Nothing Special   »   [go: up one dir, main page]

Skip to main content

Symbolic-Numeric Methods for Nonlinear Integro-Differential Modeling

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2018)

Abstract

This paper presents a proof of concept for symbolic and numeric methods dedicated to the parameter estimation problem for models formulated by means of nonlinear integro-differential equations (IDE). In particular, we address: the computation of the model input-output equation and the numerical integration of IDE systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Butcher tableaux were introduced by Butcher in [16] to provide a compact description of “Runge-Kutta methods”. To each tableau is associated a number of stages (customarily denoted s) and an order (customarily denoted p). The computational cost of a Runge-Kutta method increases with the number of stages. The efficiency increases with the order. The coefficients of the tableaux are denoted \(c_i\) (the leftmost column), \(b_j\) (the bottom row) and \(a_{i,j}\) (the matrix).

References

  1. Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symb. Comput. 47(10), 1233–1266 (2012)

    Article  Google Scholar 

  2. Bavula, V.V.: The algebra of integro-differential operators on a polynomial algebra. J. Lond. Math. Soc. 83(2), 517–543 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bavula, V.V.: The algebra of integro-differential operators on an affine line and its modules. J. Pure Appl. Algebra 17(3), 495–529 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bavula, V.V.: The algebra of polynomial integro-differential operators is a holonomic bimodule over the subalgebra of polynomial differential operators. Algebras Represent. Theory 17(1), 275–288 (2014)

    Article  MathSciNet  Google Scholar 

  5. Boulier, F., et al.: BLINEIDE. http://cristal.univ-lille.fr/~boulier/BLINEIDE

  6. Boulier, F., Lemaire, F.: A normal form algorithm for regular differential chains. Math. Comput. Sci. 4(2), 185–201 (2010). https://doi.org/10.1007/s11786-010-0060-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Boulier, F., Cheb-Terrab, E.: DifferentialAlgebra. Package of MapleSoft MAPLE Standard Library Since MAPLE 14 (2008)

    Google Scholar 

  8. Boulier, F., Korporal, A., Lemaire, F., Perruquetti, W., Poteaux, A., Ushirobira, R.: An algorithm for converting nonlinear differential equations to integral equations with an application to parameter estimation from noisy data. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 28–43. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10515-4_3

    Chapter  Google Scholar 

  9. Boulier, F., Lallemand, J., Lemaire, F., Regensburger, G., Rosenkranz, M.: Additive normal forms and integration of differential fractions. J. Symb. Comput. 77, 16–38 (2016)

    Article  MathSciNet  Google Scholar 

  10. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: ISSAC 1995: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 158–166. ACM Press, New York (1995). http://hal.archives-ouvertes.fr/hal-00138020

  11. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput. 20(1), 73–121 (2009). (1997 Technical report IT306 of the LIFL). https://doi.org/10.1007/s00200-009-0091-7

  12. Boulier, F., Lemaire, F., Moreno Maza, M.: Computing differential characteristic sets by change of ordering. J. Symb. Comput. 45(1), 124–149 (2010). https://doi.org/10.1016/j.jsc.2009.09.04

    Article  MathSciNet  MATH  Google Scholar 

  13. Boulier, F., Lemaire, F., Moreno Maza, M., Poteaux, A.: An equivalence theorem for regular differential chains. J. Symb. Comput. (2018, to appear)

    Google Scholar 

  14. Boulier, F., Lemaire, F., Rosenkranz, M., Ushirobira, R., Verdière, N.: On symbolic approaches to integro-differential equations. In: Advances in Delays and Dynamics. Springer (2017). https://hal.archives-ouvertes.fr/hal-01367138

  15. Brunner, H., van der Hoeven, P.J.: The Numerical Solution of Volterra Equations. North-Holland, Amsterdam (1986)

    Google Scholar 

  16. Butcher, J.C.: On Runge-Kutta processes of high order. J. Austral. Math. Soc. IV, Part 2 4, 179–194 (1964)

    Article  MathSciNet  Google Scholar 

  17. Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: System identifiability (symbolic computation) and parameter estimation (numerical computation). Numer. Algorithms 34, 282–292 (2003)

    Article  MathSciNet  Google Scholar 

  18. Feldstein, A., Sopka, J.R.: Numerical methods for nonlinear Volterra integro-differential equations. SIAM J. Numer. Anal. 11(4), 826–846 (1974)

    Article  MathSciNet  Google Scholar 

  19. Gao, X., Guo, L.: Constructions of free commutative integro-differential algebras. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds.) AADIOS 2012. LNCS, vol. 8372, pp. 1–22. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54479-8_1

    Chapter  Google Scholar 

  20. Guo, L., Regensburger, G., Rosenkranz, M.: On integro-differential algebras. J. Pure Appl. Algebra 218(3), 456–473 (2014)

    Article  MathSciNet  Google Scholar 

  21. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Computational Mathematics, vol. 8, 2nd edn. Springer, New York (1993)

    MATH  Google Scholar 

  22. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Computational Mathematics, vol. 14, 2nd edn. Springer, New York (1996)

    MATH  Google Scholar 

  23. Jerri, A.J.: Introduction to Integral Equations with Applications. Monographs and Textbooks in Pure and Applied Mathematics, vol. 93. Marcel Dekker Inc., New York (1985)

    MATH  Google Scholar 

  24. Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology. Interdisciplinary Applied Mathematics, vol. 8/I, 2nd edn. Springer, New York (2010)

    MATH  Google Scholar 

  25. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)

    MATH  Google Scholar 

  26. Kostitzin, V.A.: Biologie Mathématique. Armand Colin (1937). (with a foreword by Vito Volterra)

    Google Scholar 

  27. Ljung, L., Glad, S.T.: On global identifiability for arbitrary model parametrisations. Automatica 30, 265–276 (1994)

    Article  Google Scholar 

  28. Mansfield, E.L.: Differential Gröbner bases. Ph.D. thesis, University of Sydney, Australia (1991)

    Google Scholar 

  29. Moulay, D., Verdière, N., Denis-Vidal, L.: Identifiability of parameters in an epidemiologic model modeling the transmission of the Chikungunya. In: Proceedings of the 9ème Conférence Internationale de Modélisation, Optimisation et SIMulation (2012)

    Google Scholar 

  30. Ollivier, F.: Le problème de l’identifiabilité structurelle globale: approche théorique, méthodes effectives et bornes de complexité. Ph.D. thesis, École Polytechnique, Palaiseau, France (1990)

    Google Scholar 

  31. Paulsson, J., Elf, J.: Stochastic modeling of intracellular kinetics. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 149–175. The MIT Press, Cambridge (2006)

    Chapter  Google Scholar 

  32. Pavé, A.: Modeling Living Systems: From Cell to Ecosystem. ISTE/Wiley, Hoboken (2012)

    Book  Google Scholar 

  33. Quadrat, A., Regensburger, G.: Polynomial solutions and annihilators of ordinary integro-differential operators. In: IFAC Proceedings, vol. 46, no. 2, pp. 308–313 (2013)

    Google Scholar 

  34. Reid, G.J., Wittkopf, A.D., Boulton, A.: Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. Appl. Math. 7(6), 635–666 (1996)

    Article  MathSciNet  Google Scholar 

  35. Ritt, J.F.: Differential Algebra, American Mathematical Society Colloquium Publications, vol. 33. American Mathematical Society, New York (1950)

    Google Scholar 

  36. Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators. In: Jeffrey, D. (ed.) ISSAC 2008: Proceedings of the 2008 International Symposium on Symbolic and Algebraic Computation. ACM Press (2008)

    Google Scholar 

  37. Shampine, L.F., Thompson, S.: Solving DDEs in MATLAB. Appl. Numer. Math. 37, 441–458 (2001)

    Article  MathSciNet  Google Scholar 

  38. Sofroniou, M.: Order stars and linear stability theory. J. Symb. Comput. 21, 101–131 (1996)

    Article  MathSciNet  Google Scholar 

  39. Verdière, N., Denis-Vidal, L., Joly-Blanchard, G.: A new method for estimating derivatives based on a distribution approach. Numer. Algorithms 61, 163–186 (2012)

    Article  MathSciNet  Google Scholar 

  40. Verdière, N., Denis-Vidal, L., Joly-Blanchard, G., Domurado, D.: Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor. Int. J. Appl. Math. Comput. Sci. 15(4), 517–526 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Wikipedia, the Free Encyclopedia: Delay Differential Equations. https://en.wikipedia.org/wiki/Delay_differential_equation

  42. Zhu, S.: Modeling, identifiability analysis and parameter estimation of a spatial-transmission model of Chikungunya in a spatially continuous domain. Ph.D. thesis, Université de Technologie de Compiègne, Compiègne, France (2017)

    Google Scholar 

Download references

Acknowledgment

This work has been supported by the bilateral project ANR-17-CE40-0036 and DFG-391322026 SYMBIONT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Boulier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boulier, F. et al. (2018). Symbolic-Numeric Methods for Nonlinear Integro-Differential Modeling. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2018. Lecture Notes in Computer Science(), vol 11077. Springer, Cham. https://doi.org/10.1007/978-3-319-99639-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99639-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99638-7

  • Online ISBN: 978-3-319-99639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics