Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sibyl: Host Load Prediction with an Efficient Deep Learning Model in Cloud Computing

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11335))

Abstract

Prediction of host load is essential in Cloud computing for improving resource utilization and achieving service-level agreements. However, accurate prediction of host load remains a challenge in Clouds because the type of load varies differently. Furthermore, selecting metrics for host load prediction is also a difficult task. With so many metrics in the Cloud systems, it is hard to determine which metrics are going to be useful. To address these challenges, this paper proposes an efficient deep learning model named Sibyl to improve the accuracy and efficiency of prediction. Sibyl includes two parts: a metrics selection module and a neural network training module. Sibyl first selects metrics by filtering out irrelevant metrics. Afterwards, Sibyl applies a powerful neural network model built with bidirectional long short-term memory to predict actual load one-step-ahead. We use Sibyl to analyze a 40-day load trace from a data center with 176 machines. Experiments show that Sibyl can reduce training metrics while maintaining prediction accuracy. Besides, Sibyl significantly improves prediction accuracy compared to other state-of-the-art methods based on autoregressive integrated moving-average and long short-term memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nazarko, J., Jurczuk, A., Zalewski, W.: ARIMA models in load modelling with clustering approach. In: Proceedings of IEEE Russia Power Tech (2005)

    Google Scholar 

  2. Tran, N., Reed, D.A.: Automatic ARIMA time series modeling for adaptive I/O prefetching. In: Proceedings of International Conference on Supercomputing (2002)

    Google Scholar 

  3. Zhu, B., Sastry, S.: Revisit dynamic ARIMA based anomaly detection. In: Proceedings of Published in International Conference on Social Computing (2002)

    Google Scholar 

  4. Wang, J., Chen, J.W., Wang, Y., Zheng, D.: Intelligent load balancing strategies for complex distributed simulation applications. In: Proceedings of International Conference on Computational Intelligence and Security (2009)

    Google Scholar 

  5. Di, S., Kondo, D., Cirne, W.: Host load prediction in a google compute cloud with a Bayesian model. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (2012)

    Google Scholar 

  6. Dabrowski, C., Hunt, F.: Using Markov chain analysis to study dynamic behaviour in large-scale grid systems. In: Proceedings of the Seventh Australasian Symposium on Grid Computing (2009)

    Google Scholar 

  7. Akioka, S., Muraoka, Y.: Extended forecast of CPU and network load on computational grid. In: Proceedings of International Symposium on CLUSTER Computing and the Grid (2004)

    Google Scholar 

  8. Byun, E.J., Choi, S.J., Baik, M.S.: MJSA: markov job scheduler based on availability in desktop grid computing environment. Future Gener. Comput. Syst. 23(4), 616–622 (2007)

    Article  Google Scholar 

  9. Yong, W.F, Goh, C., Hong, C.L., Zhan, Z.H., Li, Y.: Evolutionary neural network based energy consumption forecast for cloud computing. In: Proceedings of International Conference on Cloud Computing Research and Innovation (2015)

    Google Scholar 

  10. Xue, J., Yan, F., Birke, R., Chen, L.Y., Scherer, T.: PRACTISE: robust prediction of data center time series. In: Proceedings of International Conference on Network and Service Management (2015)

    Google Scholar 

  11. Lang, K., Zhang, M., Yuan, Y., Yue, X.: Short-term load forecasting based on multivariate time series prediction and weighted neural network with random weights and kernels. In: Proceedings of Cluster Computing (2018)

    Google Scholar 

  12. Huang, Z., Peng, J., Lian, H., Guo, J., Wei, Q.: Deep recurrent model for server load and performance prediction in data center. Complexity 2017(99), 1–10 (2007)

    Google Scholar 

  13. Saripalli, P., Oldenburg, C., Walters, B., Nanduri, R.: Implementation and usability evaluation of a cloud platform for scientific computing as a service (SCaaS). In: Proceedings of International Conference on Utility and Cloud Computing (2011)

    Google Scholar 

  14. Hussain, W., Hussain, F.K., Hussain, O., Chang, E.: Profile-based viable service level agreement (SLA) violation prediction model in the cloud. In: Proceedings of International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (2016)

    Google Scholar 

  15. Thalheim, J., Rodrigues, A., Akkus, I.E.: Sieve: actionable insights from monitored metrics in distributed systems. In: Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference (2017)

    Google Scholar 

  16. Amazon CloudWatch. https://aws.amazon.com/de/cloudwatch. Accessed 30 May 2018

  17. Paparrizos, J., Gravano, L.: k-Shape: efficient and accurate clustering of time series. In: ACM SIGMOD International Conference on Management of Data, vol. 45, no. 1, pp. 1855–1870 (2015)

    Google Scholar 

  18. Ballesteros, M., Dyer, C., Smith, N.A.: Improved transition-based parsing by modeling characters instead of words with LSTMs. In: Proceedings of Empirical Methods in Natural Language Processing (2015)

    Google Scholar 

  19. Zhang, Y., Chen, G., Yu, D., Yaco, K.: Highway long short-term memory RNNS for distant speech recognition. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing (2016)

    Google Scholar 

  20. Microsoft Cloud Monitoring. https://www.microsoft.com/en-us/cloud-platform/operations-management-suite. Accessed 28 May 2018

  21. Google Stackdriver.https://cloud.google.com/stackdriver. Accessed 1 June 2018

  22. Cao, J., Fu, J., Li, M.: CPU load prediction for cloud environment based on a dynamic ensemble model. Softw. Pract. Exp. 44(7), 793–804 (2014)

    Article  Google Scholar 

  23. Song, B., Yu, Y., Zhou, Y.: Host load prediction with long short-term memory in cloud computing. J. Supercomput. 23(2), 1–15 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grant 2017YFB 1010000 from the National Key R&D Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehai Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Tang, X., Han, J., Wang, P. (2018). Sibyl: Host Load Prediction with an Efficient Deep Learning Model in Cloud Computing. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11335. Springer, Cham. https://doi.org/10.1007/978-3-030-05054-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05054-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05053-5

  • Online ISBN: 978-3-030-05054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics