Abstract
We present a decentralized heuristic applicable to multi-agent systems (MAS), which is able to solve multiple-choice combinatorial optimization problems (MC-COP). First, the MC-COP problem class is introduced and subsequently a mapping to MAS is shown, in which each class of elements in MC-COP corresponds to a single agent in MAS. The proposed heuristic “COHDA” is described in detail, including evaluation results from the domain of decentralized energy management systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Han, B., Leblet, J., Simon, G.: Hard multidimensional multiple choice knapsack problems, an empirical study. Computers & Operations Research 37(1), 172–181 (2010). doi:10.1016/j.cor.2009.04.006
Hinrichs, C., Vogel, U., Sonnenschein, M.: Approaching Decentralized Demand Side Management via Self-Organizing Agents. In: Yolum, Tumer, Stone, Sonenberg (eds.) ATES Workshop, Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2011). Taipei, Taiwan (2011).
Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. International Transactions in Operational Research 19(4), 495–520 (2012). doi:10.1111/j.1475-3995.2011.00840.x
Martello, S., Toth, P.: Knapsack problems, 1 edn. John Wiley & Sons (1990).
Padhy, N.: Unit Commitment-A Bibliographical Survey. IEEE Transactions on Power Systems 19(2), 1196–1205 (2004). doi:10.1109/TPWRS.2003.821611
Pisinger, D.: A minimal algorithm for the multiple-choice knapsack problem. European Journal of Operational Research 83(2), 394–410 (1995).doi:10.1016/0377-2217(95)00015-I
Pisinger, D.: Linear Time Algorithms for Knapsack Problems with Bounded Weights. Journal of Algorithms 33(1), 1–14 (1999). doi:10.1006/jagm.1999.1034
Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001). doi:10.1038/35065725
Talbi, E.G.: Metaheuristics. John Wiley & Sons, Inc., Hoboken, NJ, USA (2009). 10.1002/9780470496916.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Hinrichs, C., Lehnhoff, S., Sonnenschein, M. (2014). A Decentralized Heuristic for Multiple-Choice Combinatorial Optimization Problems. In: Helber, S., et al. Operations Research Proceedings 2012. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-00795-3_43
Download citation
DOI: https://doi.org/10.1007/978-3-319-00795-3_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-00794-6
Online ISBN: 978-3-319-00795-3
eBook Packages: Business and EconomicsBusiness and Management (R0)