Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Algorithm for Converting Nonlinear Differential Equations to Integral Equations with an Application to Parameter Estimation from Noisy Data

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2014)

Abstract

This paper provides a contribution to the parameter estimation methods for nonlinear dynamical systems. In such problems, a major issue is the presence of noise in measurements. In particular, most methods based on numerical estimates of derivations are very noise sensitive. An improvement consists in using integral equations, acting as noise filtering, rather than differential equations. Our contribution is a pair of algorithms for converting fractions of differential polynomials to integral equations. These algorithms rely on an improved version of a recent differential algebra algorithm. Their usefulness is illustrated by an application to the problem of estimating the parameters of a nonlinear dynamical system, from noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boulier, F.: http://www.lifl.fr/~boulier/BLAD (2004)

  2. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. AAECC 20(1), 73–121 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boulier, F., Lemaire, F., Regensburger, G., Rosenkranz, M.: On the Integration of Differential Fractions. In: ISSAC 2013, pp. 101–108. ACM, New York (2013)

    Google Scholar 

  4. Bronstein, M.: Symbolic Integration I. Springer (1997)

    Google Scholar 

  5. Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: System identifiability (symbolic computation) and parameter estimation (numerical computation). Numerical Algorithms 34, 282–292 (2003)

    Article  MathSciNet  Google Scholar 

  6. Fliess, M., Join, C., Sira-Ramírez, H.: Non-linear estimation is easy. Int. J. Modelling Identification and Control 4(1), 12–27 (2008)

    Article  Google Scholar 

  7. Fliess, M., Mboup, M., Mounier, H., Sira-Ramírez, H.: Questioning some paradigms of signal processing via concrete examples. In: Silva-Navarro, G., Sira-Ramírez, H. (eds.) Algebraic Methods in Flatness, Signal Processing and State Estimation, pp. 1–21. Editiorial Lagares (2003)

    Google Scholar 

  8. Fliess, M., Sira-Ramírez, H.: An algebraic framework for linear identification. ESAIM Control Optim. Calc. Variat. 9, 151–168 (2003)

    Article  MATH  Google Scholar 

  9. Fliess, M., Sira-Ramírez, H.: Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques. In: Identification of Continuous-Time Models from Sampled Data. Advances in Industrial Control, pp. 362–391 (2008)

    Google Scholar 

  10. Gao, X., Guo, L.: Constructions of Free Commutative Integro-Differential Algebras. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds.) AADIOS 2012. LNCS, vol. 8372, pp. 1–22. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  11. Godfrey, K.R.: The identifiability of parameters of models used in biomedicine. Mathematical Modelling 7(9-12), 1195–1214 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, L., Regensburger, G., Rosenkranz, M.: On integro-differential algebras. JPAA 218(3), 456–473 (2014)

    MATH  MathSciNet  Google Scholar 

  13. Hairer, E.: Homepage, http://www.unige.ch/~hairer (2000)

  14. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)

    MATH  Google Scholar 

  15. Mboup, M.: Parameter estimation for signals described by differential equations. Applicable Analysis 88, 29–52 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Noiret, C.: Utilisation du calcul formel pour l’identifiabilité de modèles paramétriques et nouveaux algorithmes en estimation de paramètres. PhD thesis, Université de Technologie de Compiègne (2000)

    Google Scholar 

  17. Pearson, A.E.: Explicit parameter identification for a class of nonlinear input/output differential operator models. In: Proceedings of the 31st IEEE Conference on Decision and Control, vol. 4, pp. 3656–3660 (1992)

    Google Scholar 

  18. Ritt, J.F.: Differential Algebra. American Mathematical Society Colloquium Publications, vol. 33. AMS, New York (1950)

    MATH  Google Scholar 

  19. Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators. In: ISSAC 2008, pp. 261–268. ACM, New York (2008)

    Google Scholar 

  20. Shinbrot, M.: On the analysis of linear and nonlinear dynamical systems from transient-response data. NACA, Washington, D.C (1954)

    Google Scholar 

  21. The Ametista Group (2013), http://www.lifl.fr/Ametista

  22. Ushirobira, R., Perruquetti, W., Mboup, M., Fliess, M.: Algebraic parameter estimation of a multi-sinusoidal waveform signal from noisy data. In: European Control Conference, Zurich (April 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Boulier, F., Korporal, A., Lemaire, F., Perruquetti, W., Poteaux, A., Ushirobira, R. (2014). An Algorithm for Converting Nonlinear Differential Equations to Integral Equations with an Application to Parameter Estimation from Noisy Data. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics