Nothing Special   »   [go: up one dir, main page]

Skip to main content

BDD-Guided Clause Generation

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2015)

Abstract

Nogood learning is a critical component of Boolean satisfiability (SAT) solvers, and increasingly popular in the context of integer programming and constraint programming. We present a generic method to learn valid clauses from exact or approximate binary decision diagrams (BDDs) and resolution in the context of SAT solving. We show that any clause learned from SAT conflict analysis can also be generated using our method, while, in addition, we can generate stronger clauses that cannot be derived from one application of conflict analysis. Importantly, since SAT instances are often too large for an exact BDD representation, we focus on BDD relaxations of polynomial size and show how they can still be used to generated useful clauses. Our experimental results show that when this method is used as a preprocessing step and the generated clauses are appended to the original instance, the size of the search tree for a SAT solver can be significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optimization 4(1), 4–20 (2007)

    Article  MathSciNet  Google Scholar 

  2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many restarts and bounded-width resolution. Journal of Artificial Intelligence Research 40, 353–373 (2011)

    Article  MathSciNet  Google Scholar 

  4. Beame, P., Kautz, H., Sabharwal, A.: Understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)

    Article  MathSciNet  Google Scholar 

  5. Behle, M.: On threshold BDDs and the optimal variable ordering problem. Journal of Combinatorial Optimization 16, 107–118 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bergman, B., Cire, A., van Hoeve, W.-J., Hooker, J.: Optimization bounds from binary decision diagrams. INFORMS Journal on Computing 26(2), 253–268 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bergman, D., Cire, A.A., van Hoeve, W.-J., Yunes, T.: BDD-based heuristics for binary optimization. Journal of Heuristics 20(2), 211–234 (2014)

    Article  Google Scholar 

  8. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Transactions on Computers 45(9), 993–1002 (1996)

    Article  Google Scholar 

  10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)

    Article  Google Scholar 

  11. Cire, A., van Hoeve, W.-J.: Multivalued decision diagrams for sequencing problems. Operations Research 61(6), 1411–1428 (2013)

    Article  MathSciNet  Google Scholar 

  12. Downing, N., Feydy, T., Stuckey, P.: Explaining flow-based propagation. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 146–162. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Hadzic, T., Hooker, J., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Hoda, S., van Hoeve, W.-J., Hooker, J.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Katsirelos, G.: Nogood Processing in CSPs. PhD thesis, University of Toronto (2008)

    Google Scholar 

  16. Kell, B., van Hoeve, W.-J.: An MDD approach to multidimensional bin packing. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 128–143. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Kilinç-Karzan, F., Nemhauser, G., Savelsbergh, M.: Information-based branching schemes for binary linear mixed integer problems. Mathematical Programming Computation 1(4), 249–293 (2009)

    Article  MathSciNet  Google Scholar 

  18. Knuth, D.E.: The Art of Computer Programming, vol. 4, fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley (2009)

    Google Scholar 

  19. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell System Technical Journal 38(4), 985–999 (1959)

    Article  MathSciNet  Google Scholar 

  20. Marques-Silva, J.P., Lynce, I., Malik, S.: CDCL solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T., (eds.), Handbook of Satisfiability, chapter 4, pp. 131–154. IOS Press (2009)

    Google Scholar 

  21. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation. Constraints 14, 357–391 (2009)

    Article  MathSciNet  Google Scholar 

  22. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artificial Intelligence 175(2), 512–525 (2011)

    Article  MathSciNet  Google Scholar 

  23. SAT Challenge 2012. SAT Challenge 2012: Downloads, November 23, 2014. http://baldur.iti.kit.edu/SAT-Challenge-2012/downloads.html

  24. Stuckey, P.: Lazy clause generation: combining the power of SAT and CP (and MIP?) solving. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 5–9. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Kell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kell, B., Sabharwal, A., van Hoeve, WJ. (2015). BDD-Guided Clause Generation. In: Michel, L. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015. Lecture Notes in Computer Science(), vol 9075. Springer, Cham. https://doi.org/10.1007/978-3-319-18008-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18008-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18007-6

  • Online ISBN: 978-3-319-18008-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics