Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving SAT Solving Using Monte Carlo Tree Search-Based Clause Learning

  • Chapter
  • First Online:
Advanced Boolean Techniques

Abstract

Most modern state-of-the-art Boolean Satisfiability (SAT) solvers are based on the Davis–Putnam–Logemann–Loveland algorithm and exploit techniques like unit propagation and Conflict-Driven Clause Learning (CDCL). Even though this approach proved to be successful in practice, the success of the Monte Carlo Tree Search (MCTS) algorithm in other domains led to research in using it to solve SAT problems. A recent approach extended the attempt to solve SAT using an MCTS-based algorithm by adding CDCL. We further analyzed the behavior of that approach by using visualizations of the produced search trees and based on the analysis introduced multiple heuristics improving different aspects of the quality of the learned clauses. While the resulting solver can be used to solve SAT on its own, the real strength lies in the learned clauses. By using the MCTS solver as a preprocessor, the learned clauses can be used to improve the performance of existing SAT solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.satcompetition.org/.

References

  1. Browne, C., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

    Article  Google Scholar 

  2. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)

    Article  MathSciNet  Google Scholar 

  3. Goffinet, J., Ramanujan, R.: Monte-Carlo tree search for the maximum satisfiability problem. In: Principles and Practice of Constraint Programming, pp. 251–267 (2016)

    Google Scholar 

  4. Gupta, A., Ganai, M.K., Wang, C.: SAT-based verification methods and applications in hardware verification. In: Formal Methods for Hardware Verification, pp. 108–143 (2006)

    Chapter  Google Scholar 

  5. Knuth, D.E.: Fascicle 6: Satisfiability, the Art of Computer Programming. Combinatorial Algorithms, vol. 4. Addison-Wesley, Boston (2015)

    Google Scholar 

  6. Le Berre, D., Parrain, A.: The SAT4J library, release 2.2, system description. J. Satisfiabil. Boolean Model. Comput. 7, 59–64 (2010)

    Google Scholar 

  7. Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understanding VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In: Haifa Verification Conference, pp. 225–241. Springer, Berlin (2015)

    Chapter  Google Scholar 

  8. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for SAT solvers. In: International Conference on Theory and Applications of Satisfiability Testing, pp. 123–140. Springer, Berlin (2016)

    Chapter  Google Scholar 

  9. Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for constraint programming. In: International Conference on Principles and Practice of Constraint Programming, pp. 464–480. Springer, Berlin (2013)

    Google Scholar 

  10. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Handbook of Satisfiability, pp. 131–153 (2009)

    Google Scholar 

  11. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Design Automation Conference, pp. 530–535 (2001)

    Google Scholar 

  12. Munos, R.: From bandits to Monte-Carlo tree search: the optimistic principle applied to optimization and planning. Tech. Rep. (2014). https://hal.archives-ouvertes.fr/hal-00747575

  13. Previti, A., Ramanujan, R., Schaerf, M., Selman, B.: Monte-Carlo style UCT search for Boolean satisfiability. In: AI*IA 2011: Artificial Intelligence Around Man and Beyond, pp. 177–188 (2011)

    Chapter  Google Scholar 

  14. Schloeter, J.: A Monte Carlo tree search based conflict-driven clause learning SAT solver. In: Eibl, M., Gaedke, M. (eds.) INFORMATIK 2017, pp. 2549–2560. Gesellschaft für Informatik, Bonn (2017)

    Google Scholar 

  15. Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Combinational test generation using satisfiability. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 15(9), 1167–1176 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Keszocze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keszocze, O., Schmitz, K., Schloeter, J., Drechsler, R. (2020). Improving SAT Solving Using Monte Carlo Tree Search-Based Clause Learning. In: Drechsler, R., Soeken, M. (eds) Advanced Boolean Techniques. Springer, Cham. https://doi.org/10.1007/978-3-030-20323-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20323-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20322-1

  • Online ISBN: 978-3-030-20323-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics