Nothing Special   »   [go: up one dir, main page]

Skip to main content

Research on Website Traffic Prediction Method Based on Deep Learning

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2021)

Abstract

Accurate prediction of website traffic can improve network management, improve service quality, and improve the end user experience. Using the neural network learning and memory function, we can predict the time series of network traffic flow. Based on short - and long-term memory, we design the structure of data and neural network model and select the nonlinear activation function. The experimental results show that the proposed prediction method obtains the higher accuracy, which can effectively predict the traffic of visiting websites. At the same time, this method can effectively reduce the training time. By accurate traffic prediction, the network manager can adjust scheduling strategy to guarantee the user experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, K., Chen, L., An, Y., Cui, P.: A QoE test system for vehicular voice cloud services. Mob. Netw. Appl. 26(2), 700–715 (2019). https://doi.org/10.1007/s11036-019-01415-3

    Article  Google Scholar 

  2. Chen, L., Jiang, D., Bao, R., Xiong, J., Liu, F., Bei, L.: MIMO scheduling effectiveness analysis for bursty data service from view of QoE. Chin. J. Electron. 26(5), 1079–1085 (2017)

    Google Scholar 

  3. Chen, L., et al.: A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access 6(1), 15408–15419 (2018)

    Google Scholar 

  4. Chen, L., Zhang, L.: Spectral efficiency analysis for massive MIMO system under QoS constraint: an effective capacity perspective. Mob. Netw. Appl. 26(2), 691–699 (2020). https://doi.org/10.1007/s11036-019-01414-4

    Article  Google Scholar 

  5. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 7(1), 80–90 (2020)

    Google Scholar 

  6. Jiang, D., Wang, Y., Lv, Z., Qi, S., Singh, S.: Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inform. 16(2), 1310–1320 (2020)

    Google Scholar 

  7. Jiang, D., et al.: A performance measurement and analysis method for software-defined networking of IoV. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3029076

  8. Jiang, D., Wang, W., Shi, L., Song, H.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 7(1), 507–519 (2020)

    Google Scholar 

  9. Yang, B., Bao, W., Huang, D.S., Chen, Y.: Inference of large-scale time-delayed gene regulatory network with parallel mapreduce cloud platform. Sci. Rep. 8(1) (2018). https://doi.org/10.1038/s41598-018-36180-y

  10. Yang, B., Wenzheng, B.: Complex-valued ordinary differential equation modeling for time series identification. IEEE ACCESS 7(1) (2019). https://doi.org/10.1109/ACCESS.2019.2902958

  11. Boutaba, R., et al.: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. Appl. 9(1), 1–99 (2018). https://doi.org/10.1186/s13174-018-0087-2

    Article  Google Scholar 

  12. Jiang, D., et al.: AI-assisted energy-efficient and intelligent routing for reconfigurable wireless networks. IEEE Trans. Netw. Sci. Eng. (2020)

    Google Scholar 

  13. Jiang, D., et al.: Energy-efficient heterogeneous networking for electric vehicles networks in smart future cities. IEEE Trans. Intell. Transp. Syst. (2020). accepted, https://doi.org/10.1109/TITS.2020.3029015

  14. Jiang, D., Wang, Y., Lv, Z., Wang, W., Wang, H.: An energy-efficient networking approach in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. 38(5), 928–941 (2020)

    Google Scholar 

  15. Jiang, L. Huo, Z. Lv, H. Song, W. Qin.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Google Scholar 

  16. Pasichnyk, R., Susla, M., Honchar, L., Avhustyn, R.: Mathematical models of websites attendance and methods of its improvement. In: 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), pp. 375–377. Lviv (2017).https://doi.org/10.1109/CADSM.2017.7916154

  17. Saha, A., Ganguly, N., Chakraborty, S., De, A.: Learning network traffic dynamics using temporal point process. In: IEEE INFOCOM 2019–IEEE Conference on Computer Communications, pp. 1927–1935. Paris, France (2019). https://doi.org/10.1109/INFOCOM.2019.8737622

  18. Liu, Z., Yan, Y., Yang, J., Hauskrecht, M.: Missing value estimation for hierarchical time series: a study of hierarchical web traffic. In: 2015 IEEE International Conference on Data Mining, pp. 895–900. Atlantic City, NJ (2015). https://doi.org/10.1109/ICDM.2015.58

  19. Adegboyeg, A.: A dynamic bandwidth prediction and provisioning scheme in cloud networks. In: 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 623–628. Vancouver, BC (2015). https://doi.org/10.1109/CloudCom.2015.45

  20. Punitha, V., Mala, C.: Traffic classification in server farm using supervised learning techniques. Neural Comput. Appl. 33(4), 1279–1296 (2020). https://doi.org/10.1007/s00521-020-05030-2

    Article  Google Scholar 

  21. Salman, O., Elhajj, I.H., Kayssi, A., Chehab, A.: A review on machine learning–based approaches for Internet traffic classification. Ann. Telecommun. 75(11–12), 673–710 (2020). https://doi.org/10.1007/s12243-020-00770-7

    Article  Google Scholar 

  22. Kozik, R., Choraś, M., Renk, R., Hołubowicz, W.: Semi-unsupervised machine learning for anomaly detection in HTTP traffic. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. Advances in Intelligent Systems and Computing, vol. 403. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26227-7_72

  23. Liu, Z., Wang, R., Tao, M.: SmoteAdaNL: a learning method for network traffic classification. J. Ambient. Intell. Humaniz. Comput. 7(1), 121–130 (2015). https://doi.org/10.1007/s12652-015-0310-y

    Article  Google Scholar 

  24. Franc, V., Sofka, M., Bartos, K.: Learning detector of malicious network traffic from weak labels. In: Bifet, A., et al. (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2015. LNCS, vol. 9286, pp. 85–99. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23461-8_6

  25. Fowdur, T.P., Baulum, B.N., Beeharry, Y.: Performance analysis of network traffic capture tools and machine learning algorithms for the classification of applications, states and anomalies. Int. J. Inf. Technol. 12(3), 805–824 (2020). https://doi.org/10.1007/s41870-020-00458-0

    Article  Google Scholar 

  26. Orsolic, I., et al.: A machine learning approach to classifying youtube qoe based on encrypted network traffic. Multimed. Tools Appl. 76, 22267–22301 (2017). https://doi.org/10.1007/s11042-017-4728-4

  27. Gokhale, C., Olugbara, O.O.: Dark web traffic analysis of cybersecurity threats through South African internet protocol address space. SN Comput. Sci. 1(5), 1–20 (2020). https://doi.org/10.1007/s42979-020-00292-y

    Article  Google Scholar 

  28. Audah, M.Z.F., Chin, T.S., Zulfadzli, Y., Lee, C.K., Rizaluddin, K.: Towards efficient and scalable machine learning-based qos traffic classification in software-defined network. In: Awan, I., Younas, M., Ünal, P., Aleksy, M. (eds.) MobiWIS 2019. LNCS, vol. 11673, pp. 217–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27192-3_17

    Chapter  Google Scholar 

  29. Guo, L., Wu, Q., Liu, S., Duan, M., Li, H., Sun, J.: Deep learning-based real-time VPN encrypted traffic identification methods. J. Real-Time Image Proc. 17(1), 103–114 (2019). https://doi.org/10.1007/s11554-019-00930-6

    Article  Google Scholar 

  30. Atienza, D., Herrero, Á., Corchado, E.: Neural analysis of HTTP traffic for web attack detection. In: Herrero, Á., Baruque, B., Sedano, J., Quintián, H., Corchado, E. (eds.) International Joint Conference. CISIS 2015. Advances in Intelligent Systems and Computing, vol. 369. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19713-5_18

  31. Wang, Q.M., Fan, A.W., Shi, S.H.: Network trac prediction based on improved support vector machine. Int. J. Syst. Assur. Eng. Manag. 8(3), 1976–1980 (2017)

    Google Scholar 

  32. Sone, S.P., Lehtomäki, J.J., Khan, Z.: Wireless traffic usage forecasting using real enterprise network data: analysis and methods. IEEE Open J. Commun. Soc. 1, 777–797 (2020). https://doi.org/10.1109/OJCOMS.2020.3000059

  33. Alawe, I., Ksentini, A., Hadjadj-Aoul, Y., Bertin, P.: Improving traffic forecasting for 5G core network scalability: a machine learning approach. IEEE Netw. 32(6), 42–49 (2018). https://doi.org/10.1109/MNET.2018.1800104

Download references

Acknowledgment

This work is partly supported by Jiangsu technology project of Housing and Urban-Rural Development (No. 2018ZD265) and Xu Zhou Science and Technology Plan Project (No. KC21309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bao, R., Zhang, K., Huang, J., Li, Y., Liu, W., Wang, L. (2022). Research on Website Traffic Prediction Method Based on Deep Learning. In: Jiang, D., Song, H. (eds) Simulation Tools and Techniques. SIMUtools 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-030-97124-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97124-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97123-6

  • Online ISBN: 978-3-030-97124-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics