Nothing Special   »   [go: up one dir, main page]

Skip to main content

Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder

  • Conference paper
Interactive Theorem Proving (ITP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6172))

Included in the following conference series:

Abstract

Nitpick is a counterexample generator for Isabelle/HOL that builds on Kodkod, a SAT-based first-order relational model finder. Nitpick supports unbounded quantification, (co)inductive predicates and datatypes, and (co)recursive functions. Fundamentally a finite model finder, it approximates infinite types by finite subsets. As case studies, we consider a security type system and a hotel key card system. Our experimental results on Isabelle theories and the TPTP library indicate that Nitpick generates more counterexamples than other model finders for higher-order logic, without restrictions on the form of the formulas to falsify.

This work is supported by the DFG grant Ni 491/11-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, P.B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS: A theorem-proving system for classical type theory. J. Auto. Reas. 16(3), 321–353 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bell, J.M., Bellegarde, F., Hook, J.: Type-driven defunctionalization. ACM SIGPLAN Notices 32(8), 25–37 (1997)

    Article  Google Scholar 

  3. Benzmüller, C., Paulson, L., Theiss, F., Fietzke, A.: Progress report on LEO-II, an automatic theorem prover for higher-order logic. In: Schneider, K., Brandt, J. (eds.) TPHOLs: Emerging Trends. C.S. Dept., University of Kaiserslautern, Internal Report 364/07 (2007)

    Google Scholar 

  4. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu, Z. (eds.) SEFM 2004, pp. 230–239. IEEE C.S., Los Alamitos (2004)

    Google Scholar 

  5. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Blanchette, J.C., Krauss, A.: Monotonicity inference for higher-order formulas. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, Springer, Heidelberg (to appear, 2010)

    Google Scholar 

  7. Bulwahn, L., Krauss, A., Nipkow, T.: Finding lexicographic orders for termination proofs in Isabelle/HOL. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 38–53. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Claessen, K., Sörensson, N.: New techniques that improve MACE-style model finding. In: MODEL (2003)

    Google Scholar 

  9. de Medeiros Santos, A.L.: Compilation by Transformation in Non-Strict Functional Languages. Ph.D. thesis, C.S. Dept., University of Glasgow (1995)

    Google Scholar 

  10. Dunets, A., Schellhorn, G., Reif, W.: Bounded relational analysis of free datatypes. In: Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 99–115. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Frias, M.F., Pombo, C.G.L., Moscato, M.M.: Alloy Analyzer + PVS in the analysis and verification of Alloy specifications. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 587–601. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  13. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge (2006)

    Google Scholar 

  14. Kuncak, V., Jackson, D.: Relational analysis of algebraic datatypes. In: Gall, H.C. (ed.) ESEC/FSE 2005 (2005)

    Google Scholar 

  15. McCune, W.: A Davis–Putnam program and its application to finite first-order model search: Quasigroup existence problems. Technical report, ANL (1994)

    Google Scholar 

  16. Nipkow, T.: Verifying a hotel key card system. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 1–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  18. Schumann, J.M.: Automated Theorem Proving in Software Engineering. Springer, Heidelberg (2001)

    Google Scholar 

  19. Snelting, G., Wasserrab, D.: A correctness proof for the Volpano/Smith security typing system. In: Klein, G., Nipkow, T., Paulson, L.C. (eds.) AFP (September 2008)

    Google Scholar 

  20. Sutcliffe, G., Suttner, C.: The TPTP problem library for automated theorem proving, http://www.cs.miami.edu/~tptp/

  21. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. J. Comp. Sec. 4(3), 167–187 (1996)

    Google Scholar 

  23. Weber, T.: SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D. thesis, Dept. of Informatics, T.U. München (2008)

    Google Scholar 

  24. Zhang, J., Zhang, H.: SEM: A system for enumerating models. In: Kaufmann, M. (ed.) IJCAI 95, vol. 1, pp. 298–303 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blanchette, J.C., Nipkow, T. (2010). Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder. In: Kaufmann, M., Paulson, L.C. (eds) Interactive Theorem Proving. ITP 2010. Lecture Notes in Computer Science, vol 6172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14052-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14052-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14051-8

  • Online ISBN: 978-3-642-14052-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics