Abstract
This paper presents a new algorithm for computing the normal form of a differential rational fraction modulo differential ideals presented by regular differential chains. An application to the computation of power series solutions is presented and illustrated with the new DifferentialAlgebra MAPLE package.
Similar content being viewed by others
References
Aubry P., Lazard D., Moreno Maza M.: On the theories of triangular sets. J. Symbolic Comput. 28, 105–124 (1999)
Boulier, F.: Efficient computation of regular differential systems by change of rankings using Kähler differentials. Tech. rep., Université Lille I, 59655, Villeneuve d’Ascq, France, ref. LIFL 1999–14, presented at the MEGA 2000 conference. http://hal.archives-ouvertes.fr/hal-00139738 (1999)
Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. J. AAECC 20(1), 73–121 (2009) (1997 Techrep. IT306 of the LIFL)
Boulier, F., Lemaire, F.: Computing canonical representatives of regular differential ideals. In: ISSAC’00: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, pp. 38–47. ACM Press, New York. http://hal.archives-ouvertes.fr/hal-00139177, 2000
Boulier, F., Lemaire, F.: A computer scientist point of view on Hilbert’s differential theorem of zeros (preprint). http://hal.archives-ouvertes.fr/hal-00170091, 2007
Boulier, F., Lemaire, F., Moreno Maza, M.: Well known theorems on triangular systems and the D 5 principle. In: Proceedings of Transgressive Computing 2006. Granada, Spain, pp. 79–91. http://hal.archives-ouvertes.fr/hal-00137158 (2006)
Buium, A., Cassidy, P.: Differential Algebraic Geometry and Differential Algebraic Groups: From Algebraic Differential Equations To Diophantine Geometry, pp. 567–636. American Mathematical Society, Providence (1998)
Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: Proceedings of EUROCAL85, vol. 2. Vol. 204 of Lecture Notes in Computer Science, pp. 289–290. Springer, Berlin (1985)
Faugère J.-C, Gianni P., Lazard D., Mora T.: Efficient computation of Gröbner bases by change of orderings. J. Symbolic Comput. 16, 329–344 (1993)
Hubert É.: Factorization free decomposition algorithms in differential algebra. J. Symbolic Comput. 29(4,5), 641–662 (2000)
Hubert, É.: Notes on triangular sets and triangulation–decomposition algorithm I: Polynomial Systems. Symbolic and Numerical Scientific Computing 2001, pp. 243–158 (2003)
Hubert, É.: Notes on triangular sets and triangulation–decomposition algorithm II: differential systems. In: Symbolic and Numerical Scientific Computing 2001, pp. 40–87 (2003)
Hubert, É., Le Roux, N.: Computing power series solutions of a nonlinear PDE system. In: Proceedings of ISSAC 2003, Philadelphia, USA, pp. 148–155 (2003)
Knuth D.E.: The Art of Computer Programming, 2nd edn. Addison-Wesley, Boston (1966)
Kolchin E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)
Lemaire, F., Contribution à l’algorithmique en algèbre différentielle. Ph.D. thesis, Université Lille I, 59655, Villeneuve d’Ascq, France (in French) (2002)
Lemaire F.: Les classements les plus généraux assurant l’analycité des systèmes orthonomes pour des conditions initiales analytiques. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Proceedings of Computer Algebra in Scientific computation 2002, pp. 207–219. Institüt für Informatik, Technische Universität München, Yalta (2002)
Moreno Maza, M., Rioboo, R.: Polynomial gcd computations over towers of algebraic extensions. In: Proceedings of AAECC11, pp. 365–382. Springer, Berlin (1995)
Péladan-Germa, A.: Tests effectifs de Nullité dans des extensions d’anneaux différentiels. Ph.D. thesis, École Polytechnique, Palaiseau, France (1997)
Riquier C.: Les systèmes d’équations aux dérivées partielles. Gauthier–Villars, Paris (1910)
Ritt J.F.: Differential Algebra. Dover Publications, New York (1950)
Rosenfeld A.: Specializations in differential algebra. Trans. Amer. Math. Soc. 90, 394–407 (1959)
Rust, C.J., Reid, G.J., Wittkopf, A.D.: Existence and uniqueness theorems for formal power series solutions of analytic differential systems. In: Proceedings of ISSAC 1999, Vancouver, Canada (1999)
Seidenberg A.: An elimination theory for differential algebra. Univ. California Publ. Math. (New Series) 3, 31–65 (1956)
Seidenberg A.: Abstract differential algebra and the analytic case. Proc. Amer. Math. Soc. 9, 159–164 (1958)
Seidenberg A.: Abstract differential algebra and the analytic case II. Proc. Amer. Math. Soc. 23, 689–691 (1969)
Sit, W.: The Ritt–Kolchin theory for differential polynomials. In: Guo, L., Cassidy, P.J., Keigher, W.F., Sit, W.Y. (eds.) Proceedings of the International Workshop: Differential Algebra and Related Topics, pp. 1–70 (2002)
Wang D.: Elimination Practice: Software Tools and Applications. Imperial College Press, London (2003)
Zariski, O., Samuel, P.: Commutative Algebra. Van Nostrand, New York, Also volumes 28 and 29 of the Graduate Texts in Mathematics. Springer, Berlin (1958)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Boulier, F., Lemaire, F. A Normal Form Algorithm for Regular Differential Chains. Math.Comput.Sci. 4, 185–201 (2010). https://doi.org/10.1007/s11786-010-0060-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11786-010-0060-3