Abstract
Along with technological developments we observe an increasing amount of stored and processed data. It is not possible to store all incoming data and analyze it on the fly. Therefore many researchers are working on new algorithms for data stream mining. New algorithm should be fast and should use a small amount of memory. We will consider the problem of data stream classification. To increase the accuracy we propose to use an ensemble of classifiers based on a modified FID3 algorithm. The experimental results show that this algorithm is fast and accurate. Therefore it is adequate tool for data stream classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C.: Data Streams: Models and Algorithms. Springer, New York (2007)
Barandela, R., Sánchez, J., Valdovinos, R.: New Applications of Ensembles of Classifiers. Pattern Analysis & Applications 6(3), 245–256 (2003)
Bifet, A., Frank, E., Holmes, G., Pfahringer, B.: Accurate Ensembles for Data Streams: Combining Restricted Hoeffding Trees using Stacking. In: 2nd Asian Conference on Machine Learning (ACML 2010), Tokyo, Japan, November 8-10, pp. 225–240 (2010)
Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavalda, R.: New Ensemble Methods For Evolving Data Streams. In: KDD 2009, Paris France, pp. 139–148 (2009)
Chu, F., Zaniolo, C.: Fast and Light Boosting for Adaptive Mining of Data Streams. Springer, Heidelberg (2004)
Domingos, P., Hulten, G.: Mining High-Speed Data Streams. In: Proceedings of the Association for Computing Machinery Sixth International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)
Gaber, M., Krishnaswamy, S., Zaslavsky, A.: Advanced Methods of Knoweldge Discovery from Complex Data. In: Badhyopadhyay, S., Maulik, U., Holder, L., Cook, D. (eds.) On-board Mining of Data Streams in Sensor Networks, Springer, Heidelberg (2005)
Hashemi, S., Yang, Y.: Flexible decision tree for data stream classification in the presence fo concept change, noise and missing values. Data Mining and Knowledge Discovery 19(1), 95–131 (2009)
Khan, M., Ding, Q., Perrizo, W.: k-nearest Neighbor Classification on Spatial Data Streams Using P-trees. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 517–518. Springer, Heidelberg (2002)
Kirkby, R.: Improving Hoeffding Trees, PhD Thesis, University of Waikato, Department of Computer Science (2007)
Law, Y.-N., Zaniolo, C.: An Adaptive Nearest Neighbor Classification Algorithm for Data Streams. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 108–120. Springer, Heidelberg (2005)
Nowicki, R.: Nonlinear modelling and classification based on the MICOG defuzzifications. Journal of Nonlinear Analysis, Series A: Theory, Methods and Applications 7(12), 1033–1047 (2009)
Polikar, R.: Ensemble Based Systems in Decision Making. IEEE Circuits and Systems Magazine 6(3), 21–45 (2006)
Rutkowski, L.: The real-time identification of time-varying systems by nonparametric algorithms based on the Parzen kernels. International Journal of Systems Science 16, 1123–1130 (1985)
Rutkowski, L.: Sequential pattern recognition procedures derived from multiple Fourier series. Pattern Recognition Letters 8, 213–216 (1988)
Rutkowski, L.: An application of multiple Fourier series to identification of multivariable nonstationary systems. International Journal of Systems Science 20(10), 1993–2002 (1989)
Rutkowski, L.: Nonparametric learning algorithms in the time-varying environments. Signal Processing 18, 129–137 (1989)
Rutkowski, L., Cpałka, K.: A general approach to neuro - fuzzy systems. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne, December 2-5, vol. 3, pp. 1428–1431 (2001)
Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control and Cybernetics 31(2), 297–308 (2002)
Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmids bound. IEEE Transactions on Knowledge and Data Engineering 24 (2012)
Street, W., Kim, Y.: A Streaming Ensemble Algorithm (SEA) for Large-Scale Classification. In: KDD 2001, San Francisco, pp. 377–382 (2001)
Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)
Scherer, R.: Neuro-fuzzy Systems with Relation Matrix. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 210–215. Springer, Heidelberg (2010)
Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on interval consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg, New York (2003)
Starczewski, J.T., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)
Umanol, M., Okamoto, H., Hatono, I., Tamura, H., Kawachi, F., Umedzu, S., Kinoshita, J.: Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems. In: Proceedings of The Third IEEE Conference on Fuzzy Systems, Orlando, FL, June 26-29, vol. 3, pp. 2113–2118 (1994)
Vivekanandan, P., Nedunchezhian, R.: Mining Rules of Concept Drift Using Genetic Algorithm. Journal of Artificial Inteligence and Soft Computing Research 1(2), 135–145 (2011)
Wang, T., Li, Z.-J., Hu, X., Yan, Y., Chen, H.-W.: A New Decision Tree Classification Method for Mining High-Speed Data Streams Based on Threaded Binary Search Trees. In: Washio, T., Zhou, Z.-H., Huang, J.Z., Hu, X., Li, J., Xie, C., He, J., Zou, D., Li, K.-C., Freire, M.M. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4819, pp. 256–267. Springer, Heidelberg (2007)
Wang, T., Li, Z.-J., Yan, Y., Chen, H.-W.: An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streams. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 91–103. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pietruczuk, L., Duda, P., Jaworski, M. (2012). A New Fuzzy Classifier for Data Streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-29347-4_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29346-7
Online ISBN: 978-3-642-29347-4
eBook Packages: Computer ScienceComputer Science (R0)