Abstract
The paper concerns the architecture of a neuro-fuzzy classifier with fuzzy rough sets which has been developed to process imprecise data. A raw output of such system is an interval which has to be interpreted in terms of classification afterwards. To obtain a credible answer, the interval should be as narrow as possible; however, its width cannot be zero as long as input values are imprecise. In the paper, we discuss the determination of classifier parameters using the standard gradient learning technique. The effectiveness of the proposed method is confirmed by several simulation experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cpałka, K.: A new method for design and reduction of neuro-fuzzy classification systems. IEEE Transactions on Neural Networks 20(4), 701–714 (2009)
Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Transactions on Systems 4(9), 1450–1458 (2005)
Czogala, E., Roderer, H.: On the control of allpass components using conventional, fuzzy and rough fuzzy controllers. In: Proceedings of IEEE International Conference on Fuzzy Systems, International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium, vol. 3, pp. 1405–1412 (1995)
Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems 17(2-3), 191–209 (1990)
Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Sowiski, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)
Greblicki, W., Rutkowski, L.: Density-free bayes risk consistency of nonparametric pattern recognition procedures. Proceedings of the IEEE 69(4), 482–483 (1981)
Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-varying regression. Annals of the Institute of Statistical Mathematics 35(1), 215–228 (1983)
Greco, S., Inuiguchi, M., Słowiński, R.: Fuzzy rough sets and multiple-premise gradual decision rules. International Journal of Approximate Reasoning 41(2), 179–211 (2006)
Greenfield, S., Chiclana, F.: Type-reduction of the discretized interval type-2 fuzzy set: approaching the continuous case through progressively finer discretization. Journal of Artificial Intelligence and Soft Computing Research 1(3), 193 (2011)
Inuiguchi, M., Tanino, T.: New fuzzy rough sets based on certainty qualification. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 277–296. Springer, Heidelberg (2004)
Jaworski, M., Duda, P., Pietruczuk, L.: On fuzzy clustering of data streams with concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 82–91. Springer, Heidelberg (2012)
Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Transactions on Knowledge and Data Engineering 16, 1457–1471 (2004)
Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Trans. Fuzzy Syst. 15(1), 73–89 (2007)
Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)
Korytkowski, M., Scherer, R., Rutkowski, L.: On combining backpropagation with boosting. In: 2006 International Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, Vancouver, BC, Canada, pp. 1274–1277 (2006)
Mouzouris, G.C., Mendel, J.M.: Nonsingleton fuzzy logic systems: theory and application. IEEE Transactions on Fuzzy Systems 5(1), 56–71 (1997)
Nowak, B.A., Nowicki, R.K.: Learning in rough-neuro-fuzzy system for data with missing values. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 501–510. Springer, Heidelberg (2012)
Nowicki, R.: On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans. Knowl. Data Eng. 20(9), 1239–1253 (2008)
Nowicki, R.: Rough-neuro-fuzzy structures for classification with missing data. IEEE Trans. Syst., Man, Cybern. B 39 (2009)
Nowicki, R.K., Starczewski, J.T.: On non-singleton fuzzification with DCOG defuzzification. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 168–174. Springer, Heidelberg (2010)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)
Peteiro-Barral, D., Guijarro-Bardinas, B., Perez-Sanchez, B.: Learning from heterogeneously distributed data sets using artificial neural networks and genetic algorithms. Journal of Artificial Intelligence and Soft Computing Research 2(1), 5–20 (2012)
Pietruczuk, L., Duda, P., Jaworski, M.: A new fuzzy classifier for data streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 318–324. Springer, Heidelberg (2012)
Pietruczuk, L., Duda, P., Jaworski, M.: Adaptation of decision trees for handling concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 459–473. Springer, Heidelberg (2013)
Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)
Rutkowska, D., Nowicki, R., Rutkowski, L.: Singleton and non-singleton fuzzy systems with nonparametric defuzzification. In: Strumillo, P., kaminski, W., Skrzypski, J. (eds.) Computational Intelligence and Application. STUDFUZZ, vol. 23, pp. 292–301. Springer, Heidelberg (1999)
Rutkowska, D., Nowicki, R.: Implication-based neuro–fuzzy architectures. International Journal of Applied Mathematics and Computer Science 10(4), 675–701 (2000)
Rutkowska, D., Rutkowski, L., Nowicki, R.: On processing of noisy data by fuzzy inference neural networks. In: Proceedings of the IASTED International Conference, Signal and Image Processing, Nassau, Bahamas, pp. 314–318 (October 1999)
Rutkowski, L.: A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Transactions on Circuits and Systems 33(8), 812–818 (1986)
Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Transactions on Neural Networks 15(4), 811–827 (2004)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the gaussian approximation. IEEE Transactions on Knowledge and Data Engineering 26(1), 108–119 (2014)
Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the mcdiarmid’s bound. IEEE Transactions on Knowledge and Data Engineering 25(6), 1272–1279 (2013)
Rutkowski, L., Przybył, A., Cpałka, K.: Novel online speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Transactions on Industrial Electronics 59(2), 1238–1247 (2012)
Rutkowski, L.: On bayes risk consistent pattern recognition procedures in a quasi-stationary environment. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-4(1), 84–87 (1982)
Rutkowski, L.: Sequential pattern recognition procedures derived from multiple fourier series. Pattern Recognition Letters 8(4), 213–216 (1988)
Rutkowski, L.: Non-parametric learning algorithms in time-varying environments. Signal Processing 18(2), 129–137 (1989)
Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press (2002)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Information Sciences 266, 1–15 (2014)
Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)
Sarkar, M.: Rough fuzzy functions in classification. Fuzzy Sets and Systems 132(2), 353–369 (2002)
Sarkar, M., Yegnanarayana, B.: Rough fuzzy set theoretic approach to evaluate the importance of input features in classification. In: Proceedings of International Conference on Neural Networks — ICNN 1997, Texas, USA, June 9-12, pp. 1590–1595 (1997)
Scherer, R.: Neuro-fuzzy relational systems for nonlinear approximation and prediction. Nonlinear Analysis 71, e1420–e1425 (2009)
Scherer, R., Rutkowski, L.: Connectionist fuzzy relational systems. In: Hagamuge, S., Wang, L. (eds.) Computational Intelligence for Modelling and Control. SCI, vol. 2, pp. 35–47. Springer, Heidelberg (2005)
Starczewski, J.T.: Generalized uncertain fuzzy logic systems. In: Starczewski, J.T. (ed.) Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty. STUDFUZZ, vol. 284, pp. 137–179. Springer, Heidelberg (2013)
Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method. Journal of Artificial Intelligence and Soft Computing Research 1(1), 59–79 (2011)
Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Nowak, B.A., Nowicki, R.K., Starczewski, J.T., Marvuglia, A. (2014). The Learning of Neuro-Fuzzy Classifier with Fuzzy Rough Sets for Imprecise Datasets. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-07173-2_23
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07172-5
Online ISBN: 978-3-319-07173-2
eBook Packages: Computer ScienceComputer Science (R0)