Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Decentralized Heuristic for Multiple-Choice Combinatorial Optimization Problems

  • Conference paper
  • First Online:
Operations Research Proceedings 2012

Abstract

We present a decentralized heuristic applicable to multi-agent systems (MAS), which is able to solve multiple-choice combinatorial optimization problems (MC-COP). First, the MC-COP problem class is introduced and subsequently a mapping to MAS is shown, in which each class of elements in MC-COP corresponds to a single agent in MAS. The proposed heuristic “COHDA” is described in detail, including evaluation results from the domain of decentralized energy management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, B., Leblet, J., Simon, G.: Hard multidimensional multiple choice knapsack problems, an empirical study. Computers & Operations Research 37(1), 172–181 (2010). doi:10.1016/j.cor.2009.04.006

    Article  Google Scholar 

  2. Hinrichs, C., Vogel, U., Sonnenschein, M.: Approaching Decentralized Demand Side Management via Self-Organizing Agents. In: Yolum, Tumer, Stone, Sonenberg (eds.) ATES Workshop, Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2011). Taipei, Taiwan (2011).

    Google Scholar 

  3. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. International Transactions in Operational Research 19(4), 495–520 (2012). doi:10.1111/j.1475-3995.2011.00840.x

  4. Martello, S., Toth, P.: Knapsack problems, 1 edn. John Wiley & Sons (1990).

    Google Scholar 

  5. Padhy, N.: Unit Commitment-A Bibliographical Survey. IEEE Transactions on Power Systems 19(2), 1196–1205 (2004). doi:10.1109/TPWRS.2003.821611

    Article  Google Scholar 

  6. Pisinger, D.: A minimal algorithm for the multiple-choice knapsack problem. European Journal of Operational Research 83(2), 394–410 (1995).doi:10.1016/0377-2217(95)00015-I

    Google Scholar 

  7. Pisinger, D.: Linear Time Algorithms for Knapsack Problems with Bounded Weights. Journal of Algorithms 33(1), 1–14 (1999). doi:10.1006/jagm.1999.1034

    Google Scholar 

  8. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001). doi:10.1038/35065725

    Article  Google Scholar 

  9. Talbi, E.G.: Metaheuristics. John Wiley & Sons, Inc., Hoboken, NJ, USA (2009). 10.1002/9780470496916.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hinrichs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hinrichs, C., Lehnhoff, S., Sonnenschein, M. (2014). A Decentralized Heuristic for Multiple-Choice Combinatorial Optimization Problems. In: Helber, S., et al. Operations Research Proceedings 2012. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-00795-3_43

Download citation

Publish with us

Policies and ethics