Umfang (Geometrie)

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Umfang des Kreises:
U = d·π (hier ist d = 1)
Umfang des Rechtecks:
U = 2·a + 2·b = 2·(a + b)

Der Umfang einer ebenen Figur, die durch eine Linie begrenzt ist, bezeichnet die Länge ihrer Begrenzungslinie.

Die Formel für den Kreisumfang lautet:

  • steht dabei für den Umfang,
  • für den Radius des Kreises,
  • für die Kreiszahl mit dem Wert 3,14159265… und
  • für den Kreisdurchmesser.

Der Umfang eines Vielecks ist die Summe seiner Seitenlängen.

Herzkurve
(Zeichnung mit )


Wird die Begrenzungslinie der Figur durch eine geschlossene stückweise glatte Parameterkurve beschrieben mit

,

so lässt sich ihr Umfang über das folgende Integral berechnen:

. (siehe Länge (Mathematik))
  • Karl Barth: Die technischen Hilfswissenschaften: Mathematik, Geometrie und Chemie. Oldenbourg, S. 95–96
Wiktionary: Umfang – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen