Abstract
We present a collection of axiom systems for the construction of Boolean subalgebras of larger overall algebras. The subalgebras are defined as the range of a complement-like operation on a semilattice. This technique has been used, for example, with the antidomain operation, dynamic negation and Stone algebras. We present a common ground for these constructions based on a new equational axiomatisation of Boolean algebras. All results are formally proved in Isabelle/HOL.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balbes, R., Horn, A.: Stone lattices. Duke Math. J. 37(3), 537–545 (1970)
Birkhoff, G.: Lattice Theory, Colloquium Publications, vol. XXV, 3rd edn. American Mathematical Society, Providence (1967)
Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 116–130. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_11
Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_11
Byrne, L.: Two brief formulations of Boolean algebra. Bull. Am. Math. Soc. 52(4), 269–272 (1946)
Dang, H.H., Höfner, P.: First-order theorem prover evaluation w.r.t. relation- and Kleene algebra. In: Berghammer, R., Möller, B., Struth, G. (eds.) PhD Programme at RelMiCS10/AKA5, pp. 48–52. Report 2008-04, Institut für Informatik, Universität Augsburg (2008)
Desharnais, J., Jipsen, P., Struth, G.: Domain and antidomain semigroups. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds.) RelMiCS/AKA 2009. LNCS, vol. 5827, pp. 73–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04639-1_6
Desharnais, J., Möller, B.: Fuzzifying modal algebra. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMICS 2014. LNCS, vol. 8428, pp. 395–411. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06251-8_24
Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans. Comput. Logic 7(4), 798–833 (2006)
Desharnais, J., Struth, G.: Domain axioms for a family of near-semirings. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 330–345. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79980-1_25
Desharnais, J., Struth, G.: Modal semirings revisited. In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 360–387. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70594-9_19
Desharnais, J., Struth, G.: Internal axioms for domain semirings. Sci. Comput. Program. 76(3), 181–203 (2011)
Frink, O.: Pseudo-complements in semi-lattices. Duke Math. J. 29(4), 505–514 (1962)
Frink Jr., O.: Representations of Boolean algebras. Bull. Am. Math. Soc. 47(10), 755–756 (1941)
Givant, S., Halmos, P.: Introduction to Boolean Algebras. Springer, New York (2009). https://doi.org/10.1007/978-0-387-68436-9
Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices. W. H. Freeman and Co., San Francisco (1971)
Guttmann, W.: Algebras for iteration and infinite computations. Acta Inf. 49(5), 343–359 (2012)
Guttmann, W.: Verifying minimum spanning tree algorithms with Stone relation algebras. J. Log. Algebraic Methods Program. 101, 132–150 (2018)
Guttmann, W., Struth, G., Weber, T.: Automating algebraic methods in Isabelle. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 617–632. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6_41
Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74464-1_11
Hollenberg, M.: An equational axiomatization of dynamic negation and relational composition. J. Logic Lang. Inform. 6(4), 381–401 (1997)
Huntington, E.V.: Boolean algebra. A correction. Trans. Am. Math. Soc. 35(2), 557–558 (1933)
Jackson, M., Stokes, T.: Semilattice pseudo-complements on semigroups. Commun. Algebra 32(8), 2895–2918 (2004)
Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443 (1997)
Maddux, R.D.: Relation-algebraic semantics. Theor. Comput. Sci. 160(1–2), 1–85 (1996)
McCune, W.: Prover9 and Mace4 (2005–2010). https://www.cs.unm.edu/~mccune/prover9/. Accessed 16 Jan 2020
McCune, W., Veroff, R., Fitelson, B., Harris, K., Feist, A., Wos, L.: Short single axioms for Boolean algebra. J. Autom. Reason. 29(1), 1–16 (2002)
Meredith, C.A., Prior, A.N.: Equational logic. Notre Dame J. Formal Logic 9(3), 212–226 (1968)
Möller, B., Desharnais, J.: Basics of modal semirings and of Kleene/omega algebras. Report 2019-03, Institut für Informatik, Universität Augsburg (2019)
Möller, B., Struth, G.: Algebras of modal operators and partial correctness. Theor. Comput. Sci. 351(2), 221–239 (2006)
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9
Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on the Implementation of Logics, pp. 3–13 (2010)
Wampler-Doty, M.: A complete proof of the Robbins conjecture. Archive of Formal Proofs (2016, first version 2010)
Acknowledgement
We thank Andreas Zelend and the anonymous referees for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Guttmann, W., Möller, B. (2020). A Hierarchy of Algebras for Boolean Subsets. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2020. Lecture Notes in Computer Science(), vol 12062. Springer, Cham. https://doi.org/10.1007/978-3-030-43520-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-43520-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43519-6
Online ISBN: 978-3-030-43520-2
eBook Packages: Computer ScienceComputer Science (R0)