Abstract
A steadily increasing pervasion of the distribution grid with rather small renewable energy resources imposes fluctuating and hardly predictable feed-in and thus calls for new predictive load planning strategies. On the other hand, combined with controllable, shiftable loads and electrical storages, these energy units set up a flexibility potential for fine-grained control. To tap the full potential, distributed control strategies are discussed for scheduling due to the expected large number of controlled entities. Decoder strategies for unit independent algorithm implementation and feasibility assurance had recently been applied to some first optimization approaches for scheduling in smart grid. We extended a distributed particle swarm to harnesses such decoder approach for model independent constraint-handling and achieved a higher accuracy compared with other approaches. A multi swarm is integrated after the island model into a decentralized agent-based solution and compared with an established decentralized approach for predictive scheduling within virtual power plants. We demonstrate the superiority of the particle swarm in terms of achieved solution accuracy and the competitiveness in terms of sent messages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
European Parliament & Council: Directive 2009/28/ec of 23 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/ec and 2003/30/ec, April 2009
Abarrategui, O., Marti, J., Gonzalez, A.: Constructing the active european power grid. In: Proceedings of WCPEE 2009, Cairo (2009)
Nieße, A., Lehnhoff, S., Tröschel, M., Uslar, M., Wissing, C., Appelrath, H.J., Sonnenschein, M.: Market-based self-organized provision of active power and ancillary services. In: Complexity in Engineering (COMPENG). IEEE, June 2012
Awerbuch, S., Preston, A.M. (eds.): The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry. Topics in Regulatory Economics and Policy, vol. 26. Kluwer Academic Publishers, Boston (1997)
Hinrichs, C., Bremer, J., Sonnenschein, M.: Distributed hybrid constraint handling in large scale virtual power plants. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe (ISGT Europpe 2013). IEEE Power & Energy Society (2013)
Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Agent-based homeostatic control for green energy in the smart grid. ACM Trans. Intell. Syst. Technol. 2(4), 35:1–35:28 (2011)
Kamphuis, R., Warmer, C., Hommelberg, M., Kok, K.: Massive coordination of dispersed generation using powermatcher based software agents. In: 19th International Conference on Electricity Distribution, May 2007
Nieße, A., Beer, S., Bremer, J., Hinrichs, C., Lünsdorf, O., Sonnenschein, M.: Conjoint dynamic aggrgation and scheduling for dynamic virtual power plants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Federated Conference on Computer Science and Information Systems - FedCSIS 2014, Warsaw, Poland, September 2014
Coll-Mayor, D., Picos, R., Garciá-Moreno, E.: State of the art of the virtual utility: the smart distributed generation network. Int. J. Energy Res. 28(1), 65–80 (2004)
Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for virtual power plants. In: IEEE Symposium Series on Computational Intelligence 2011 (SSCI 2011), Paris, France, April 2011
Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support vector surrogate models - a novel decoder approach. In: Filipe, J., Fred, A. (eds.) ICAART 2013 - Proceedings of the 5th International Conference on Agents and Artificial Intelligence, Barcelona, Spain, vol. 2, pp. 91–105. SciTePress (2013)
Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A decentralized heuristic for multiple-choice combinatorial optimization problems. In: Helber, S., et al. (eds.) Operations Research Proceedings 2012, pp. 297–302. Springer International Publishing, Switzerland (2014)
Ilić, M.D.: From hierarchical to open access electric power systems. Proc. IEEE 95(5), 1060–1084 (2007)
Wu, F., Moslehi, K., Bose, A.: Power system control centers: past, present, and future. Proc. IEEE 93(11), 1890–1908 (2005)
International Energy Agency: Distributed Generation in Liberalised Electricity Markets. OECD Publishing (2002)
Lukovic, S., Kaitovic, I., Mura, M., Bondi, U.: Virtual power plant as a bridge between distributed energy resources and smart grid. In: Hawaii International Conference on System Sciences, pp. 1–8 (2010)
Tröschel, M., Appelrath, H.-J.: Towards reactive scheduling for large-scale virtual power plants. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009. LNCS, vol. 5774, pp. 141–152. Springer, Heidelberg (2009)
Nikonowicz, Ł.B., Milewski, J.: Virtual power plants - general review: structure, application and optimization. J. Power Technol. 92(3), 135–149 (2012)
McArthur, S., Davidson, E., Catterson, V., Dimeas, A., Hatziargyriou, N., Ponci, F., Funabashi, T.: Multi-agent systems for power engineering applications - Part I: concepts, approaches, and technical challenges. IEEE Trans. Power Syst. 22(4), 1743–1752 (2007)
Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the ‘smarts’ into the smart grid: a grand challenge for artificial intelligence. Commun. ACM 55(4), 86–97 (2012)
Negenborn, R.R., Lukszo, Z., Hellendoorn, H. (eds.): Intelligent Infrastructures. Intelligent Systems, Control and Automation: Science and Engineering, vol. 42. Springer, The Netherlands (2010)
Anders, G., Siefert, F., Steghöfer, J.P., Seebach, H., Nafz, F., Reif, W.: Structuring and controlling distributed power sources by autonomous virtual power plants. In: IEEE Power and Energy Student Summit (PESS 2010). IEEE Power & Energy Society (2010)
Bremer, J., Sonnenschein, M.: Parallel tempering for constrained many criteria optimization in dynamic virtual power plants. In: 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), pp. 1–8, December 2014
Kramer, O.: A review of constraint-handling techniques for evolution strategies. Appl. Comp. Intell. Soft Comput. 2010, 1–19 (2010)
Ulmer, H., Streichert, F., Zell, A.: Evolution strategies assisted by gaussian processes with improved pre-selection criterion. In: IEEE Congress on Evolutionary Computation, CEC 2003, pp. 692–699 (2003)
Koziel, S., Michalewicz, Z.: A decoder-based evolutionary algorithm for constrained parameter optimization problems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 231–240. Springer, Heidelberg (1998)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE, November 1995
Van Den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. thesis, University of Pretoria, Pretoria, South Africa, South Africa AAI0804353 (2002)
Lapizco-Encinas, G., Kingsford, C., Reggia, J.: A cooperative combinatorial particle swarm optimization algorithm for side-chain packing. In: 2009 Swarm Intelligence Symposium, SIS 2009, pp. 22–29. IEEE, March 2009
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)
Sonnenschein, M., Hinrichs, C., Niee, A., Vogel, U.: Supporting renewable power supply through distributed coordination of energy resources. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 387–404. Springer International Publishing, Switzerland (2015)
Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol. Comput. 7, 19–44 (1999)
Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11–12), 1245–1287 (2002)
Neugebauer, J., Kramer, O., Sonnenschein, M.: Classification cascades of overlapping feature ensembles for energy time series data. In: Aung, Z., et al. (eds.) DARE 2015. LNCS, vol. 9518, pp. 76–93. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27430-0_6
Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of distributed energy resources’ feasible load spaces. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe, Chalmers Lindholmen, Gothenburg, Sweden (2010)
Juszczak, P., Tax, D., Duin, R.P.W.: Feature scaling in support vector data description. In: Deprettere, E., Belloum, A., Heijnsdijk, J., van der Stappen, F. (eds.) Proceedings of the 8th Annual Conference of the Advanced School for Computing and Imaging, ASCI 2002, pp. 95–102 (2002)
Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)
Ben-Hur, A., Siegelmann, H.T., Horn, D., Vapnik, V.: Support vector clustering. J. Mach. Learn. Res. 2, 125–137 (2001)
Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)
Abdul-Rahman, S., Bakar, A.A., Mohamed-Hussein, Z.-A.: An improved particle swarm optimization via velocity-based reinitialization for feature selection. SCDS 2015. CCIS, vol. 545, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/978-981-287-936-3_1
Vanneschi, L., Codecasa, D., Mauri, G.: A comparative study of four parallel and distributed PSO methods. New Gener. Comput. 29(2), 129–161 (2011)
Fernández, F., Tomassini, M., Vanneschi, L.: An empirical study of multipopulation genetic programming. Genet. Program Evolvable Mach. 4(1), 21–51 (2003)
Nieße, A., Sonnenschein, M.: A fully distributed continuous planning approach for decentralized energy units. In: Cunningham, D.W., Hofstedt, P., Meer, K., Schmitt, I. (eds.) Informatik 2015. GI-Edition - Lecture Notes in Informatics (LNI), vol. 246, pp. 151–165. Bonner Köllen Verlag, Bonn (2015)
Thomas, B.: Mini-Blockheizkraftwerke: Grundlagen, Gerätetechnik. Vogel Buchverlag, Betriebsdaten (2007)
Bremer, J., Sonnenschein, M.: Sampling the search space of energy resources for self-organized, agent-based planning of active power provision. In: Page, B., Fleischer, A.G., Göbel, J., Wohlgemuth, V. (eds.) Proceedings of the 27th International Conference on Environmental Informatics for Environmental Protection, Sustainable Development and Risk Management, EnviroInfo 2013, 2–4 September 2013, Hamburg, Germany, pp. 214–222. Berichte aus der Umweltinformatik, Shaker (2013)
Bahi, J., Contassot-Vivier, S., Couturier, R., Vernier, F.: A decentralized convergence detection algorithm for asynchronous parallel iterative algorithms. IEEE Trans. Parallel Distrib. Syst. 16(1), 4–13 (2005)
Santoro, N.: Design and Analysis of Distributed Algorithms (Wiley Series on Parallel and Distributed Computing). Wiley-Interscience, New York (2006)
Littman, M.L., Stone, P.: Leading best-response strategies in repeated games. In: Seventeenth Annual International Joint Conference on Artificial Intelligence Workshop on Economic Agents, Models, and Mechanisms (2001)
Watts, D.J.: Networks, dynamics, and the small-world phenomenon. Am. J. Sociol. 105, 493–527 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Bremer, J., Lehnhoff, S. (2016). A Decentralized PSO with Decoder for Scheduling Distributed Electricity Generation. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-31204-0_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31203-3
Online ISBN: 978-3-319-31204-0
eBook Packages: Computer ScienceComputer Science (R0)