Abstract
The classification of high-dimensional time series data can be a challenging task due to the curse-of-dimensionality problem. The classification of time series is relevant in various applications, e.g., in the task of learning meta-models of feasible schedules for flexible components in the energy domain. In this paper, we introduce a classification approach that employs a cascade of classifiers based on features of overlapping time series steps. To evaluate the feasibility of the whole time series, each overlapping pattern is evaluated and the results are aggregated. We apply the approach to the problem of combined heat and power plant operation schedules and an artificial similarly structured data set. We identify conditions under which the cascade approach shows better results than a classic One-Class-SVM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Data are available for download on our department website http://www.uni-oldenburg.de/informatik/ui/forschung/themen/cascade/.
- 2.
\(\gamma \in \{0.1, 1, 10, 50, 100, 150,200\}\).
- 3.
\(\nu \in \{0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2\}\).
- 4.
\(\epsilon \in \{0.01, 0.05, 0.1, 0.15, 0.2\}\).
- 5.
\(k_t \in \{1,5,10,15\}\).
References
Al-Hmouz, R., Pedrycz, W., Balamash, A., Morfeq, A.: Description and classification of granular time series. Soft. Comput. 19(4), 1003–1017 (2015)
Attenberg, J., Ertekin, C.: Class Imbalance and Active Learning. Wiley, Hoboken (2013)
Bagnall, A., Davis, L.M., Hills, J., Lines, J.: Transformation based ensembles for time series classification. In: Proceedings of the Twelfth SIAM International Conference on Data Mining, Anaheim, California, USA, pp. 307–318, 26–28 April 2012
Batuwita, R., Palade, V.: Class Imbalance Learning Methods for Support Vector Machines. Wiley, New York (2013)
Beygelzimer, A., Dani, V., Hayes, T., Langford, J., Zadrozny, B.: Error limiting reductions between classification tasks. In: Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 49–56. ACM, New York (2005)
Blagus, R., Lusa, L.: Class prediction for high-dimensional class-imbalanced data. BMC Bioinform. 11(1), 523 (2010)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of distributed energy resources’ feasible load spaces. In: Innovative Smart Grid Technologies Conference Europe IEEE PES (2010)
Bremer, J., Sonnenschein, M.: Model-based integration of constrained search spaces into distributed planning of active power provision. Comput. Sci. Inf. Syst. 10(4), 1823–1854 (2013)
Buck, D.K., Collins, A.A.: POV-Ray - The Persistence of Vision Raytracer (2004). Computer software available from http://www.povray.org/
Castillo-Cagigal, M., Martín, E.C., Matallanas, E., Masa-Bote, D., Gutiérrez, A., Monasterio-Huelin, F., Jiménez-Leube, J.: PV self-consumption optimization with storage and active DSM for the residential sector. Sol. Energ. 85(9), 2338–2348 (2011)
Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014). 40th-year commemorative issue
Engel, D., Hüttenberger, L., Hamann, B.: A survey of dimension reduction methods for high-dimensional data analysis and visualization. In: Garth, C., Middel, A., Hagen, H. (eds.) Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning. Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011, volume 27 of OpenAccess Series in Informatics (OASIcs), pp. 135–149. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2012)
Fulcher, B., Jones, N.: Highly comparative feature-based time-series classification. IEEE Trans. Knowl. Data Eng. 26(12), 3026–3037 (2014)
Fulcher, B.D., Little, M.A., Jones, N.S.: Highly comparative time-series analysis: the empirical structure of time series and their methods. J. R. Soc. Interface, 10(83) (2013)
He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)
He, X., Mourot, G., Maquin, D., Ragot, J., Beauseroy, P., Smolarz, A., Grall-Maës, E.: Multi-task learning with one-class SVM. Neurocomputing 133, 416–426 (2014)
Hinrichs, C., Sonnenschein, M., Lehnhoff, S.: Evaluation of a self-organizing heuristic for interdependent distributed search spaces vol. 1 - agents. In: Filipe, J., Fred, A.L.N. (eds.) International Conference on Agents and Artificial Intelligence (ICAART 2013), pp. 25–34. SciTePress, Germany (2013)
Hoens, T.R., Chawla, N.V.: Imbalanced Datasets: From Sampling to Classifiers. Wiley, New Jersey (2013)
Hwang, W., Runger, G., Tuv, E.: Multivariate statistical process control with artificial contrasts. IIE Trans. 39(6), 659–669 (2007)
Japkowicz, N.: Assessment Metrics for Imbalanced Learning. Wiley, New Jersey (2013)
Juszczak, P., Duin, R.P.W.: Selective sampling methods in one-class classification problems. In: ICANN, pp. 140–148 (2003)
Kang, J.H., Kim, S.B.: A clustering algorithm-based control chart for inhomogeneously distributed tft-lcd processes. Int. J. Prod. Res. 51(18), 5644–5657 (2013)
Lin, W.-J., Chen, J.J.: Class-imbalanced classifiers for high-dimensional data. Briefings Bioinf. 14(1), 13–26 (2013)
Lines, J., Bagnall, A., Caiger-Smith, P., Anderson, S.: Classification of household devices by electricity usage profiles. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 403–412. Springer, Heidelberg (2011)
Liu, X.-Y., Zhou, Z.-H.: Ensemble Methods for Class Imbalance Learning. Wiley, New Jersey (2013)
López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)
MacDougall, P., Roossien, B., Warmer, C., Kok, K.: Quantifying flexibility for smart grid services. In: Power and Energy Society General Meeting (PES), 2013 IEEE, pp. 1–5, July 2013
Molina, J.M., Garcia, J., Garcia, A.C.B., Melo, R., Correia, L.: Segmentation and classification of time-series: real case studies. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 743–750. Springer, Heidelberg (2009)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Piao, Y., Park, H.W., Jin, C.H., Ryu, K.H.: Ensemble method for classification of high-dimensional data. In: 2014 International Conference on Big Data and Smart Computing (BIGCOMP), pp. 245–249, January 2014
Roossien, B.: Mathematical quantification of near realtime flexibility for smart grids, flexines d8.1. Fproject Report, Energy research Centre of the Netherlands (ECN) (2012). http://www.flexines.org/publicaties/eindrapport/BIJLAGE14a.pdf
Saeys, Y., Inza, I.N., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)
Seo, M., Oh, S.: A novel divide-and-merge classification for high dimensional datasets. Comput. Biol. Chem. 42, 23–34 (2013)
Sutton, C., Sindelar, M., McCallum, A.: Feature bagging: preventing weight undertraining in structured discriminative learning. IR 402, Department of Computer Science, University of Massachusetts Amherst (2005)
Tax, D.: Ddtools, the data description toolbox for matlab, version 2.1.1, July 2014
Wang, D., Parkinson, S., Miao, W., Jia, H., Crawford, C., Djilali, N.: Hierarchical market integration of responsive loads as spinning reserve. Appl. Energy 104, 229–238 (2013)
Wang, Z., Zhao, Z., Weng, S., Zhang, C.: Solving one-class problem with outlier examples by SVM. Neurocomputing, 149, Part A: 100–105 (2015). Advances in neural networks Advances in Extreme Learning MachinesSelected papers from the Tenth International Symposium on Neural Networks (ISNN 2013) Selected articles from the International Symposium on Extreme Learning Machines (ELM 2013)
Wille-Haussmann, B., Erge, T., Wittwer, C.: Decentralised optimisation of cogeneration in virtual power plants. Sol. Energy 84(4), 604–611 (2010). International Conference CISBAT 2007
Yang, H., King, I., Lyu, M.: Multi-task learning for one-class classification. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, July 2010
Yu, H., Mu, C., Sun, C., Yang, W., Yang, X., Zuo, X.: Support vector machine-based optimized decision threshold adjustment strategy for classifying imbalanced data. Knowl.-Based Syst. 76, 67–78 (2015)
Acknowledgments
This work was funded by the Ministry for Science and Culture of Lower Saxony with the PhD program System Integration of Renewable Energy (SEE).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Neugebauer, J., Kramer, O., Sonnenschein, M. (2015). Classification Cascades of Overlapping Feature Ensembles for Energy Time Series Data. In: Woon, W., Aung, Z., Madnick, S. (eds) Data Analytics for Renewable Energy Integration. DARE 2015. Lecture Notes in Computer Science(), vol 9518. Springer, Cham. https://doi.org/10.1007/978-3-319-27430-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-27430-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27429-4
Online ISBN: 978-3-319-27430-0
eBook Packages: Computer ScienceComputer Science (R0)