Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Decentralized PSO with Decoder for Scheduling Distributed Electricity Generation

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9597))

Included in the following conference series:

Abstract

A steadily increasing pervasion of the distribution grid with rather small renewable energy resources imposes fluctuating and hardly predictable feed-in and thus calls for new predictive load planning strategies. On the other hand, combined with controllable, shiftable loads and electrical storages, these energy units set up a flexibility potential for fine-grained control. To tap the full potential, distributed control strategies are discussed for scheduling due to the expected large number of controlled entities. Decoder strategies for unit independent algorithm implementation and feasibility assurance had recently been applied to some first optimization approaches for scheduling in smart grid. We extended a distributed particle swarm to harnesses such decoder approach for model independent constraint-handling and achieved a higher accuracy compared with other approaches. A multi swarm is integrated after the island model into a decentralized agent-based solution and compared with an established decentralized approach for predictive scheduling within virtual power plants. We demonstrate the superiority of the particle swarm in terms of achieved solution accuracy and the competitiveness in terms of sent messages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. European Parliament & Council: Directive 2009/28/ec of 23 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/ec and 2003/30/ec, April 2009

    Google Scholar 

  2. Abarrategui, O., Marti, J., Gonzalez, A.: Constructing the active european power grid. In: Proceedings of WCPEE 2009, Cairo (2009)

    Google Scholar 

  3. Nieße, A., Lehnhoff, S., Tröschel, M., Uslar, M., Wissing, C., Appelrath, H.J., Sonnenschein, M.: Market-based self-organized provision of active power and ancillary services. In: Complexity in Engineering (COMPENG). IEEE, June 2012

    Google Scholar 

  4. Awerbuch, S., Preston, A.M. (eds.): The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry. Topics in Regulatory Economics and Policy, vol. 26. Kluwer Academic Publishers, Boston (1997)

    Google Scholar 

  5. Hinrichs, C., Bremer, J., Sonnenschein, M.: Distributed hybrid constraint handling in large scale virtual power plants. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe (ISGT Europpe 2013). IEEE Power & Energy Society (2013)

    Google Scholar 

  6. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Agent-based homeostatic control for green energy in the smart grid. ACM Trans. Intell. Syst. Technol. 2(4), 35:1–35:28 (2011)

    Article  MATH  Google Scholar 

  7. Kamphuis, R., Warmer, C., Hommelberg, M., Kok, K.: Massive coordination of dispersed generation using powermatcher based software agents. In: 19th International Conference on Electricity Distribution, May 2007

    Google Scholar 

  8. Nieße, A., Beer, S., Bremer, J., Hinrichs, C., Lünsdorf, O., Sonnenschein, M.: Conjoint dynamic aggrgation and scheduling for dynamic virtual power plants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Federated Conference on Computer Science and Information Systems - FedCSIS 2014, Warsaw, Poland, September 2014

    Google Scholar 

  9. Coll-Mayor, D., Picos, R., Garciá-Moreno, E.: State of the art of the virtual utility: the smart distributed generation network. Int. J. Energy Res. 28(1), 65–80 (2004)

    Article  Google Scholar 

  10. Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for virtual power plants. In: IEEE Symposium Series on Computational Intelligence 2011 (SSCI 2011), Paris, France, April 2011

    Google Scholar 

  11. Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support vector surrogate models - a novel decoder approach. In: Filipe, J., Fred, A. (eds.) ICAART 2013 - Proceedings of the 5th International Conference on Agents and Artificial Intelligence, Barcelona, Spain, vol. 2, pp. 91–105. SciTePress (2013)

    Google Scholar 

  12. Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A decentralized heuristic for multiple-choice combinatorial optimization problems. In: Helber, S., et al. (eds.) Operations Research Proceedings 2012, pp. 297–302. Springer International Publishing, Switzerland (2014)

    Chapter  Google Scholar 

  13. Ilić, M.D.: From hierarchical to open access electric power systems. Proc. IEEE 95(5), 1060–1084 (2007)

    Article  Google Scholar 

  14. Wu, F., Moslehi, K., Bose, A.: Power system control centers: past, present, and future. Proc. IEEE 93(11), 1890–1908 (2005)

    Article  Google Scholar 

  15. International Energy Agency: Distributed Generation in Liberalised Electricity Markets. OECD Publishing (2002)

    Google Scholar 

  16. Lukovic, S., Kaitovic, I., Mura, M., Bondi, U.: Virtual power plant as a bridge between distributed energy resources and smart grid. In: Hawaii International Conference on System Sciences, pp. 1–8 (2010)

    Google Scholar 

  17. Tröschel, M., Appelrath, H.-J.: Towards reactive scheduling for large-scale virtual power plants. In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009. LNCS, vol. 5774, pp. 141–152. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Nikonowicz, Ł.B., Milewski, J.: Virtual power plants - general review: structure, application and optimization. J. Power Technol. 92(3), 135–149 (2012)

    Google Scholar 

  19. McArthur, S., Davidson, E., Catterson, V., Dimeas, A., Hatziargyriou, N., Ponci, F., Funabashi, T.: Multi-agent systems for power engineering applications - Part I: concepts, approaches, and technical challenges. IEEE Trans. Power Syst. 22(4), 1743–1752 (2007)

    Article  Google Scholar 

  20. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the ‘smarts’ into the smart grid: a grand challenge for artificial intelligence. Commun. ACM 55(4), 86–97 (2012)

    Article  Google Scholar 

  21. Negenborn, R.R., Lukszo, Z., Hellendoorn, H. (eds.): Intelligent Infrastructures. Intelligent Systems, Control and Automation: Science and Engineering, vol. 42. Springer, The Netherlands (2010)

    MATH  Google Scholar 

  22. Anders, G., Siefert, F., Steghöfer, J.P., Seebach, H., Nafz, F., Reif, W.: Structuring and controlling distributed power sources by autonomous virtual power plants. In: IEEE Power and Energy Student Summit (PESS 2010). IEEE Power & Energy Society (2010)

    Google Scholar 

  23. Bremer, J., Sonnenschein, M.: Parallel tempering for constrained many criteria optimization in dynamic virtual power plants. In: 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG), pp. 1–8, December 2014

    Google Scholar 

  24. Kramer, O.: A review of constraint-handling techniques for evolution strategies. Appl. Comp. Intell. Soft Comput. 2010, 1–19 (2010)

    Article  Google Scholar 

  25. Ulmer, H., Streichert, F., Zell, A.: Evolution strategies assisted by gaussian processes with improved pre-selection criterion. In: IEEE Congress on Evolutionary Computation, CEC 2003, pp. 692–699 (2003)

    Google Scholar 

  26. Koziel, S., Michalewicz, Z.: A decoder-based evolutionary algorithm for constrained parameter optimization problems. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 231–240. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  27. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE, November 1995

    Google Scholar 

  28. Van Den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. thesis, University of Pretoria, Pretoria, South Africa, South Africa AAI0804353 (2002)

    Google Scholar 

  29. Lapizco-Encinas, G., Kingsford, C., Reggia, J.: A cooperative combinatorial particle swarm optimization algorithm for side-chain packing. In: 2009 Swarm Intelligence Symposium, SIS 2009, pp. 22–29. IEEE, March 2009

    Google Scholar 

  30. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  31. Sonnenschein, M., Hinrichs, C., Niee, A., Vogel, U.: Supporting renewable power supply through distributed coordination of energy resources. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 387–404. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  32. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol. Comput. 7, 19–44 (1999)

    Article  Google Scholar 

  33. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11–12), 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Neugebauer, J., Kramer, O., Sonnenschein, M.: Classification cascades of overlapping feature ensembles for energy time series data. In: Aung, Z., et al. (eds.) DARE 2015. LNCS, vol. 9518, pp. 76–93. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27430-0_6

    Chapter  Google Scholar 

  35. Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of distributed energy resources’ feasible load spaces. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe, Chalmers Lindholmen, Gothenburg, Sweden (2010)

    Google Scholar 

  36. Juszczak, P., Tax, D., Duin, R.P.W.: Feature scaling in support vector data description. In: Deprettere, E., Belloum, A., Heijnsdijk, J., van der Stappen, F. (eds.) Proceedings of the 8th Annual Conference of the Advanced School for Computing and Imaging, ASCI 2002, pp. 95–102 (2002)

    Google Scholar 

  37. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  38. Ben-Hur, A., Siegelmann, H.T., Horn, D., Vapnik, V.: Support vector clustering. J. Mach. Learn. Res. 2, 125–137 (2001)

    MATH  Google Scholar 

  39. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)

    Article  Google Scholar 

  40. Abdul-Rahman, S., Bakar, A.A., Mohamed-Hussein, Z.-A.: An improved particle swarm optimization via velocity-based reinitialization for feature selection. SCDS 2015. CCIS, vol. 545, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/978-981-287-936-3_1

    Chapter  Google Scholar 

  41. Vanneschi, L., Codecasa, D., Mauri, G.: A comparative study of four parallel and distributed PSO methods. New Gener. Comput. 29(2), 129–161 (2011)

    Article  Google Scholar 

  42. Fernández, F., Tomassini, M., Vanneschi, L.: An empirical study of multipopulation genetic programming. Genet. Program Evolvable Mach. 4(1), 21–51 (2003)

    Article  MATH  Google Scholar 

  43. Nieße, A., Sonnenschein, M.: A fully distributed continuous planning approach for decentralized energy units. In: Cunningham, D.W., Hofstedt, P., Meer, K., Schmitt, I. (eds.) Informatik 2015. GI-Edition - Lecture Notes in Informatics (LNI), vol. 246, pp. 151–165. Bonner Köllen Verlag, Bonn (2015)

    Google Scholar 

  44. Thomas, B.: Mini-Blockheizkraftwerke: Grundlagen, Gerätetechnik. Vogel Buchverlag, Betriebsdaten (2007)

    Google Scholar 

  45. Bremer, J., Sonnenschein, M.: Sampling the search space of energy resources for self-organized, agent-based planning of active power provision. In: Page, B., Fleischer, A.G., Göbel, J., Wohlgemuth, V. (eds.) Proceedings of the 27th International Conference on Environmental Informatics for Environmental Protection, Sustainable Development and Risk Management, EnviroInfo 2013, 2–4 September 2013, Hamburg, Germany, pp. 214–222. Berichte aus der Umweltinformatik, Shaker (2013)

    Google Scholar 

  46. Bahi, J., Contassot-Vivier, S., Couturier, R., Vernier, F.: A decentralized convergence detection algorithm for asynchronous parallel iterative algorithms. IEEE Trans. Parallel Distrib. Syst. 16(1), 4–13 (2005)

    Article  Google Scholar 

  47. Santoro, N.: Design and Analysis of Distributed Algorithms (Wiley Series on Parallel and Distributed Computing). Wiley-Interscience, New York (2006)

    Book  Google Scholar 

  48. Littman, M.L., Stone, P.: Leading best-response strategies in repeated games. In: Seventeenth Annual International Joint Conference on Artificial Intelligence Workshop on Economic Agents, Models, and Mechanisms (2001)

    Google Scholar 

  49. Watts, D.J.: Networks, dynamics, and the small-world phenomenon. Am. J. Sociol. 105, 493–527 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Bremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bremer, J., Lehnhoff, S. (2016). A Decentralized PSO with Decoder for Scheduling Distributed Electricity Generation. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31204-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31203-3

  • Online ISBN: 978-3-319-31204-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics