Abstract
In this chapter, basic constructions of fuzzy logic systems with uncertain membership functions are presented. We begin with historical approaches to reasoning with interval-valued fuzzy sets and known formulations of general type-2 fuzzy logic systems. Next we provide new formulations grounded in non-singleton fuzzification. In the context of ordinary fuzzy systems, we demonstrate that variously interpreted non-singleton fuzzification, for typical structures fuzzy logic systems, can be implemented by the classical singleton structures only using modified antecedent fuzzy sets. The first approach to fuzzification of premises is done by the interpretation in terms of possibility distributions of actual inputs. Consequently, the possibility and necessity measures of antecedent fuzzy sets create boundaries for the interval-valued antecedent membership function. The second approach applies rough approximations to antecedent fuzzy sets by non-singleton fuzzy premise sets considered as fuzzy-rough partitions. Two known definitions, the one of Dubois and Prade, and the second proposed by Nakamura, lead to different formulations of fuzzy logic systems. Employing fuzzy-rough sets of Dubois and Prade, we obtain the interval-valued fuzzy logic system. Then, it can be immediately proved that upper approximations in fuzzy-rough systems are concurrent to fuzzification in conjunction-type fuzzy systems. Unexpectedly, lower approximations in fuzzy-rough systems coincide with fuzzification in logical-type fuzzy systems. Therefore, the proposed methods can be viewed as extensions to the conventional non-singleton fuzzification method. Fuzzyrough sets in the sense of Nakamura result with a formulation of a general fuzzy-valued fuzzy logic system. For this purpose, three realizations of general fuzzy-valued fuzzy systems: triangular, trapezoidal and Gaussian, are presented in details.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Bustince, H.: Indicator of inclusion grade for interval-valued fuzzy sets. application to approximate reasoning based on interval-valued fuzzy sets. International Journal of Approximate Reasoning 23, 137–209 (2000)
Czogala, E., Roderer, H.: On the control of allpass components using conventional, fuzzy and rough fuzzy controllers. In: Proceedings of IEEE International Conference on Fuzzy Systems, International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium, vol. 3, pp. 1405–1412 (1995)
Dubois, D., Prade, H.: Fuzzy sets and systems: Theory and applications. Academic Press, Inc., New York (1980)
Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal on General Systems 17, 191–209 (1990)
Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions. Fuzzy Sets and Systems 40, 143–202 (1991)
Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)
Gera, Z., Dombi, J.: Type-2 implications on non-interactive fuzzy truth values. Fuzzy Sets and Systems 159(22), 3014–3032 (2008)
Gorzałczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets and Systems 21, 1–17 (1987)
Grattan-Guiness, I.: Fuzzy membership mapped onto interval and many-valued quantities. Zeitschrift fr Mathematische Logik und Grundlagen der Mathematik 22, 149–160 (1975)
Greco, S., Matarazzo, B., Słowiński, R.: Fuzzy Similarity Relation as a Basis for Rough Approximations. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 283–289. Springer, Heidelberg (1998)
Greco, S., Inuiguchi, M., Słowiński, R.: Fuzzy rough sets and multiple-premise gradual decision rules. International Journal of Approximate Reasoning 41(2), 179–211 (2006)
Inuiguchi, M., Tanino, T.: New fuzzy rough sets based on certainty qualification. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 277–296. Springer, Heidelberg (2004)
Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Trans. Fuzzy Syst. 15(1), 73–89 (2007)
Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Information Sciences 132, 195–220 (2001)
Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems 7(6), 643–658 (1999)
Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: Theory and design. IEEE Transactions on Fuzzy Systems 8, 535–550 (2000)
Lingras, P.: Fuzzy-rough and rough-fuzzy serial combinations in neurocomputing. Neurocomputing 36(1-4), 29–44 (2001)
Liu, F.: An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Information Sciences 178(9), 2224–2236 (2008)
Liu, W.-N., Yao, J., Yao, Y.: Rough Approximations Under Level Fuzzy Sets. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 78–83. Springer, Heidelberg (2004)
Mas, M., Monserrat, M., Torrens, J.: QLimplications versus Dimplications. Kybernetika 42(3), 351–366 (2006)
Mendel, J.M.: Uncertain rule-based fuzzy logic systems: Introduction and new directions 2001. Prentice Hall PTR, Upper Saddle River (2001)
Mendez, G.M., Hernández, A., Cavazos, A., Mata-Jiménez, M.-T.: Type-1 Non-Singleton Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems Using the Hybrid Mechanism Composed by a Kalman Type Filter and Back Propagation Methods. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010 Part-I. LNCS, vol. 6076, pp. 429–437. Springer, Heidelberg (2010)
Mouzouris, G.C., Mendel, J.M.: Nonsingleton fuzzy logic systems: theory and application. IEEE Transactions on Fuzzy Systems 5(1), 56–71 (1997)
Nakamura, A.: Fuzzy rough sets. Note on Multiple-Valued Logic in Japan 9(8), 1–8 (1988)
Nowicki, R.: On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans. Knowl. Data Eng. 20(9), 1239–1253 (2008)
Nowicki, R.: Rough-neuro-fuzzy structures for classification with missing data. IEEE Trans. Syst. Man. Cybern B 39 (2009)
Nowicki, R.K., Starczewski, J.T.: On Non-Singleton Fuzzification with DCOG Defuzzification. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010 Part-I. LNCS (LNAI), vol. 6113, pp. 168–174. Springer, Heidelberg (2010)
Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy sets and systems 126, 137–155 (2002)
Rutkowska, D., Nowicki, R., Rutkowski, L.: Singleton and non-singleton fuzzy systems with nonparametric defuzzification. In: Computational Intelligence and Application, pp. 292–301. Springer (1999)
Rutkowska, D., Nowicki, R., Hayashi, Y.: Parallel Processing by Implication-Based Neuro-Fuzzy Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 599–607. Springer, Heidelberg (2002)
Rutkowski, L.: Flexible neuro-fuzzy systems: structures, learning and performance evaluation. Kluwer Academic Publishers (2004b)
Rutkowski, L.: New soft computing techniques for system modeling, pattern classification and image processing. In: Studies in Fuzziness and Soft Computing, Springer (2004b)
Rutkowski, L.: Computational intelligence - methods and techniques. Springer (2008)
Rutkowski, L., Cpalka, K.: Flexible neuro-fuzzy systems. IEEE Transactions on Neural Networks 14(3), 554–574 (2003)
Sahab, N., Hagras, H.: A type-2 nonsingleton type-2 fuzzy logic system to handle linguistic and numerical uncertainties in real world environments. In: Proc. 2011 IEEE International Symposium on Advances in Type-2 Fuzzy Logic Systems (2011)
Sambuc, R.: Fonctions φ-flous. application a laide au diagnostic en pathologie thyroidienne. PhD thesis. Th’ese Univ. de Marseille, Marseille (1975)
Starczewski, J., Rutkowski, L.: Neuro-fuzzy systems of type 2. In: Proc. 1st Int’l Conf. on Fuzzy Systems and Knowledge Discovery, Singapore, vol. 2, pp. 458–462 (2002)
Starczewski, J.T.: A triangular type-2 fuzzy logic system. In: Proc. IEEE-FUZZ 2006, Vancouver, CA, pp. 7231–7238 (2006)
Starczewski, J.T.: Efficient triangular type-2 fuzzy logic systems. International Journal of Approximate Reasoning 50, 799–811 (2009)
Starczewski, J.T.: General type-2 FLS with uncertainty generated by fuzzy rough sets. In: Proc. IEEE-FUZZ 2010, Barcelona, pp. 1790–1795 (2010)
Türkşen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems 20, 191–210 (1986)
Wu, D., Mendel, J.M.: A vector similarity measure for linguistic approximation: Interval type-2 and type-1 fuzzy sets. Information Sciences 178, 381–402 (2008)
Yao, Y.: Semantics of Fuzzy Sets in Rough Set Theory. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 297–318. Springer, Heidelberg (2004)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning — I. Information Sciences 8, 199–249 (1975)
Zhai, D., Mendel, J.M.: Centroid of a general type2 fuzzy set computed by means of the centroidflow algorithm. In: Proc. IEEE FUZZ, Barcelona, pp. 1–8 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Starczewski, J.T. (2013). Generalized Uncertain Fuzzy Logic Systems. In: Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty. Studies in Fuzziness and Soft Computing, vol 284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29520-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-29520-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29519-5
Online ISBN: 978-3-642-29520-1
eBook Packages: EngineeringEngineering (R0)