Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 284))

Abstract

In this chapter, basic constructions of fuzzy logic systems with uncertain membership functions are presented. We begin with historical approaches to reasoning with interval-valued fuzzy sets and known formulations of general type-2 fuzzy logic systems. Next we provide new formulations grounded in non-singleton fuzzification. In the context of ordinary fuzzy systems, we demonstrate that variously interpreted non-singleton fuzzification, for typical structures fuzzy logic systems, can be implemented by the classical singleton structures only using modified antecedent fuzzy sets. The first approach to fuzzification of premises is done by the interpretation in terms of possibility distributions of actual inputs. Consequently, the possibility and necessity measures of antecedent fuzzy sets create boundaries for the interval-valued antecedent membership function. The second approach applies rough approximations to antecedent fuzzy sets by non-singleton fuzzy premise sets considered as fuzzy-rough partitions. Two known definitions, the one of Dubois and Prade, and the second proposed by Nakamura, lead to different formulations of fuzzy logic systems. Employing fuzzy-rough sets of Dubois and Prade, we obtain the interval-valued fuzzy logic system. Then, it can be immediately proved that upper approximations in fuzzy-rough systems are concurrent to fuzzification in conjunction-type fuzzy systems. Unexpectedly, lower approximations in fuzzy-rough systems coincide with fuzzification in logical-type fuzzy systems. Therefore, the proposed methods can be viewed as extensions to the conventional non-singleton fuzzification method. Fuzzyrough sets in the sense of Nakamura result with a formulation of a general fuzzy-valued fuzzy logic system. For this purpose, three realizations of general fuzzy-valued fuzzy systems: triangular, trapezoidal and Gaussian, are presented in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bustince, H.: Indicator of inclusion grade for interval-valued fuzzy sets. application to approximate reasoning based on interval-valued fuzzy sets. International Journal of Approximate Reasoning 23, 137–209 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Czogala, E., Roderer, H.: On the control of allpass components using conventional, fuzzy and rough fuzzy controllers. In: Proceedings of IEEE International Conference on Fuzzy Systems, International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium, vol. 3, pp. 1405–1412 (1995)

    Google Scholar 

  3. Dubois, D., Prade, H.: Fuzzy sets and systems: Theory and applications. Academic Press, Inc., New York (1980)

    MATH  Google Scholar 

  4. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal on General Systems 17, 191–209 (1990)

    Article  MATH  Google Scholar 

  5. Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions. Fuzzy Sets and Systems 40, 143–202 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)

    Google Scholar 

  7. Gera, Z., Dombi, J.: Type-2 implications on non-interactive fuzzy truth values. Fuzzy Sets and Systems 159(22), 3014–3032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gorzałczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets and Systems 21, 1–17 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grattan-Guiness, I.: Fuzzy membership mapped onto interval and many-valued quantities. Zeitschrift fr Mathematische Logik und Grundlagen der Mathematik 22, 149–160 (1975)

    Article  Google Scholar 

  10. Greco, S., Matarazzo, B., Słowiński, R.: Fuzzy Similarity Relation as a Basis for Rough Approximations. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 283–289. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Greco, S., Inuiguchi, M., Słowiński, R.: Fuzzy rough sets and multiple-premise gradual decision rules. International Journal of Approximate Reasoning 41(2), 179–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Inuiguchi, M., Tanino, T.: New fuzzy rough sets based on certainty qualification. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 277–296. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Trans. Fuzzy Syst. 15(1), 73–89 (2007)

    Article  Google Scholar 

  14. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Information Sciences 132, 195–220 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems 7(6), 643–658 (1999)

    Article  Google Scholar 

  16. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: Theory and design. IEEE Transactions on Fuzzy Systems 8, 535–550 (2000)

    Article  Google Scholar 

  17. Lingras, P.: Fuzzy-rough and rough-fuzzy serial combinations in neurocomputing. Neurocomputing 36(1-4), 29–44 (2001)

    Article  MATH  Google Scholar 

  18. Liu, F.: An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Information Sciences 178(9), 2224–2236 (2008)

    Article  MathSciNet  Google Scholar 

  19. Liu, W.-N., Yao, J., Yao, Y.: Rough Approximations Under Level Fuzzy Sets. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 78–83. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Mas, M., Monserrat, M., Torrens, J.: QLimplications versus Dimplications. Kybernetika 42(3), 351–366 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Mendel, J.M.: Uncertain rule-based fuzzy logic systems: Introduction and new directions 2001. Prentice Hall PTR, Upper Saddle River (2001)

    MATH  Google Scholar 

  22. Mendez, G.M., Hernández, A., Cavazos, A., Mata-Jiménez, M.-T.: Type-1 Non-Singleton Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems Using the Hybrid Mechanism Composed by a Kalman Type Filter and Back Propagation Methods. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010 Part-I. LNCS, vol. 6076, pp. 429–437. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Mouzouris, G.C., Mendel, J.M.: Nonsingleton fuzzy logic systems: theory and application. IEEE Transactions on Fuzzy Systems 5(1), 56–71 (1997)

    Article  Google Scholar 

  24. Nakamura, A.: Fuzzy rough sets. Note on Multiple-Valued Logic in Japan 9(8), 1–8 (1988)

    Google Scholar 

  25. Nowicki, R.: On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans. Knowl. Data Eng. 20(9), 1239–1253 (2008)

    Article  Google Scholar 

  26. Nowicki, R.: Rough-neuro-fuzzy structures for classification with missing data. IEEE Trans. Syst. Man. Cybern B 39 (2009)

    Google Scholar 

  27. Nowicki, R.K., Starczewski, J.T.: On Non-Singleton Fuzzification with DCOG Defuzzification. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010 Part-I. LNCS (LNAI), vol. 6113, pp. 168–174. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy sets and systems 126, 137–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rutkowska, D., Nowicki, R., Rutkowski, L.: Singleton and non-singleton fuzzy systems with nonparametric defuzzification. In: Computational Intelligence and Application, pp. 292–301. Springer (1999)

    Google Scholar 

  30. Rutkowska, D., Nowicki, R., Hayashi, Y.: Parallel Processing by Implication-Based Neuro-Fuzzy Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 599–607. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  31. Rutkowski, L.: Flexible neuro-fuzzy systems: structures, learning and performance evaluation. Kluwer Academic Publishers (2004b)

    Google Scholar 

  32. Rutkowski, L.: New soft computing techniques for system modeling, pattern classification and image processing. In: Studies in Fuzziness and Soft Computing, Springer (2004b)

    Google Scholar 

  33. Rutkowski, L.: Computational intelligence - methods and techniques. Springer (2008)

    Google Scholar 

  34. Rutkowski, L., Cpalka, K.: Flexible neuro-fuzzy systems. IEEE Transactions on Neural Networks 14(3), 554–574 (2003)

    Article  Google Scholar 

  35. Sahab, N., Hagras, H.: A type-2 nonsingleton type-2 fuzzy logic system to handle linguistic and numerical uncertainties in real world environments. In: Proc. 2011 IEEE International Symposium on Advances in Type-2 Fuzzy Logic Systems (2011)

    Google Scholar 

  36. Sambuc, R.: Fonctions φ-flous. application a laide au diagnostic en pathologie thyroidienne. PhD thesis. Th’ese Univ. de Marseille, Marseille (1975)

    Google Scholar 

  37. Starczewski, J., Rutkowski, L.: Neuro-fuzzy systems of type 2. In: Proc. 1st Int’l Conf. on Fuzzy Systems and Knowledge Discovery, Singapore, vol. 2, pp. 458–462 (2002)

    Google Scholar 

  38. Starczewski, J.T.: A triangular type-2 fuzzy logic system. In: Proc. IEEE-FUZZ 2006, Vancouver, CA, pp. 7231–7238 (2006)

    Google Scholar 

  39. Starczewski, J.T.: Efficient triangular type-2 fuzzy logic systems. International Journal of Approximate Reasoning 50, 799–811 (2009)

    Article  MATH  Google Scholar 

  40. Starczewski, J.T.: General type-2 FLS with uncertainty generated by fuzzy rough sets. In: Proc. IEEE-FUZZ 2010, Barcelona, pp. 1790–1795 (2010)

    Google Scholar 

  41. Türkşen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems 20, 191–210 (1986)

    Article  MathSciNet  Google Scholar 

  42. Wu, D., Mendel, J.M.: A vector similarity measure for linguistic approximation: Interval type-2 and type-1 fuzzy sets. Information Sciences 178, 381–402 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yao, Y.: Semantics of Fuzzy Sets in Rough Set Theory. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 297–318. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  44. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning — I. Information Sciences 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhai, D., Mendel, J.M.: Centroid of a general type2 fuzzy set computed by means of the centroidflow algorithm. In: Proc. IEEE FUZZ, Barcelona, pp. 1–8 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz T. Starczewski .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Starczewski, J.T. (2013). Generalized Uncertain Fuzzy Logic Systems. In: Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty. Studies in Fuzziness and Soft Computing, vol 284. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29520-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29520-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29519-5

  • Online ISBN: 978-3-642-29520-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics