Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Fuzzy Classifier for Data Streams

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7267))

Included in the following conference series:

Abstract

Along with technological developments we observe an increasing amount of stored and processed data. It is not possible to store all incoming data and analyze it on the fly. Therefore many researchers are working on new algorithms for data stream mining. New algorithm should be fast and should use a small amount of memory. We will consider the problem of data stream classification. To increase the accuracy we propose to use an ensemble of classifiers based on a modified FID3 algorithm. The experimental results show that this algorithm is fast and accurate. Therefore it is adequate tool for data stream classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, C.: Data Streams: Models and Algorithms. Springer, New York (2007)

    MATH  Google Scholar 

  2. Barandela, R., Sánchez, J., Valdovinos, R.: New Applications of Ensembles of Classifiers. Pattern Analysis & Applications 6(3), 245–256 (2003)

    Article  Google Scholar 

  3. Bifet, A., Frank, E., Holmes, G., Pfahringer, B.: Accurate Ensembles for Data Streams: Combining Restricted Hoeffding Trees using Stacking. In: 2nd Asian Conference on Machine Learning (ACML 2010), Tokyo, Japan, November 8-10, pp. 225–240 (2010)

    Google Scholar 

  4. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavalda, R.: New Ensemble Methods For Evolving Data Streams. In: KDD 2009, Paris France, pp. 139–148 (2009)

    Google Scholar 

  5. Chu, F., Zaniolo, C.: Fast and Light Boosting for Adaptive Mining of Data Streams. Springer, Heidelberg (2004)

    Google Scholar 

  6. Domingos, P., Hulten, G.: Mining High-Speed Data Streams. In: Proceedings of the Association for Computing Machinery Sixth International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)

    Google Scholar 

  7. Gaber, M., Krishnaswamy, S., Zaslavsky, A.: Advanced Methods of Knoweldge Discovery from Complex Data. In: Badhyopadhyay, S., Maulik, U., Holder, L., Cook, D. (eds.) On-board Mining of Data Streams in Sensor Networks, Springer, Heidelberg (2005)

    Google Scholar 

  8. Hashemi, S., Yang, Y.: Flexible decision tree for data stream classification in the presence fo concept change, noise and missing values. Data Mining and Knowledge Discovery 19(1), 95–131 (2009)

    Article  MathSciNet  Google Scholar 

  9. Khan, M., Ding, Q., Perrizo, W.: k-nearest Neighbor Classification on Spatial Data Streams Using P-trees. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 517–518. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Kirkby, R.: Improving Hoeffding Trees, PhD Thesis, University of Waikato, Department of Computer Science (2007)

    Google Scholar 

  11. Law, Y.-N., Zaniolo, C.: An Adaptive Nearest Neighbor Classification Algorithm for Data Streams. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 108–120. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Nowicki, R.: Nonlinear modelling and classification based on the MICOG defuzzifications. Journal of Nonlinear Analysis, Series A: Theory, Methods and Applications 7(12), 1033–1047 (2009)

    Article  Google Scholar 

  13. Polikar, R.: Ensemble Based Systems in Decision Making. IEEE Circuits and Systems Magazine 6(3), 21–45 (2006)

    Article  Google Scholar 

  14. Rutkowski, L.: The real-time identification of time-varying systems by nonparametric algorithms based on the Parzen kernels. International Journal of Systems Science 16, 1123–1130 (1985)

    Article  MATH  Google Scholar 

  15. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple Fourier series. Pattern Recognition Letters 8, 213–216 (1988)

    Article  MATH  Google Scholar 

  16. Rutkowski, L.: An application of multiple Fourier series to identification of multivariable nonstationary systems. International Journal of Systems Science 20(10), 1993–2002 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rutkowski, L.: Nonparametric learning algorithms in the time-varying environments. Signal Processing 18, 129–137 (1989)

    Article  MathSciNet  Google Scholar 

  18. Rutkowski, L., Cpałka, K.: A general approach to neuro - fuzzy systems. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne, December 2-5, vol. 3, pp. 1428–1431 (2001)

    Google Scholar 

  19. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control and Cybernetics 31(2), 297–308 (2002)

    MATH  Google Scholar 

  20. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmids bound. IEEE Transactions on Knowledge and Data Engineering 24 (2012)

    Google Scholar 

  21. Street, W., Kim, Y.: A Streaming Ensemble Algorithm (SEA) for Large-Scale Classification. In: KDD 2001, San Francisco, pp. 377–382 (2001)

    Google Scholar 

  22. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Scherer, R.: Neuro-fuzzy Systems with Relation Matrix. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 210–215. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on interval consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg, New York (2003)

    Google Scholar 

  25. Starczewski, J.T., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Umanol, M., Okamoto, H., Hatono, I., Tamura, H., Kawachi, F., Umedzu, S., Kinoshita, J.: Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems. In: Proceedings of The Third IEEE Conference on Fuzzy Systems, Orlando, FL, June 26-29, vol. 3, pp. 2113–2118 (1994)

    Google Scholar 

  27. Vivekanandan, P., Nedunchezhian, R.: Mining Rules of Concept Drift Using Genetic Algorithm. Journal of Artificial Inteligence and Soft Computing Research 1(2), 135–145 (2011)

    Google Scholar 

  28. Wang, T., Li, Z.-J., Hu, X., Yan, Y., Chen, H.-W.: A New Decision Tree Classification Method for Mining High-Speed Data Streams Based on Threaded Binary Search Trees. In: Washio, T., Zhou, Z.-H., Huang, J.Z., Hu, X., Li, J., Xie, C., He, J., Zou, D., Li, K.-C., Freire, M.M. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4819, pp. 256–267. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Wang, T., Li, Z.-J., Yan, Y., Chen, H.-W.: An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streams. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 91–103. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pietruczuk, L., Duda, P., Jaworski, M. (2012). A New Fuzzy Classifier for Data Streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29347-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29346-7

  • Online ISBN: 978-3-642-29347-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics