Nothing Special   »   [go: up one dir, main page]

Skip to main content

Extending Sledgehammer with SMT Solvers

  • Conference paper
Automated Deduction – CADE-23 (CADE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6803))

Included in the following conference series:

Abstract

Sledgehammer is a component of Isabelle/HOL that employs first-order automatic theorem provers (ATPs) to discharge goals arising in interactive proofs. It heuristically selects relevant facts and, if an ATP is successful, produces a snippet that replays the proof in Isabelle. We extended Sledgehammer to invoke satisfiability modulo theories (SMT) solvers as well, exploiting its relevance filter and parallel architecture. Isabelle users are now pleasantly surprised by SMT proofs for problems beyond the ATPs’ reach. Remarkably, the best SMT solver performs better than the best ATP on most of our benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahrendt, W., Beckert, B., Hähnle, R., Menzel, W., Reif, W., Schellhorn, G., Schmitt, P.H.: Integrating automated and interactive theorem proving. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction—A Basis for Applications. Systems and Implementation Techniques, vol. II, pp. 97–116. Kluwer, Dordrecht (1998)

    Chapter  Google Scholar 

  2. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Applied Logic, vol. 27. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  3. Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 76–90. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Barsotti, D., Nieto, L.P., Tiu, A.: Verification of clock synchronization algorithms: Experiments on a combination of deductive tools. Formal Asp. Comput. 19(3), 321–341 (2007)

    Article  MATH  Google Scholar 

  6. Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II—a cooperative automatic theorem prover for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Bezem, M., Hendriks, D., de Nivelle, H.: Automatic proof construction in type theory using resolution. J. Auto. Reas. 29(3-4), 253–275 (2002)

    Article  MATH  Google Scholar 

  8. Böhme, S., Moskal, M., Schulte, W., Wolff, B.: HOL-Boogie—an interactive prover-backend for the Verifying C Compiler. J. Auto. Reas. 44(1-2), 111–144 (2010)

    Article  MATH  Google Scholar 

  9. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 107–121. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. Formal Asp. Comput. 20, 379–405 (2008)

    Article  MATH  Google Scholar 

  12. Claessen, K.: Equinox, a new theorem prover for full first-order logic with equality. Presentation at Dagstuhl Seminar on Deduction and Applications (2005)

    Google Scholar 

  13. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Couchot, J.-F., Lescuyer, S.: Handling polymorphism in automated deduction. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 263–278. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Dutertre, B., de Moura, L.: The Yices SMT solver (2006), http://yices.csl.sri.com/tool-paper.pdf

  17. Erkök, L., Matthews, J.: Using Yices as an automated solver in Isabelle/HOL. In: Rushby, J., Shankar, N. (eds.) Automated Formal Methods, pp. 3–13 (2008)

    Google Scholar 

  18. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + automation + soundness: Towards combining SMT solvers and interactive proof assistants. In: Hermanns, H., Palsberg, J. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 167–181. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: These proceedings (2011)

    Google Scholar 

  20. Hurd, J.: Integrating Gandalf and HOL. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 311–321. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer, M., Di Vito, B., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in Higher Order Logics, number CP-2003-212448 in NASA Technical Reports, pp. 56–68 (2003)

    Google Scholar 

  22. Keller, C.: Cooperation between SAT, SMT provers and Coq. Presentation at the Synthesis. Verification and Analysis of Rich Models workshop (2011)

    Google Scholar 

  23. Klein, G., Nipkow, T., Paulson, L. (eds.): The Archive of Formal Proofs, http://afp.sf.net/

  24. Korovin, K.: Instantiation-based automated reasoning: From theory to practice. In: Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 163–166. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: Design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study combining HOL-Light and CVC Lite. Electr. Notes Theor. Comput. Sci. 144(2), 43–51 (2006)

    Article  MATH  Google Scholar 

  27. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Auto. Reas. 40(1), 35–60 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Applied Logic 7(1), 41–57 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Moskal, M.: Programming with triggers. In: Dutertre, B., Strichman, O. (eds.) Satisfiability Modulo Theories (2009)

    Google Scholar 

  30. Nipkow, T.: Re: [isabelle] A beginner’s questionu [sic], (November 26, 2010), https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2010-November/msg00097.html

  31. Nipkow, T., Paulson, L.C., Wenzel, M.T. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic, LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  32. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 335–367. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  33. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E., Schulz, S. (eds.) International Workshop on the Implementation of Logics (2010)

    Google Scholar 

  34. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 232–245. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  35. Ranise, S., Tinelli, C.: The SMT-LIB standard: Version 1.2 (2006), http://goedel.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf

  36. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Comm. 15(2-3), 91–110 (2002)

    MATH  Google Scholar 

  37. Rushby, J.M.: Tutorial: Automated formal methods with PVS, SAL, and Yices. In: Hung, D.V., Pandya, P. (eds.) Software Engineering and Formal Methods, p. 262. IEEE, New York (2006)

    Google Scholar 

  38. Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  39. Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., Pollet, M.: Proof development with Ωmega: The irrationality of \(\sqrt2\). In: Kamareddine, F. (ed.) Thirty Five Years of Automating Mathematics. Applied Logic, vol. 28, pp. 271–314. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  40. Sutcliffe, G.: System description: SystemOnTPTP. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 406–410. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  41. Sutcliffe, G., Chang, C., Ding, L., McGuinness, D., da Silva, P.P.: Different proofs are good proofs. In: McGuinness, D., Stump, A., Sutcliffe, G., Tinelli, C. (eds.) Workshop on Evaluation Methods for Solvers, and Quality Metrics for Solutions, pp. 1–10 (2010)

    Google Scholar 

  42. Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Auto. Reas. 37(1-2), 21–43 (2006)

    Article  MATH  Google Scholar 

  43. Wampler-Doty, M.: A complete proof of the Robbins conjecture. In: Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs (2010), http://afp.sf.net/entries/Robbins-Conjecture.shtml

  44. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1965–2013. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  45. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  46. Wenzel, M.: Parallel proof checking in Isabelle/Isar. In: Dos Reis, G., Théry, L. (eds.) Programming Languages for Mechanized Mathematics Systems, ACM Digital Library (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blanchette, J.C., Böhme, S., Paulson, L.C. (2011). Extending Sledgehammer with SMT Solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds) Automated Deduction – CADE-23. CADE 2011. Lecture Notes in Computer Science(), vol 6803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22438-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22438-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22437-9

  • Online ISBN: 978-3-642-22438-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics