Abstract
Branching variable selection can greatly affect the effectiveness and efficiency of a branch-and-bound algorithm. Traditional approaches to branching variable selection rely on estimating the effect of the candidate variables on the objective function. We propose an approach which is empowered by exploiting the information contained in a family of fathomed subproblems, collected beforehand from an incomplete branch-and-bound tree. In particular, we use this information to define new branching rules that reduce the risk of incurring inappropriate branchings. We provide computational results that demonstrate the effectiveness of the new branching rules on various benchmark instances.
Similar content being viewed by others
References
Achterberg T.: Conflict analysis in mixed integer programming. Discrete. Optim. 4, 4–20 (2007a)
Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin. http://opus.kobv.de/tuberlin/volltexte/2007/1611/ (2007b)
Achterberg T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1, 1–32 (2009)
Achterberg T., Berthold T.: Hybrid branching. In: van Hoeve, W.J., Hooker, J.N. (eds) CPAIOR, Lecture Notes in Computer Science, vol. 5547, pp. 309–311. Springer, Berlin (2009)
Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54 (2005)
Achterberg T., Koch T., Martin A.: Miplib 2003. Oper. Res. Lett. 34, 361–372 (2006)
Amaldi E., Pfetsch M.E., Trotter L.E.: On the maximum feasible subsystem problem, IISs, and IIS-hypergraphs. Math. Program. 95, 533–554 (2003)
Applegate, D., Bixby, R., Chvatal, V., Cook, W.: On the solution of traveling salesman problems. Documenta Mathematica Journal der Deutschen Mathematiker-Vereinigung. International Congress of Mathematicians, 645–656 (1998)
Avenali A.: Resolution branch and bound and an application: the maximum weighted stable set problem. Oper. Res. 55, 932–948 (2007)
Beale, E.M.L., Tomlin, J.A.: Special facilities in a general mathematical programming system for nonconvex problems using ordered sets of variables. In: Proceedings of the Fifth International Conference on Operational Research, vol. 55, pp. 447–454. Tavistock publication, London, UK (1970)
Bénichou M., Gauthier J.M., Girodet P., Hentges G., Ribière G., Vincen O.: Experiments in mixed-integer linear programming. Math. Program. 1, 76–94 (1971)
Bixby R.E., Ceria S., McZeal C.M., Savelsbergh M.W.P.: An updated mixed integer programming library: MIPLIB 3.0. Optima 58, 12–15 (1998)
Chvátal V.: Resolution search. Discrete Appl. Math. 73, 81–99 (1997)
Cor@l: Computational optimization research at lehigh university. http://coral.ie.lehigh.edu/mip-instances/ (2009)
Cornuéjols, G., Liberti, L., Nannicini, G.: Improved strategies for branching on general disjunction. Optimization online, http://www.optimization-online.org/DB_FILE/2008/08/2071.pdf (2008)
CPLEX. 11.1. ILOG. http://www.ilog.com/products/cplex
Davey B., Boland N., Stuckey P.J.: Efficient intelligent backtracking using linear programming. INFORMS J. Comput. 14, 373–386 (2002)
Dixon H.E., Ginsberg M.L.: Combining satisfiability techniques from AI and OR. Knowl. Eng. Rev. 15, 31–45 (2000)
Dolan E.D., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Forrest J.J.H., Hirst J.P.H., Tomlin J.A.: Practical solution of large scale mixed integer programming problems with UMPIRE. Manag. Sci. 20, 736–773 (1974)
Gilpin, A., Sandholm, T.: Information-theoretic approaches to branching in search. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). Hyderabad, India (2007)
Glankwamdee, W., Linderoth, J.T.: Lookahead branching for mixed integer programming. Optimization online, http://www.optimization-online.org/DB_FILE/2006/10/1490.pdf (2006)
Gleeson J., Ryan J.: Identifying minimally infeasible subsystem of inequalities. ORSA J. Comput. 2, 61–63 (1990)
Gomes, C., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Handbook of Knowledge Representation, Foundations of Artificial Intelligence, vol. 3, pp. 89–134. Elsevier, Amsterdam (2008)
Hooker J.N.: Constraint satisfaction methods for generating valid cuts. In: Woodruff, D.L. (eds) Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search: Interfaces in Computer Science and Operations Research, pp. 1–30. Kluwer, Norwell (1998)
Hooker J.N.: Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction. Wiley, New York (2000)
Karamanov, M., Cornuéjols, G.: Branching on general disjunctions. Technical report, http://integer.tepper.cmu.edu/webpub/d-branching.pdf (2005)
Kılınç Karzan, F., Nemhauser, G.L., Savelsbergh, M.W.P.: Information based branching rules in integer programming. INFORMS Annual Meeting. Washington, DC, USA (2008)
Linderoth J.T., Savelsbergh M.W.P.: A computational study of search strategies for mixed integer programming. INFORMS J. Comput. 11, 173–187 (1999)
Mahajan, A., Ralphs, T.K.: Experiments with branching using general disjunctions. Optimization online, http://www.optimization-online.org/DB_FILE/2008/06/2020.pdf (2008a)
Mahajan, A., Ralphs, T.K.: On the complexity of branching on general hyperplanes for integer programming. Optimization online, http://www.optimization-online.org/DB_FILE/2008/10/2119.pdf (2008b)
Marques-Silva J.P., Sakallah K.A.: Grasp: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48, 506–521 (1999)
MINTO. 3.1. MINTO: Mixed INTeger Optimizer. Georgia Institute of Technology, http://coral.ie.lehigh.edu/minto/
Mittelmann, H.D.: Milptestset. http://plato.asu.edu/ftp/milp/ (2009)
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient sat solver. In: DAC’01: Proceedings of the 38th Annual Design Automation Conference (2001)
Owen J.H., Mehrotra S.: Experimental results on using general disjunctions in branch-and-bound for general-integer linear programs. Comput. Optim. Appl. 20, 159–170 (2001)
Patel J., Chinneck J.W.: Active-constraint variable ordering for faster feasibility of mixed integer linear programs. Math. Program. 110, 445–474 (2007)
Sandholm, T., Shields, R.: Nogood learning for mixed integer programming. Technical report, CMU-CS-06-155, Carnegie Mellon University, Computer Science Department, http://www.cs.cmu.edu/sandholm/nogoodsForMip.techReport06.pdf (2006)
SCIP. 1.1.0. SCIP: solving constraint integer programs. Zuse Institute Berlin, http://scip.zib.de
Stallman R.M., Sussman G.J.: Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis. Artif. Intell. 9, 135–196 (1977)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kılınç Karzan, F., Nemhauser, G.L. & Savelsbergh, M.W.P. Information-based branching schemes for binary linear mixed integer problems. Math. Prog. Comp. 1, 249–293 (2009). https://doi.org/10.1007/s12532-009-0009-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12532-009-0009-1