Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enriching Enterprise Architecture Models with Healthcare Domain Knowledge

  • Conference paper
  • First Online:
Advanced Information Systems Engineering Workshops (CAiSE 2023)

Abstract

Enterprise architecture (EA) modeling gives an opportunity to have an overview of the enterprise architecture supporting business-IT alignment within the rapidly changing environment. Visual representation of enterprise architecture models is appropriate for interpretation by humans. Machines, however, cannot interpret labels associated with the model element, as well as its domain-specific concepts. To make EA models machine-interpretable, a graphical representation of models shall be connected to domain knowledge. This research demonstrates an approach to enriching the EA model of a medical institution with healthcare domain knowledge. Evaluation of the developed solution proves that a human and a machine could equally understand the ontology-based EA model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahsan, K., Shah, H., Kingston, P.: Healthcare modeling through enterprise architecture: a hospital case. In: 2010 Seventh International Conference on Information Technology: New Generations. pp. 460–465. IEEE (2010)

    Google Scholar 

  2. Bachhofner, S., Kiesling, E., Revoredo, K., Waibel, P., Polleres, A.: Automated Process Knowledge Graph Construction from BPMN Models. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13426. Springer, Cham. (2022). https://doi.org/10.1007/978-3-031-12423-5_3

  3. Bertolazzi, P., Krusich, C., Missikoff, M., Manzoni, V.: An approach to the definition of a core enterprise ontology: CEO. International Workshop on Open Enterprise Solutions: Systems, Experiences, and Organizations. pp. 14–15 (2001)

    Google Scholar 

  4. Bubenko, J.A., Kirikova, M.: Improving the Quality of Requirements Specifications by Enterprise Modelling. In: Nilsson, A.G., Tolis, C., Nellborn, C. (eds) Perspectives on Business Modelling. Springer, Berlin, Heidelberg. (1999). https://doi.org/10.1007/978-3-642-58458-9_13

  5. Buchmann, R.A., Karagiannis, D.: Enriching linked data with semantics from domain-specific diagrammatic models. Bus. Inf. Syst. Eng. 58, 341–353 (2016)

    Article  Google Scholar 

  6. Dieng-Kuntz, R., et al.: Building and using a medical ontology for knowledge management and cooperative work in a health care network. Comput. Biol. Med. 36(7–8), 871–892 (2006)

    Google Scholar 

  7. Dietz, J.L.: ENTERPRISE ONTOLOGY - UNDERSTANDING THE ESSENCE OF ORGANIZATIONAL OPERATION. In: Chen, CS., Filipe, J., Seruca, I., Cordeiro, J. (eds) Enterprise Information Systems VII. Springer, Dordrecht. (2007). https://doi.org/10.1007/978-1-4020-5347-4_3

  8. Enderton, H.B.: Degrees of computational complexity. J. Comput. Syst. Sci. 6(5), 389–396 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fill, H.G.: SeMFIS: a flexible engineering platform for semantic annotations of conceptual models. Semant. Web 8(5), 747–763 (2017)

    Article  Google Scholar 

  10. Fox, M.S.: The TOVE project towards a common-sense model of the enterprise. In: Belli, F., Radermacher, F.J. (eds.) IEA/AIE 1992. LNCS, vol. 604, pp. 25–34. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0024952

    Chapter  Google Scholar 

  11. Fox, M.S., Gruninger, M.: Enterprise modeling. AI magazine 19(3), 109–109 (1998)

    Google Scholar 

  12. Geerts, G. L., McCarthy, W. E.: The ontological foundation of REA enterprise information systems. In: Annual Meeting of the American Accounting Association, Philadelphia, PA. Vol. 362, pp. 127–150 (2000)

    Google Scholar 

  13. The Gene Ontology GO, http://geneontology.org, (2023)

  14. Girsang, A.S., Abimanyu, A.: Development of an enterprise architecture for healthcare using TOGAF ADM. Emerg. Sci. J. 5(3), 305–321 (2021)

    Article  Google Scholar 

  15. Glaser, PL., Ali, S.J., Sallinger, E., Bork, D.: Model-Based Construction of Enterprise Architecture Knowledge Graphs. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds) Enterprise Design, Operations, and Computing. EDOC 2022. Lecture Notes in Computer Science, vol 13585. Springer, Cham. (2022). https://doi.org/10.1007/978-3-031-17604-3_4

  16. Staab, S., Studer, R. (eds.): Handbook on Ontologies. IHIS, Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3

    Book  MATH  Google Scholar 

  17. Gustas, R., Gustiené, P.: A Semantically Integrated Conceptual Modelling Method for Business Process Reengineering. In: Zimmermann, A., Schmidt, R., Jain, L.C. (eds.) Architecting the Digital Transformation. ISRL, vol. 188, pp. 163–177. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49640-1_9

    Chapter  Google Scholar 

  18. Hevner, A., Chatterjee, S.: Design Science Research in Information Systems. In: Design Research in Information Systems. Integrated Series in Information Systems, vol 22. Springer, Boston, MA. (2010). https://doi.org/10.1007/978-1-4419-5653-8_2

  19. Hinkelmann, K., Gerber, A., Karagiannis, D., Thöenssen, B., Van der Merwe, A., Woitsch, R.: A new paradigm for the continuous alignment of business and IT: Combining enterprise architecture modeling and enterprise ontology. Comput. Ind. 79, 77–86 (2016)

    Article  Google Scholar 

  20. Hinkelmann, K., Laurenzi, E., Lammel, B., Kurjakovic, S., Woitsch, R.: A semantically-enhanced modelling environment for business process as a service. In: 4th International Conference on Enterprise Systems (ES). pp. 143–152. IEEE (2016)

    Google Scholar 

  21. Hinkelmann, K., Laurenzi, E., Martin, A., Montecchiari, D., Spahic, M., Thönssen, B.: ArchiMEO: A Standardized Enterprise Ontology based on the ArchiMate Conceptual Model. In: MODELSWARD. pp. 417–424 (2020)

    Google Scholar 

  22. Ilie, L., Moisescu, M. A., Caramihai, S. I., Culita, J.: Enterprise architecture role in hospital management systems development. In: 23rd International Conference on Control Systems and Computer Science (CSCS). pp. 274–279. IEEE (2021)

    Google Scholar 

  23. International Classification of Diseases, https://www.who.int/standards/classifications/classification-of-diseases, ICD 10th Revision (2019)

  24. Jiajia, L., Wen, S.: OntoWeb: Ontology-based information exchange for knowledge management and electronic commerce. Data Anal. Knowl. Discov. 1(2), 26–29 (2006)

    Google Scholar 

  25. Laurenzi, E., Hinkelmann, K., van der Merwe, A.: An Agile and Ontology-Aided Modeling Environment. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018. LNBIP, vol. 335, pp. 221–237. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02302-7_14

    Chapter  Google Scholar 

  26. Laurenzi, E., Hinkelmann, K., van der Merwe, A.: An Agile and Ontology-Aided Modeling Environment. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018. LNBIP, vol. 335, pp. 221–237. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02302-7_14

    Chapter  Google Scholar 

  27. Loucopoulos, P., Kavakli, V., Prekas, N., Rolland, C., Grosz, G., Nurcan, S.: Using the EKD approach: the modeling component. ELEKTRA-Project No. 22927. ESPRIT Programme, 7 (1998)

    Google Scholar 

  28. Maedche A., Ontology Learning for the Semantic Web. Kluwer Academic Publishers (2002)

    Google Scholar 

  29. Malhotra, A., Younesi, E., Gündel, M., Müller, B., Heneka, M.T., Hofmann-Apitius, M.: ADO: A disease ontology representing the domain knowledge specific to Alzheimer’s disease. Alzheimer’s Dement. 10(2), 238–246 (2014)

    Article  Google Scholar 

  30. Mans, R. S., Schonenberg, M. H., Song, M., Van der Aalst, W. M. P., Bakker, P. J. M.: Process mining in healthcare. In: International Conference on Health Informatics (HEALTHINF’08). pp. 118–125 (2015)

    Google Scholar 

  31. Mayer, N., Aubert, J., Grandry, E., Feltus, C., Goettelmann, E., Wieringa, R.: An integrated conceptual model for information system security risk management supported by enterprise architecture management. Softw. Syst. Model. 18(3), 2285–2312 (2019)

    Article  Google Scholar 

  32. Medical Dictionary for Regulatory Activities, MedRa, https://www.meddra.org/about-meddra/organisation/msso, version 25.0 (2022)

  33. Medical subject headings ontology, (MESH), https://www.nlm.nih.gov/mesh/meshhome.html. (2022)

  34. Minoli, D.: Enterprise architecture A to Z: frameworks, business process modeling, SOA, and infrastructure technology. Auerbach Publications (2008)

    Google Scholar 

  35. Montani, S., Leonardi, G., Quaglini, S., Cavallini, A., Micieli, G.: Improving structural medical process comparison by exploiting domain knowledge and mined information. Artif. Intell. Med. 62(1), 33–45 (2014)

    Article  Google Scholar 

  36. Noy, N. F., McGuinness, D. L.: Ontology development 101: a guide to creating your first ontology (2001)

    Google Scholar 

  37. Ontology of Medically Related Social Entities (MRSE), https://github.com/ufbmi/omrse, (2022)

  38. Osterwalder, A.: The business model ontology a proposition in a design science approach. Doctoral dissertation, Université de Lausanne, Faculté des hautes études commerciales (2004)

    Google Scholar 

  39. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_3

    Chapter  Google Scholar 

  40. Simon, D., Fischbach, K., Schoder, D.: An exploration of enterprise architecture research. Commun. Assoc. Inf. Syst. 32(1), 1 (2013)

    Google Scholar 

  41. Sirin, E., Parsia, B., Hendler, J.A.: Template-based Composition of Semantic Web Services. Agents and the Semantic Web, In AAAI Fall Symposium (2005)

    Google Scholar 

  42. The Drug Ontology DRON, http://purl.obolibrary.org/obo/dron.owl (2022)

  43. The Open Group. ArchiMate® 3.2 Specification https://pubs.opengroup.org/architecture/archimate32-doc/ (2022)

  44. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. Knowl. Eng. Rev. 13(1), 31–89 (1998)

    Article  Google Scholar 

  45. Vadivu, G., Hopper, S.W.: Ontology mapping of Indian medicinal plants with standardized medical terms. J. Comput. Sci. 8, 1576–1584 (2012). https://doi.org/10.3844/jcssp.2012.1576.1584

    Article  Google Scholar 

  46. Wilcox, A.B., Hripcsak, G.: The role of domain knowledge in automating medical text report classification. J. Am. Med. Inform. Assoc. 10(4), 330–338 (2003)

    Article  Google Scholar 

  47. Yin, C., Zhao, R., Qian, B., Lv, X., Zhang, P.: Domain knowledge guided deep learning with electronic health records. In: 2019 IEEE International Conference on Data Mining (ICDM). pp. 738–747. IEEE (2019)

    Google Scholar 

  48. Zeshan, F., Mohamad, R.: Medical ontology in the dynamic healthcare environment. Procedia Comput. Sci. 10, 340–348 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valeriia Afonina , Knut Hinkelmann or Devid Montecchiari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Afonina, V., Hinkelmann, K., Montecchiari, D. (2023). Enriching Enterprise Architecture Models with Healthcare Domain Knowledge. In: Ruiz, M., Soffer, P. (eds) Advanced Information Systems Engineering Workshops. CAiSE 2023. Lecture Notes in Business Information Processing, vol 482. Springer, Cham. https://doi.org/10.1007/978-3-031-34985-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34985-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34984-3

  • Online ISBN: 978-3-031-34985-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics