Abstract
This paper presents a proof of concept for symbolic and numeric methods dedicated to the parameter estimation problem for models formulated by means of nonlinear integro-differential equations (IDE). In particular, we address: the computation of the model input-output equation and the numerical integration of IDE systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Butcher tableaux were introduced by Butcher in [16] to provide a compact description of “Runge-Kutta methods”. To each tableau is associated a number of stages (customarily denoted s) and an order (customarily denoted p). The computational cost of a Runge-Kutta method increases with the number of stages. The efficiency increases with the order. The coefficients of the tableaux are denoted \(c_i\) (the leftmost column), \(b_j\) (the bottom row) and \(a_{i,j}\) (the matrix).
References
Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symb. Comput. 47(10), 1233–1266 (2012)
Bavula, V.V.: The algebra of integro-differential operators on a polynomial algebra. J. Lond. Math. Soc. 83(2), 517–543 (2011)
Bavula, V.V.: The algebra of integro-differential operators on an affine line and its modules. J. Pure Appl. Algebra 17(3), 495–529 (2013)
Bavula, V.V.: The algebra of polynomial integro-differential operators is a holonomic bimodule over the subalgebra of polynomial differential operators. Algebras Represent. Theory 17(1), 275–288 (2014)
Boulier, F., et al.: BLINEIDE. http://cristal.univ-lille.fr/~boulier/BLINEIDE
Boulier, F., Lemaire, F.: A normal form algorithm for regular differential chains. Math. Comput. Sci. 4(2), 185–201 (2010). https://doi.org/10.1007/s11786-010-0060-3
Boulier, F., Cheb-Terrab, E.: DifferentialAlgebra. Package of MapleSoft MAPLE Standard Library Since MAPLE 14 (2008)
Boulier, F., Korporal, A., Lemaire, F., Perruquetti, W., Poteaux, A., Ushirobira, R.: An algorithm for converting nonlinear differential equations to integral equations with an application to parameter estimation from noisy data. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 28–43. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10515-4_3
Boulier, F., Lallemand, J., Lemaire, F., Regensburger, G., Rosenkranz, M.: Additive normal forms and integration of differential fractions. J. Symb. Comput. 77, 16–38 (2016)
Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: ISSAC 1995: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 158–166. ACM Press, New York (1995). http://hal.archives-ouvertes.fr/hal-00138020
Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput. 20(1), 73–121 (2009). (1997 Technical report IT306 of the LIFL). https://doi.org/10.1007/s00200-009-0091-7
Boulier, F., Lemaire, F., Moreno Maza, M.: Computing differential characteristic sets by change of ordering. J. Symb. Comput. 45(1), 124–149 (2010). https://doi.org/10.1016/j.jsc.2009.09.04
Boulier, F., Lemaire, F., Moreno Maza, M., Poteaux, A.: An equivalence theorem for regular differential chains. J. Symb. Comput. (2018, to appear)
Boulier, F., Lemaire, F., Rosenkranz, M., Ushirobira, R., Verdière, N.: On symbolic approaches to integro-differential equations. In: Advances in Delays and Dynamics. Springer (2017). https://hal.archives-ouvertes.fr/hal-01367138
Brunner, H., van der Hoeven, P.J.: The Numerical Solution of Volterra Equations. North-Holland, Amsterdam (1986)
Butcher, J.C.: On Runge-Kutta processes of high order. J. Austral. Math. Soc. IV, Part 2 4, 179–194 (1964)
Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: System identifiability (symbolic computation) and parameter estimation (numerical computation). Numer. Algorithms 34, 282–292 (2003)
Feldstein, A., Sopka, J.R.: Numerical methods for nonlinear Volterra integro-differential equations. SIAM J. Numer. Anal. 11(4), 826–846 (1974)
Gao, X., Guo, L.: Constructions of free commutative integro-differential algebras. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds.) AADIOS 2012. LNCS, vol. 8372, pp. 1–22. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54479-8_1
Guo, L., Regensburger, G., Rosenkranz, M.: On integro-differential algebras. J. Pure Appl. Algebra 218(3), 456–473 (2014)
Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Computational Mathematics, vol. 8, 2nd edn. Springer, New York (1993)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Computational Mathematics, vol. 14, 2nd edn. Springer, New York (1996)
Jerri, A.J.: Introduction to Integral Equations with Applications. Monographs and Textbooks in Pure and Applied Mathematics, vol. 93. Marcel Dekker Inc., New York (1985)
Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology. Interdisciplinary Applied Mathematics, vol. 8/I, 2nd edn. Springer, New York (2010)
Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)
Kostitzin, V.A.: Biologie Mathématique. Armand Colin (1937). (with a foreword by Vito Volterra)
Ljung, L., Glad, S.T.: On global identifiability for arbitrary model parametrisations. Automatica 30, 265–276 (1994)
Mansfield, E.L.: Differential Gröbner bases. Ph.D. thesis, University of Sydney, Australia (1991)
Moulay, D., Verdière, N., Denis-Vidal, L.: Identifiability of parameters in an epidemiologic model modeling the transmission of the Chikungunya. In: Proceedings of the 9ème Conférence Internationale de Modélisation, Optimisation et SIMulation (2012)
Ollivier, F.: Le problème de l’identifiabilité structurelle globale: approche théorique, méthodes effectives et bornes de complexité. Ph.D. thesis, École Polytechnique, Palaiseau, France (1990)
Paulsson, J., Elf, J.: Stochastic modeling of intracellular kinetics. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 149–175. The MIT Press, Cambridge (2006)
Pavé, A.: Modeling Living Systems: From Cell to Ecosystem. ISTE/Wiley, Hoboken (2012)
Quadrat, A., Regensburger, G.: Polynomial solutions and annihilators of ordinary integro-differential operators. In: IFAC Proceedings, vol. 46, no. 2, pp. 308–313 (2013)
Reid, G.J., Wittkopf, A.D., Boulton, A.: Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. Appl. Math. 7(6), 635–666 (1996)
Ritt, J.F.: Differential Algebra, American Mathematical Society Colloquium Publications, vol. 33. American Mathematical Society, New York (1950)
Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators. In: Jeffrey, D. (ed.) ISSAC 2008: Proceedings of the 2008 International Symposium on Symbolic and Algebraic Computation. ACM Press (2008)
Shampine, L.F., Thompson, S.: Solving DDEs in MATLAB. Appl. Numer. Math. 37, 441–458 (2001)
Sofroniou, M.: Order stars and linear stability theory. J. Symb. Comput. 21, 101–131 (1996)
Verdière, N., Denis-Vidal, L., Joly-Blanchard, G.: A new method for estimating derivatives based on a distribution approach. Numer. Algorithms 61, 163–186 (2012)
Verdière, N., Denis-Vidal, L., Joly-Blanchard, G., Domurado, D.: Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor. Int. J. Appl. Math. Comput. Sci. 15(4), 517–526 (2005)
Wikipedia, the Free Encyclopedia: Delay Differential Equations. https://en.wikipedia.org/wiki/Delay_differential_equation
Zhu, S.: Modeling, identifiability analysis and parameter estimation of a spatial-transmission model of Chikungunya in a spatially continuous domain. Ph.D. thesis, Université de Technologie de Compiègne, Compiègne, France (2017)
Acknowledgment
This work has been supported by the bilateral project ANR-17-CE40-0036 and DFG-391322026 SYMBIONT.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Boulier, F. et al. (2018). Symbolic-Numeric Methods for Nonlinear Integro-Differential Modeling. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2018. Lecture Notes in Computer Science(), vol 11077. Springer, Cham. https://doi.org/10.1007/978-3-319-99639-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-99639-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99638-7
Online ISBN: 978-3-319-99639-4
eBook Packages: Computer ScienceComputer Science (R0)