Abstract
Accurate prediction of website traffic can improve network management, improve service quality, and improve the end user experience. Using the neural network learning and memory function, we can predict the time series of network traffic flow. Based on short - and long-term memory, we design the structure of data and neural network model and select the nonlinear activation function. The experimental results show that the proposed prediction method obtains the higher accuracy, which can effectively predict the traffic of visiting websites. At the same time, this method can effectively reduce the training time. By accurate traffic prediction, the network manager can adjust scheduling strategy to guarantee the user experience.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhang, K., Chen, L., An, Y., Cui, P.: A QoE test system for vehicular voice cloud services. Mob. Netw. Appl. 26(2), 700–715 (2019). https://doi.org/10.1007/s11036-019-01415-3
Chen, L., Jiang, D., Bao, R., Xiong, J., Liu, F., Bei, L.: MIMO scheduling effectiveness analysis for bursty data service from view of QoE. Chin. J. Electron. 26(5), 1079–1085 (2017)
Chen, L., et al.: A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access 6(1), 15408–15419 (2018)
Chen, L., Zhang, L.: Spectral efficiency analysis for massive MIMO system under QoS constraint: an effective capacity perspective. Mob. Netw. Appl. 26(2), 691–699 (2020). https://doi.org/10.1007/s11036-019-01414-4
Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 7(1), 80–90 (2020)
Jiang, D., Wang, Y., Lv, Z., Qi, S., Singh, S.: Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inform. 16(2), 1310–1320 (2020)
Jiang, D., et al.: A performance measurement and analysis method for software-defined networking of IoV. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3029076
Jiang, D., Wang, W., Shi, L., Song, H.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 7(1), 507–519 (2020)
Yang, B., Bao, W., Huang, D.S., Chen, Y.: Inference of large-scale time-delayed gene regulatory network with parallel mapreduce cloud platform. Sci. Rep. 8(1) (2018). https://doi.org/10.1038/s41598-018-36180-y
Yang, B., Wenzheng, B.: Complex-valued ordinary differential equation modeling for time series identification. IEEE ACCESS 7(1) (2019). https://doi.org/10.1109/ACCESS.2019.2902958
Boutaba, R., et al.: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. Appl. 9(1), 1–99 (2018). https://doi.org/10.1186/s13174-018-0087-2
Jiang, D., et al.: AI-assisted energy-efficient and intelligent routing for reconfigurable wireless networks. IEEE Trans. Netw. Sci. Eng. (2020)
Jiang, D., et al.: Energy-efficient heterogeneous networking for electric vehicles networks in smart future cities. IEEE Trans. Intell. Transp. Syst. (2020). accepted, https://doi.org/10.1109/TITS.2020.3029015
Jiang, D., Wang, Y., Lv, Z., Wang, W., Wang, H.: An energy-efficient networking approach in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. 38(5), 928–941 (2020)
Jiang, L. Huo, Z. Lv, H. Song, W. Qin.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)
Pasichnyk, R., Susla, M., Honchar, L., Avhustyn, R.: Mathematical models of websites attendance and methods of its improvement. In: 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), pp. 375–377. Lviv (2017).https://doi.org/10.1109/CADSM.2017.7916154
Saha, A., Ganguly, N., Chakraborty, S., De, A.: Learning network traffic dynamics using temporal point process. In: IEEE INFOCOM 2019–IEEE Conference on Computer Communications, pp. 1927–1935. Paris, France (2019). https://doi.org/10.1109/INFOCOM.2019.8737622
Liu, Z., Yan, Y., Yang, J., Hauskrecht, M.: Missing value estimation for hierarchical time series: a study of hierarchical web traffic. In: 2015 IEEE International Conference on Data Mining, pp. 895–900. Atlantic City, NJ (2015). https://doi.org/10.1109/ICDM.2015.58
Adegboyeg, A.: A dynamic bandwidth prediction and provisioning scheme in cloud networks. In: 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 623–628. Vancouver, BC (2015). https://doi.org/10.1109/CloudCom.2015.45
Punitha, V., Mala, C.: Traffic classification in server farm using supervised learning techniques. Neural Comput. Appl. 33(4), 1279–1296 (2020). https://doi.org/10.1007/s00521-020-05030-2
Salman, O., Elhajj, I.H., Kayssi, A., Chehab, A.: A review on machine learning–based approaches for Internet traffic classification. Ann. Telecommun. 75(11–12), 673–710 (2020). https://doi.org/10.1007/s12243-020-00770-7
Kozik, R., Choraś, M., Renk, R., Hołubowicz, W.: Semi-unsupervised machine learning for anomaly detection in HTTP traffic. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. Advances in Intelligent Systems and Computing, vol. 403. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26227-7_72
Liu, Z., Wang, R., Tao, M.: SmoteAdaNL: a learning method for network traffic classification. J. Ambient. Intell. Humaniz. Comput. 7(1), 121–130 (2015). https://doi.org/10.1007/s12652-015-0310-y
Franc, V., Sofka, M., Bartos, K.: Learning detector of malicious network traffic from weak labels. In: Bifet, A., et al. (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2015. LNCS, vol. 9286, pp. 85–99. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23461-8_6
Fowdur, T.P., Baulum, B.N., Beeharry, Y.: Performance analysis of network traffic capture tools and machine learning algorithms for the classification of applications, states and anomalies. Int. J. Inf. Technol. 12(3), 805–824 (2020). https://doi.org/10.1007/s41870-020-00458-0
Orsolic, I., et al.: A machine learning approach to classifying youtube qoe based on encrypted network traffic. Multimed. Tools Appl. 76, 22267–22301 (2017). https://doi.org/10.1007/s11042-017-4728-4
Gokhale, C., Olugbara, O.O.: Dark web traffic analysis of cybersecurity threats through South African internet protocol address space. SN Comput. Sci. 1(5), 1–20 (2020). https://doi.org/10.1007/s42979-020-00292-y
Audah, M.Z.F., Chin, T.S., Zulfadzli, Y., Lee, C.K., Rizaluddin, K.: Towards efficient and scalable machine learning-based qos traffic classification in software-defined network. In: Awan, I., Younas, M., Ünal, P., Aleksy, M. (eds.) MobiWIS 2019. LNCS, vol. 11673, pp. 217–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27192-3_17
Guo, L., Wu, Q., Liu, S., Duan, M., Li, H., Sun, J.: Deep learning-based real-time VPN encrypted traffic identification methods. J. Real-Time Image Proc. 17(1), 103–114 (2019). https://doi.org/10.1007/s11554-019-00930-6
Atienza, D., Herrero, Á., Corchado, E.: Neural analysis of HTTP traffic for web attack detection. In: Herrero, Á., Baruque, B., Sedano, J., Quintián, H., Corchado, E. (eds.) International Joint Conference. CISIS 2015. Advances in Intelligent Systems and Computing, vol. 369. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19713-5_18
Wang, Q.M., Fan, A.W., Shi, S.H.: Network trac prediction based on improved support vector machine. Int. J. Syst. Assur. Eng. Manag. 8(3), 1976–1980 (2017)
Sone, S.P., Lehtomäki, J.J., Khan, Z.: Wireless traffic usage forecasting using real enterprise network data: analysis and methods. IEEE Open J. Commun. Soc. 1, 777–797 (2020). https://doi.org/10.1109/OJCOMS.2020.3000059
Alawe, I., Ksentini, A., Hadjadj-Aoul, Y., Bertin, P.: Improving traffic forecasting for 5G core network scalability: a machine learning approach. IEEE Netw. 32(6), 42–49 (2018). https://doi.org/10.1109/MNET.2018.1800104
Acknowledgment
This work is partly supported by Jiangsu technology project of Housing and Urban-Rural Development (No. 2018ZD265) and Xu Zhou Science and Technology Plan Project (No. KC21309).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Bao, R., Zhang, K., Huang, J., Li, Y., Liu, W., Wang, L. (2022). Research on Website Traffic Prediction Method Based on Deep Learning. In: Jiang, D., Song, H. (eds) Simulation Tools and Techniques. SIMUtools 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-030-97124-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-97124-3_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97123-6
Online ISBN: 978-3-030-97124-3
eBook Packages: Computer ScienceComputer Science (R0)