Nothing Special   »   [go: up one dir, main page]

Skip to main content

Neural Analysis of HTTP Traffic for Web Attack Detection

  • Conference paper
  • First Online:
International Joint Conference (CISIS 2015)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 369))

Abstract

Hypertext Transfer Protocol (HTTP) is the cornerstone for information exchanging over the World Wide Web by a huge variety of devices. It means that a massive amount of information travels over such protocol on a daily basis. Thus, it is an appealing target for attackers and the number of web attacks has increased over recent years. To deal with this matter, neural projection architectures are proposed in present work to analyze HTTP traffic and detect attacks over such protocol. By the advanced and intuitive visualization facilities obtained by neural models, the proposed solution allows providing an overview of HTTP traffic as well as identifying anomalous situations, responding to the challenges presented by volume, dynamics and diversity of that traffic. The applied dimensionality reduction based on Neural Networks, enables the most interesting projections of an HTTP traffic dataset to be extracted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Myerson, J.M.: Identifying enterprise network vulnerabilities. Int. J. Network Manage 12(3), 135–144 (2002)

    Article  Google Scholar 

  2. Fielding, R., Reschke, J.: Hypertext transfer protocol (HTTP/1.1): message syntax and routing. IETF RFC 7230 (2014)

    Google Scholar 

  3. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.: Hypertext transfer protocol – HTTP/1.1. IETF RFC 2068 (1997)

    Google Scholar 

  4. Crist, J.: Web based attacks. SANS institute - infosec reading room (2007)

    Google Scholar 

  5. Ponemon Institute - Cost of Cyber Crime Study (2014)

    Google Scholar 

  6. Kaspersky Security Bulletin 2014 (2014)

    Google Scholar 

  7. Pastrana, S., Torrano-Gimenez, C., Nguyen, H., Orfila, A.: Anomalous web payload detection: evaluating the resilience of 1-grams based classifiers. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C. (eds.) Intelligent Distributed Computing VIII, vol. 570, pp. 195–200. Springer International Publishing (2015)

    Google Scholar 

  8. Choraś, M., Kozik, R.: Machine learning techniques applied to detect cyber attacks on web applications. Logic J. IGPL 23(1), 45–56 (2014)

    Article  Google Scholar 

  9. Corchado, E., Herrero, Á.: Neural visualization of network traffic data for intrusion detection. Appl. Soft. Comput. 11(2), 2042–2056 (2011)

    Article  Google Scholar 

  10. Pinzón, C.I., De Paz, J.F., Herrero, Á., Corchado, E., Bajo, J., Corchado, J.M.: idMAS-SQL: intrusion detection based on MAS to detect and block SQL injection through data mining. Inf. Sci. 231, 15–31 (2013)

    Article  Google Scholar 

  11. Herrero, Á., Zurutuza, U., Corchado, E.: A neural-visualization IDS for honeynet data. Int. J. Neural Syst. 22(2), 1–18 (2012)

    Article  Google Scholar 

  12. D’Amico, A.D., Goodall, J.R., Tesone, D.R., Kopylec, J.K.: Visual discovery in computer network defense. IEEE Comput. Graphics Appl. 27(5), 20–27 (2007)

    Article  Google Scholar 

  13. The MathWorks, Inc., Natick, Massachusetts, United States.: MATLAB (2014)

    Google Scholar 

  14. Demartines, P., Herault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Networks 8(1), 148–154 (1997)

    Article  Google Scholar 

  15. Pearson, K.: On lines and planes of closest fit to systems of points in space. Phil. Mag. 2(6), 559–572 (1901)

    Article  Google Scholar 

  16. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–444 (1933)

    Article  Google Scholar 

  17. Oja, E.: Principal components, minor components, and linear neural networks. Neural Networks 5(6), 927–935 (1992)

    Article  Google Scholar 

  18. Fyfe, C.: A neural network for PCA and beyond. Neural Process. Lett. 6(1–2), 33–41 (1997)

    Article  MathSciNet  Google Scholar 

  19. Corchado, E., Fyfe, C.: Connectionist techniques for the identification and suppression of interfering underlying factors. Int. J. Pattern Recognit Artif Intell. 17(8), 1447–1466 (2003)

    Article  Google Scholar 

  20. Corchado, E., MacDonald, D., Fyfe, C.: Maximum and minimum likelihood hebbian learning for exploratory projection pursuit. Data Min. Knowl. Disc. 8(3), 203–225 (2004)

    Article  MathSciNet  Google Scholar 

  21. Fyfe, C., Corchado, E.: Maximum likelihood hebbian rules. In: 10th European Symposium on Artificial Neural Networks (ESANN 2002), pp. 143–148 (2002)

    Google Scholar 

  22. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  23. Ritter, H., Martinetz, T., Schulten, K.: Neural Computation and Self-Organizing Maps; An Introduction. Addison-Wesley Longman Publishing Co., Inc., Chicago (1992)

    Google Scholar 

  24. HTTP DATASET CSIC 2010: http://www.isi.csic.es/dataset/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Atienza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Atienza, D., Herrero, Á., Corchado, E. (2015). Neural Analysis of HTTP Traffic for Web Attack Detection. In: Herrero, Á., Baruque, B., Sedano, J., Quintián, H., Corchado, E. (eds) International Joint Conference. CISIS 2015. Advances in Intelligent Systems and Computing, vol 369. Springer, Cham. https://doi.org/10.1007/978-3-319-19713-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19713-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19712-8

  • Online ISBN: 978-3-319-19713-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics