Nothing Special   »   [go: up one dir, main page]

Skip to main content

Validating Enterprise Architecture Principles Using Derivation Rules and Domain Knowledge

  • Conference paper
  • First Online:
Perspectives in Business Informatics Research (BIR 2023)

Abstract

In Enterprise Architecture Management (EAM), rules, constraints, and principles guide and govern the Enterprise Architecture (EA). These can be formulated and verified in ontology-based enterprise architecture models. The automatic validation of EA principles relies on the knowledge available in the EA models. However, there is knowledge implicit in models that humans may understand but machines cannot. For example, relationships between model elements may be derived using derivation rules and domain knowledge. Formalizing derivation rules in an enterprise ontology, we can infer this implicit knowledge and make it available to the machine for reasoning. This research demonstrates the feasibility of using derivation rules to extract implicit knowledge from enterprise models allowing EA principles validation and supporting EAM. The research contribution is presented using a concrete real-world use case and implementing the derivation rules for the EA modeling standard ArchiMate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.fhnw.ch/en/about-fhnw/schools.

References

  1. Afonina, V., Hinkelmann, K., Montecchiari, D.: Enriching enterprise architecture models with healthcare domain knowledge. In: Ruiz, M., Soffer, P. (eds.) Advanced Information Systems Engineering Workshops, CAiSE 2023. LNBIP, vol. 482, pp. 17–28. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34985-0_2

  2. Ahlemann, F., Stettiner, E., Messerschmidt, M., Legner, C. (eds.): Strategic Enterprise Architecture Management: Challenges, Best Practices, and Future Developments. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24223-6

  3. Antunes, G., Bakhshandeh, M., Mayer, R., Borbinha, J., Caetano, A.: Using ontologies for enterprise architecture integration and analysis. Complex Syst. Inform. Model. Q. 1(1), 1–23 (2014)

    Google Scholar 

  4. Caetano, A., et al.: Representation and analysis of enterprise models with semantic techniques: an application to ArchiMate, e3value and business model canvas. Knowl. Inf. Syst. 50(1), 315–346 (2017)

    Article  Google Scholar 

  5. Dietz, J.L., Mulder, H.B.: Enterprise Ontology. A Human-Centric Approach to Understanding the Essence of Organisation. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38854-6

    Book  Google Scholar 

  6. Feilmayr, C., Wöß, W.: An analysis of ontologies and their success factors for application to business. Data Knowl. Eng. 101, 1–23 (2016)

    Article  Google Scholar 

  7. Fox, M.S., Gruninger, M.: Enterprise modeling. AI Mag. 19(3), 109 (1998)

    Google Scholar 

  8. Greefhorst, D., Proper, E.: Architecture Principles: The Cornerstones of Enterprise Architecture. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20279-7

  9. Guerson, J., Sales, T.P., Guizzardi, G., Almeida, J.P.A.: OntoUML lightweight editor: a model-based environment to build, evaluate and implement reference ontologies. In: 2015 IEEE 19th International Enterprise Distributed Object Computing Workshop, pp. 144–147. ieeexplore.ieee.org, September 2015

    Google Scholar 

  10. Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., van der Merwe, A., Woitsch, R.: A new paradigm for the continuous alignment of business and it: combining enterprise architecture modelling and enterprise ontology. Comput. Ind. 79, 77–86 (2016)

    Article  Google Scholar 

  11. Hinkelmann., K., Laurenzi., E., Martin., A., Montecchiari., D., Spahic., M., Thönssen., B.: ArchiMEO: a standardized enterprise ontology based on the ArchiMate conceptual model. In: Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD, pp. 417–424. INSTICC, SciTePress (2020). https://doi.org/10.5220/0009000204170424

  12. Hinkelmann, K., Laurenzi, E., Martin, A., Thönssen, B.: Ontology-based metamodeling. In: Dornberger, R. (ed.) Business Information Systems and Technology 4.0. SSDC, vol. 141, pp. 177–194. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74322-6_12

    Chapter  Google Scholar 

  13. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., et al.: SWRL: a semantic web rule language combining OWL and RuleML. W3C Member Submission 21(79), 1–31 (2004)

    Google Scholar 

  14. Hubert, C., Lemons, D.: APQC’s levels of knowledge management maturity. APQC 2010, 1–5 (2010)

    Google Scholar 

  15. Kappel, G., et al.: Lifting metamodels to ontologies: a step to the semantic integration of modeling languages. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 528–542. Springer, Heidelberg (2006). https://doi.org/10.1007/11880240_37

    Chapter  Google Scholar 

  16. Karagiannis, D., Bork, D., Utz, W.: Metamodels as a conceptual structure: some semantical and syntactical operations. In: Bergener, K., Räckers, M., Stein, A. (eds.) The Art of Structuring, pp. 75–86. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06234-7_8

    Chapter  Google Scholar 

  17. Karagiannis, D., Buchmann, R.A.: A proposal for deploying hybrid knowledge bases: the ADOxx-to-GraphDB interoperability case. In: Hawaii International Conference on System Sciences 2018 (HICSS-51) (2018)

    Google Scholar 

  18. Karagiannis, D., Buchmann, R.A., Bork, D.: Managing consistency in multi-view enterprise models: an approach based on semantic queries. In: European Conference on Information Systems (2016)

    Google Scholar 

  19. Karagiannis, D., Woitsch, R.: Knowledge engineering in business process management. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 2. IHIS, pp. 623–648. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45103-4_26

    Chapter  Google Scholar 

  20. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). Technical report, W3C, July 2017. https://www.w3.org/TR/shacl/

  21. Kritikos, K., Laurenzi, E., Hinkelmann, K.: Towards business-to-IT alignment in the cloud. In: Mann, Z.Á., Stolz, V. (eds.) ESOCC 2017. CCIS, vol. 824, pp. 35–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79090-9_3

    Chapter  Google Scholar 

  22. Laurenzi, E., Hinkelmann, K., van der Merwe, A.: An agile and ontology-aided modeling environment. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018. LNBIP, vol. 335, pp. 221–237. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02302-7_14

    Chapter  Google Scholar 

  23. Laurenzi, E., Hinkelmann, K., Montecchiari, D., Goel, M.: Agile visualization in design thinking. In: Dornberger, R. (ed.) New Trends in Business Information Systems and Technology. SSDC, vol. 294, pp. 31–47. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-48332-6_3

    Chapter  Google Scholar 

  24. Marosin, D., van Zee, M., Ghanavati, S.: Formalizing and modeling enterprise architecture (EA) principles with goal-oriented requirements language (GRL). In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 205–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_13

    Chapter  Google Scholar 

  25. Montecchiari, D.: Ontology-based validation of enterprise architecture principles in enterprise models. In: BIR 2021 Workshops and Doctoral Consortium, co-located with 20th International Conference on Perspectives in Business Informatics Research, Vienna, Austria, 22–24 September 2021. http://ceur-ws.org/Vol-2991/

  26. Montecchiari, D., Hinkelmann, K.: Towards ontology-based validation of EA principles. In: Barn, B.S., Sandkuhl, K. (eds.) The Practice of Enterprise Modeling, PoEM 2022. LNBIP, vol. 456, pp. 66–81. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21488-2_5

  27. Olivé, A.: Derivation rules in object-oriented conceptual modeling languages. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 404–420. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45017-3_28

    Chapter  Google Scholar 

  28. OMG: Meta object facility (MOF) core specification, version 2.4.2. Technical report, Object Management Group (2014). https://www.omg.org/spec/MOF/2.4.2/PDF

  29. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. (TODS) 34(3), 1–45 (2009)

    Article  Google Scholar 

  30. Peter, M., Montecchiari, D., Hinkelmann, K., Gatziu Grivas, S.: Ontology-based visualization for business model design. In: Grabis, J., Bork, D. (eds.) PoEM 2020. LNBIP, vol. 400, pp. 244–258. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63479-7_17

    Chapter  Google Scholar 

  31. Ross: Basic RuleSpeak Guidelines. Do’s and Don’ts in Expressing Natural-Language (2009)

    Google Scholar 

  32. Santana, A., Simon, D., Fischbach, K., de Moura, H.: Combining network measures and expert knowledge to analyze enterprise architecture at the component level. In: 2016 IEEE 20th International Enterprise Distributed Object Computing Conference (EDOC), pp. 1–10, September 2016

    Google Scholar 

  33. Smajevic, M., Hacks, S., Bork, D.: Using knowledge graphs to detect enterprise architecture smells. In: Serral, E., Stirna, J., Ralyté, J., Grabis, J. (eds.) PoEM 2021. LNBIP, vol. 432, pp. 48–63. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91279-6_4

    Chapter  Google Scholar 

  34. Sportelli, F., Franconi, E.: Formalisation of ORM derivation rules and their mapping into OWL. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 827–843. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3_52

    Chapter  Google Scholar 

  35. Staworko, S., Boneva, I., Gayo, J.E.L., Hym, S., Prud’Hommeaux, E.G., Solbrig, H.: Complexity and expressiveness of ShEx for RDF. In: 18th International Conference on Database Theory, ICDT 2015 (2015)

    Google Scholar 

  36. The Open Group: TOGAF 9 - The Open Group Architecture Framework, vol. 9 (2009)

    Google Scholar 

  37. The Open Group: ArchiMate 3.2 Specification (2023)

    Google Scholar 

  38. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. Knowl. Eng. Rev. 13, 31–89 (1998). Special Issue on Putting Ontologies to Use

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devid Montecchiari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montecchiari, D., Hinkelmann, K. (2023). Validating Enterprise Architecture Principles Using Derivation Rules and Domain Knowledge. In: Hinkelmann, K., López-Pellicer, F.J., Polini, A. (eds) Perspectives in Business Informatics Research. BIR 2023. Lecture Notes in Business Information Processing, vol 493. Springer, Cham. https://doi.org/10.1007/978-3-031-43126-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43126-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43125-8

  • Online ISBN: 978-3-031-43126-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics