Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Normal Form Algorithm for Regular Differential Chains

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

This paper presents a new algorithm for computing the normal form of a differential rational fraction modulo differential ideals presented by regular differential chains. An application to the computation of power series solutions is presented and illustrated with the new DifferentialAlgebra MAPLE package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubry P., Lazard D., Moreno Maza M.: On the theories of triangular sets. J. Symbolic Comput. 28, 105–124 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boulier, F.: Efficient computation of regular differential systems by change of rankings using Kähler differentials. Tech. rep., Université Lille I, 59655, Villeneuve d’Ascq, France, ref. LIFL 1999–14, presented at the MEGA 2000 conference. http://hal.archives-ouvertes.fr/hal-00139738 (1999)

  3. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. J. AAECC 20(1), 73–121 (2009) (1997 Techrep. IT306 of the LIFL)

    Google Scholar 

  4. Boulier, F., Lemaire, F.: Computing canonical representatives of regular differential ideals. In: ISSAC’00: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, pp. 38–47. ACM Press, New York. http://hal.archives-ouvertes.fr/hal-00139177, 2000

  5. Boulier, F., Lemaire, F.: A computer scientist point of view on Hilbert’s differential theorem of zeros (preprint). http://hal.archives-ouvertes.fr/hal-00170091, 2007

  6. Boulier, F., Lemaire, F., Moreno Maza, M.: Well known theorems on triangular systems and the D 5 principle. In: Proceedings of Transgressive Computing 2006. Granada, Spain, pp. 79–91. http://hal.archives-ouvertes.fr/hal-00137158 (2006)

  7. Buium, A., Cassidy, P.: Differential Algebraic Geometry and Differential Algebraic Groups: From Algebraic Differential Equations To Diophantine Geometry, pp. 567–636. American Mathematical Society, Providence (1998)

  8. Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: Proceedings of EUROCAL85, vol. 2. Vol. 204 of Lecture Notes in Computer Science, pp. 289–290. Springer, Berlin (1985)

  9. Faugère J.-C, Gianni P., Lazard D., Mora T.: Efficient computation of Gröbner bases by change of orderings. J. Symbolic Comput. 16, 329–344 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hubert É.: Factorization free decomposition algorithms in differential algebra. J. Symbolic Comput. 29(4,5), 641–662 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hubert, É.: Notes on triangular sets and triangulation–decomposition algorithm I: Polynomial Systems. Symbolic and Numerical Scientific Computing 2001, pp. 243–158 (2003)

  12. Hubert, É.: Notes on triangular sets and triangulation–decomposition algorithm II: differential systems. In: Symbolic and Numerical Scientific Computing 2001, pp. 40–87 (2003)

  13. Hubert, É., Le Roux, N.: Computing power series solutions of a nonlinear PDE system. In: Proceedings of ISSAC 2003, Philadelphia, USA, pp. 148–155 (2003)

  14. Knuth D.E.: The Art of Computer Programming, 2nd edn. Addison-Wesley, Boston (1966)

    Google Scholar 

  15. Kolchin E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)

    MATH  Google Scholar 

  16. Lemaire, F., Contribution à l’algorithmique en algèbre différentielle. Ph.D. thesis, Université Lille I, 59655, Villeneuve d’Ascq, France (in French) (2002)

  17. Lemaire F.: Les classements les plus généraux assurant l’analycité des systèmes orthonomes pour des conditions initiales analytiques. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Proceedings of Computer Algebra in Scientific computation 2002, pp. 207–219. Institüt für Informatik, Technische Universität München, Yalta (2002)

    Google Scholar 

  18. Moreno Maza, M., Rioboo, R.: Polynomial gcd computations over towers of algebraic extensions. In: Proceedings of AAECC11, pp. 365–382. Springer, Berlin (1995)

  19. Péladan-Germa, A.: Tests effectifs de Nullité dans des extensions d’anneaux différentiels. Ph.D. thesis, École Polytechnique, Palaiseau, France (1997)

  20. Riquier C.: Les systèmes d’équations aux dérivées partielles. Gauthier–Villars, Paris (1910)

    Google Scholar 

  21. Ritt J.F.: Differential Algebra. Dover Publications, New York (1950)

    MATH  Google Scholar 

  22. Rosenfeld A.: Specializations in differential algebra. Trans. Amer. Math. Soc. 90, 394–407 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rust, C.J., Reid, G.J., Wittkopf, A.D.: Existence and uniqueness theorems for formal power series solutions of analytic differential systems. In: Proceedings of ISSAC 1999, Vancouver, Canada (1999)

  24. Seidenberg A.: An elimination theory for differential algebra. Univ. California Publ. Math. (New Series) 3, 31–65 (1956)

    MathSciNet  Google Scholar 

  25. Seidenberg A.: Abstract differential algebra and the analytic case. Proc. Amer. Math. Soc. 9, 159–164 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  26. Seidenberg A.: Abstract differential algebra and the analytic case II. Proc. Amer. Math. Soc. 23, 689–691 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sit, W.: The Ritt–Kolchin theory for differential polynomials. In: Guo, L., Cassidy, P.J., Keigher, W.F., Sit, W.Y. (eds.) Proceedings of the International Workshop: Differential Algebra and Related Topics, pp. 1–70 (2002)

  28. Wang D.: Elimination Practice: Software Tools and Applications. Imperial College Press, London (2003)

    Google Scholar 

  29. Zariski, O., Samuel, P.: Commutative Algebra. Van Nostrand, New York, Also volumes 28 and 29 of the Graduate Texts in Mathematics. Springer, Berlin (1958)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Boulier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulier, F., Lemaire, F. A Normal Form Algorithm for Regular Differential Chains. Math.Comput.Sci. 4, 185–201 (2010). https://doi.org/10.1007/s11786-010-0060-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-010-0060-3

Keywords

Navigation