewidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for DOMINATING SET and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)

    MathSciNet  Google Scholar 

  3. Bläser, M.: Computing small partial coverings. Inf. Process. Lett. 85(6), 327–331 (2003)

    Article  Google Scholar 

  4. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for Vertex Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Chuzhoy, J., Naor, J.: Covering problems with hard capacities. SIAM J. Comput. 36(2), 498–515 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52(6), 866–893 (2005)

    MathSciNet  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  8. Duh, R., Fürer, M.: Approximation of k-Set Cover by semi-local optimization. In: Proc. 29th STOC, pp. 256–264. ACM Press, New York (1997)

    Google Scholar 

  9. Feige, U.: A threshold of ln n for approximating Set Cover. J. ACM 45(4), 634–652 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  11. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved approximation algorithm for Vertex Cover with hard capacities. J. Comput. System Sci. 72(1), 16–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. J. Algorithms 48(1), 257–270 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of Vertex Cover variants. Theory Comput. Syst. 41(3), 501–520 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  17. Lovàsz, L.: On the ratio of optimal fractional and integral covers. Discrete Math. 13, 383–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: Improved algorithms for Connected Vertex Cover and Tree Cover. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 270–280. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Moser, H.: Exact algorithms for generalizations of Vertex Cover. Diploma thesis, Institut für Informatik, Friedrich-Schiller Universität Jena (2005)

    Google Scholar 

  20. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  21. Nishimura, N., Ragde, P., Thilikos, D.M.: Fast fixed-parameter tractable algorithms for nontrivial generalizations of Vertex Cover. Discrete Appl. Math. 152(1–3), 229–245 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica (to appear, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Grohe Rolf Niedermeier

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y. (2008). Capacitated Domination and Covering: A Parameterized Perspective. In: Grohe, M., Niedermeier, R. (eds) Parameterized and Exact Computation. IWPEC 2008. Lecture Notes in Computer Science, vol 5018. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79723-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79723-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79722-7

  • Online ISBN: 978-3-540-79723-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics