Abstract
Enterprise architecture (EA) modeling gives an opportunity to have an overview of the enterprise architecture supporting business-IT alignment within the rapidly changing environment. Visual representation of enterprise architecture models is appropriate for interpretation by humans. Machines, however, cannot interpret labels associated with the model element, as well as its domain-specific concepts. To make EA models machine-interpretable, a graphical representation of models shall be connected to domain knowledge. This research demonstrates an approach to enriching the EA model of a medical institution with healthcare domain knowledge. Evaluation of the developed solution proves that a human and a machine could equally understand the ontology-based EA model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahsan, K., Shah, H., Kingston, P.: Healthcare modeling through enterprise architecture: a hospital case. In: 2010 Seventh International Conference on Information Technology: New Generations. pp. 460–465. IEEE (2010)
Bachhofner, S., Kiesling, E., Revoredo, K., Waibel, P., Polleres, A.: Automated Process Knowledge Graph Construction from BPMN Models. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13426. Springer, Cham. (2022). https://doi.org/10.1007/978-3-031-12423-5_3
Bertolazzi, P., Krusich, C., Missikoff, M., Manzoni, V.: An approach to the definition of a core enterprise ontology: CEO. International Workshop on Open Enterprise Solutions: Systems, Experiences, and Organizations. pp. 14–15 (2001)
Bubenko, J.A., Kirikova, M.: Improving the Quality of Requirements Specifications by Enterprise Modelling. In: Nilsson, A.G., Tolis, C., Nellborn, C. (eds) Perspectives on Business Modelling. Springer, Berlin, Heidelberg. (1999). https://doi.org/10.1007/978-3-642-58458-9_13
Buchmann, R.A., Karagiannis, D.: Enriching linked data with semantics from domain-specific diagrammatic models. Bus. Inf. Syst. Eng. 58, 341–353 (2016)
Dieng-Kuntz, R., et al.: Building and using a medical ontology for knowledge management and cooperative work in a health care network. Comput. Biol. Med. 36(7–8), 871–892 (2006)
Dietz, J.L.: ENTERPRISE ONTOLOGY - UNDERSTANDING THE ESSENCE OF ORGANIZATIONAL OPERATION. In: Chen, CS., Filipe, J., Seruca, I., Cordeiro, J. (eds) Enterprise Information Systems VII. Springer, Dordrecht. (2007). https://doi.org/10.1007/978-1-4020-5347-4_3
Enderton, H.B.: Degrees of computational complexity. J. Comput. Syst. Sci. 6(5), 389–396 (1972)
Fill, H.G.: SeMFIS: a flexible engineering platform for semantic annotations of conceptual models. Semant. Web 8(5), 747–763 (2017)
Fox, M.S.: The TOVE project towards a common-sense model of the enterprise. In: Belli, F., Radermacher, F.J. (eds.) IEA/AIE 1992. LNCS, vol. 604, pp. 25–34. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0024952
Fox, M.S., Gruninger, M.: Enterprise modeling. AI magazine 19(3), 109–109 (1998)
Geerts, G. L., McCarthy, W. E.: The ontological foundation of REA enterprise information systems. In: Annual Meeting of the American Accounting Association, Philadelphia, PA. Vol. 362, pp. 127–150 (2000)
The Gene Ontology GO, http://geneontology.org, (2023)
Girsang, A.S., Abimanyu, A.: Development of an enterprise architecture for healthcare using TOGAF ADM. Emerg. Sci. J. 5(3), 305–321 (2021)
Glaser, PL., Ali, S.J., Sallinger, E., Bork, D.: Model-Based Construction of Enterprise Architecture Knowledge Graphs. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds) Enterprise Design, Operations, and Computing. EDOC 2022. Lecture Notes in Computer Science, vol 13585. Springer, Cham. (2022). https://doi.org/10.1007/978-3-031-17604-3_4
Staab, S., Studer, R. (eds.): Handbook on Ontologies. IHIS, Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3
Gustas, R., Gustiené, P.: A Semantically Integrated Conceptual Modelling Method for Business Process Reengineering. In: Zimmermann, A., Schmidt, R., Jain, L.C. (eds.) Architecting the Digital Transformation. ISRL, vol. 188, pp. 163–177. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49640-1_9
Hevner, A., Chatterjee, S.: Design Science Research in Information Systems. In: Design Research in Information Systems. Integrated Series in Information Systems, vol 22. Springer, Boston, MA. (2010). https://doi.org/10.1007/978-1-4419-5653-8_2
Hinkelmann, K., Gerber, A., Karagiannis, D., Thöenssen, B., Van der Merwe, A., Woitsch, R.: A new paradigm for the continuous alignment of business and IT: Combining enterprise architecture modeling and enterprise ontology. Comput. Ind. 79, 77–86 (2016)
Hinkelmann, K., Laurenzi, E., Lammel, B., Kurjakovic, S., Woitsch, R.: A semantically-enhanced modelling environment for business process as a service. In: 4th International Conference on Enterprise Systems (ES). pp. 143–152. IEEE (2016)
Hinkelmann, K., Laurenzi, E., Martin, A., Montecchiari, D., Spahic, M., Thönssen, B.: ArchiMEO: A Standardized Enterprise Ontology based on the ArchiMate Conceptual Model. In: MODELSWARD. pp. 417–424 (2020)
Ilie, L., Moisescu, M. A., Caramihai, S. I., Culita, J.: Enterprise architecture role in hospital management systems development. In: 23rd International Conference on Control Systems and Computer Science (CSCS). pp. 274–279. IEEE (2021)
International Classification of Diseases, https://www.who.int/standards/classifications/classification-of-diseases, ICD 10th Revision (2019)
Jiajia, L., Wen, S.: OntoWeb: Ontology-based information exchange for knowledge management and electronic commerce. Data Anal. Knowl. Discov. 1(2), 26–29 (2006)
Laurenzi, E., Hinkelmann, K., van der Merwe, A.: An Agile and Ontology-Aided Modeling Environment. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018. LNBIP, vol. 335, pp. 221–237. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02302-7_14
Laurenzi, E., Hinkelmann, K., van der Merwe, A.: An Agile and Ontology-Aided Modeling Environment. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018. LNBIP, vol. 335, pp. 221–237. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02302-7_14
Loucopoulos, P., Kavakli, V., Prekas, N., Rolland, C., Grosz, G., Nurcan, S.: Using the EKD approach: the modeling component. ELEKTRA-Project No. 22927. ESPRIT Programme, 7 (1998)
Maedche A., Ontology Learning for the Semantic Web. Kluwer Academic Publishers (2002)
Malhotra, A., Younesi, E., Gündel, M., Müller, B., Heneka, M.T., Hofmann-Apitius, M.: ADO: A disease ontology representing the domain knowledge specific to Alzheimer’s disease. Alzheimer’s Dement. 10(2), 238–246 (2014)
Mans, R. S., Schonenberg, M. H., Song, M., Van der Aalst, W. M. P., Bakker, P. J. M.: Process mining in healthcare. In: International Conference on Health Informatics (HEALTHINF’08). pp. 118–125 (2015)
Mayer, N., Aubert, J., Grandry, E., Feltus, C., Goettelmann, E., Wieringa, R.: An integrated conceptual model for information system security risk management supported by enterprise architecture management. Softw. Syst. Model. 18(3), 2285–2312 (2019)
Medical Dictionary for Regulatory Activities, MedRa, https://www.meddra.org/about-meddra/organisation/msso, version 25.0 (2022)
Medical subject headings ontology, (MESH), https://www.nlm.nih.gov/mesh/meshhome.html. (2022)
Minoli, D.: Enterprise architecture A to Z: frameworks, business process modeling, SOA, and infrastructure technology. Auerbach Publications (2008)
Montani, S., Leonardi, G., Quaglini, S., Cavallini, A., Micieli, G.: Improving structural medical process comparison by exploiting domain knowledge and mined information. Artif. Intell. Med. 62(1), 33–45 (2014)
Noy, N. F., McGuinness, D. L.: Ontology development 101: a guide to creating your first ontology (2001)
Ontology of Medically Related Social Entities (MRSE), https://github.com/ufbmi/omrse, (2022)
Osterwalder, A.: The business model ontology a proposition in a design science approach. Doctoral dissertation, Université de Lausanne, Faculté des hautes études commerciales (2004)
Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_3
Simon, D., Fischbach, K., Schoder, D.: An exploration of enterprise architecture research. Commun. Assoc. Inf. Syst. 32(1), 1 (2013)
Sirin, E., Parsia, B., Hendler, J.A.: Template-based Composition of Semantic Web Services. Agents and the Semantic Web, In AAAI Fall Symposium (2005)
The Drug Ontology DRON, http://purl.obolibrary.org/obo/dron.owl (2022)
The Open Group. ArchiMate® 3.2 Specification https://pubs.opengroup.org/architecture/archimate32-doc/ (2022)
Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. Knowl. Eng. Rev. 13(1), 31–89 (1998)
Vadivu, G., Hopper, S.W.: Ontology mapping of Indian medicinal plants with standardized medical terms. J. Comput. Sci. 8, 1576–1584 (2012). https://doi.org/10.3844/jcssp.2012.1576.1584
Wilcox, A.B., Hripcsak, G.: The role of domain knowledge in automating medical text report classification. J. Am. Med. Inform. Assoc. 10(4), 330–338 (2003)
Yin, C., Zhao, R., Qian, B., Lv, X., Zhang, P.: Domain knowledge guided deep learning with electronic health records. In: 2019 IEEE International Conference on Data Mining (ICDM). pp. 738–747. IEEE (2019)
Zeshan, F., Mohamad, R.: Medical ontology in the dynamic healthcare environment. Procedia Comput. Sci. 10, 340–348 (2012)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Afonina, V., Hinkelmann, K., Montecchiari, D. (2023). Enriching Enterprise Architecture Models with Healthcare Domain Knowledge. In: Ruiz, M., Soffer, P. (eds) Advanced Information Systems Engineering Workshops. CAiSE 2023. Lecture Notes in Business Information Processing, vol 482. Springer, Cham. https://doi.org/10.1007/978-3-031-34985-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-34985-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34984-3
Online ISBN: 978-3-031-34985-0
eBook Packages: Computer ScienceComputer Science (R0)