default search action
GECCO 2021: Lille, France
- Francisco Chicano, Krzysztof Krawiec:
GECCO '21: Genetic and Evolutionary Computation Conference, Lille, France, July 10-14, 2021. ACM 2021, ISBN 978-1-4503-8350-9
Ant colony optimization and swarm intelligence
- Riade Benbaki, Ziyad Benomar, Benjamin Doerr:
A rigorous runtime analysis of the 2-MMASib on jump functions: ant colony optimizers can cope well with local optima. 4-13 - Quoc Trung Dinh, Duc Dong Do, Minh Hoàng Hà:
Ants can solve the parallel drone scheduling traveling salesman problem. 14-21 - Calum C. Imrie, J. Michael Herrmann, Olaf Witkowski:
The paradox of choice in evolving swarms: information overload leads to limited sensing. 22-30 - Tomasz Kulpa, Krzysztof Trojanowski, Krzysztof Wójcik:
Stasis type particle stability in a stochastic model of particle swarm optimization. 31-39 - Mariana Macedo, Lydia Taw, Nishant Gurrapadi, Rodrigo C. Lira, Diego Pinheiro, Marcos A. C. Oliveira, Carmelo J. A. Bastos Filho, Ronaldo Menezes:
Fishing for interactions: a network science approach to modeling fish school search. 40-48 - Judhi Prasetyo, Giulia De Masi, Raina Zakir, Muhanad H. Mohammed Alkilabi, Elio Tuci, Eliseo Ferrante:
A bio-inspired spatial defence strategy for collective decision making in self-organized swarms. 49-56 - Xinhua Yang, Yufan Zhou, Ailing Shen, Juan Lin, Yiwen Zhong:
A hybrid ant colony optimization algorithm for the knapsack problem with a single continuous variable. 57-65
Complex systems (artificial life, artificial immune systems, generative and developmental systems, evolutionary robotics, evolvable hardware)
- Benjamin Capps, Jacob Schrum:
Using multiple generative adversarial networks to build better-connected levels for mega man. 66-74 - Leo Cazenille:
Ensemble feature extraction for multi-container quality-diversity algorithms. 75-83 - Antoine Cully:
Multi-emitter MAP-elites: improving quality, diversity and data efficiency with heterogeneous sets of emitters. 84-92 - Lara Dal Molin, Jasmeen Kanwal, Christopher Stone:
Resource availability and the evolution of cooperation in a 3D agent-based simulation. 93-101 - Seth G. Fitzgerald, Gary W. Delaney, David Howard, Frédéric Maire:
Evolving soft robotic jamming grippers. 102-110 - Alexandru Ianta, Ryan Amaral, Caleidgh Bayer, Robert J. Smith, Malcolm I. Heywood:
On the impact of tangled program graph marking schemes under the atari reinforcement learning benchmark. 111-119 - Quintino Francesco Lotito, Leonardo Lucio Custode, Giovanni Iacca:
A signal-centric perspective on the evolution of symbolic communication. 120-128 - Eric Medvet, Alberto Bartoli, Federico Pigozzi, Marco Rochelli:
Biodiversity in evolved voxel-based soft robots. 129-137 - Christina Spanellis, Brooke Stewart, Geoff Nitschke:
The Environment and Body-Brain Complexity. 138-145 - Christopher Mailer, Geoff Nitschke, Leanne Raw:
Evolving gaits for damage control in a hexapod robot. 146-153 - Giuseppe Paolo, Alexandre Coninx, Stéphane Doncieux, Alban Laflaquière:
Sparse reward exploration via novelty search and emitters. 154-162 - Enna Sachdeva, Shauharda Khadka, Somdeb Majumdar, Kagan Tumer:
MAEDyS: multiagent evolution via dynamic skill selection. 163-171 - Achkan Salehi, Alexandre Coninx, Stéphane Doncieux:
BR-NS: an archive-less approach to novelty search. 172-179 - Konstantinos Sfikas, Antonios Liapis, Georgios N. Yannakakis:
Monte Carlo elites: quality-diversity selection as a multi-armed bandit problem. 180-188 - Enrico Zardini, Davide Zappetti, Davide Zambrano, Giovanni Iacca, Dario Floreano:
Seeking quality diversity in evolutionary co-design of morphology and control of soft tensegrity modular robots. 189-197
Evolutionary combinatorial optimization and metaheuristics
- Jakob Bossek, Frank Neumann:
Evolutionary diversity optimization and the minimum spanning tree problem. 198-206 - Francisco Chicano, Gabriela Ochoa, Marco Tomassini:
Real-like MAX-SAT instances and the landscape structure across the phase transition. 207-215 - Bilel Derbel, Lorenzo Canonne:
A graph coloring based parallel hill climber for large-scale NK-landscapes. 216-224 - Ekhine Irurozki, Manuel López-Ibáñez:
Unbalanced mallows models for optimizing expensive black-box permutation problems. 225-233 - Alexandre D. Jesus, Luís Paquete, Bilel Derbel, Arnaud Liefooghe:
On the design and anytime performance of indicator-based branch and bound for multi-objective combinatorial optimization. 234-242 - Krzysztof Michalak:
Generating hard inventory routing problem instances using evolutionary algorithms. 243-251 - Anirban Mukhopadhyay, L. Darrell Whitley, Renato Tinós:
An efficient implementation of iterative partial transcription for the traveling salesman problem. 252-260 - Aneta Neumann, Jakob Bossek, Frank Neumann:
Diversifying greedy sampling and evolutionary diversity optimisation for constrained monotone submodular functions. 261-269 - Marcus Ritt, Alexander J. Benavides:
The tiebreaking space of constructive heuristics for the permutation flowshop minimizing makespan. 270-277 - Sara Tari, Gabriela Ochoa:
Local search pivoting rules and the landscape global structure. 278-286 - Shaolin Wang, Yi Mei, Mengjie Zhang:
Two-stage multi-objective genetic programming with archive for uncertain capacitated arc routing problem. 287-295 - Adrian Worring, Benjamin E. Mayer, Kay Hamacher:
Genetic algorithm niching by (Quasi-)infinite memory. 296-304
Evolutionary machine learning
- Santiago Gonzalez, Risto Miikkulainen:
Optimizing loss functions through multi-variate taylor polynomial parameterization. 305-313 - Adán José García, Wilfrido Gómez-Flores:
A survey of cluster validity indices for automatic data clustering using differential evolution. 314-322 - Jason Zhi Liang, Santiago Gonzalez, Hormoz Shahrzad, Risto Miikkulainen:
Regularized evolutionary population-based training. 323-331 - Yoshiki Nakamura, Motoki Horiuchi, Masaya Nakata:
Convergence analysis of rule-generality on the XCS classifier system. 332-339 - Shabnam Nazmi, Abdollah Homaifar, Mohd Anwar:
An effective action covering for multi-label learning classifier systems: a graph-theoretic approach. 340-348 - Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang:
Genetic programming for borderline instance detection in high-dimensional unbalanced classification. 349-357 - Francesco Ranzato, Marco Zanella:
Genetic adversarial training of decision trees. 358-367 - Tanja Tornede, Alexander Tornede, Marcel Wever, Eyke Hüllermeier:
Coevolution of remaining useful lifetime estimation pipelines for automated predictive maintenance. 368-376 - Jamal Toutouh, Una-May O'Reilly:
Signal propagation in a gradient-based and evolutionary learning system. 377-385 - Yingfang Yuan, Wenjun Wang, Wei Pang:
A systematic comparison study on hyperparameter optimisation of graph neural networks for molecular property prediction. 386-394
Evolutionary multiobjective optimization
- Jesús Guillermo Falcón-Cardona, Saúl Zapotecas Martínez, Abel García-Nájera:
Pareto compliance from a practical point of view. 395-402 - Linjun He, Hisao Ishibuchi, Dipti Srinivasan:
Metric for evaluating normalization methods in multiobjective optimization. 403-411 - Andrzej Jaszkiewicz, Piotr Zielniewicz:
Quick extreme hypervolume contribution algorithm. 412-420 - Arnaud Liefooghe, Sébastien Vérel, Benjamin Lacroix, Alexandru-Ciprian Zavoianu, John A. W. McCall:
Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems. 421-429 - Eugénie Marescaux, Nikolaus Hansen:
Hypervolume in biobjective optimization cannot converge faster than Ω(1/p). 430-438 - Ke Shang, Hisao Ishibuchi, Yang Nan:
Distance-based subset selection revisited. 439-447 - Ke Shang, Hisao Ishibuchi, Weiyu Chen:
Greedy approximated hypervolume subset selection for many-objective optimization. 448-456 - Seyed Mahdi Shavarani, Manuel López-Ibáñez, Joshua D. Knowles:
Realistic utility functions prove difficult for state-of-the-art interactive multiobjective optimization algorithms. 457-465 - Kendall Taylor, Huong Ha, Minyi Li, Jeffrey Chan, Xiaodong Li:
Bayesian preference learning for interactive multi-objective optimisation. 466-475 - Michal K. Tomczyk, Milosz Kadzinski:
Interactive evolutionary multiple objective optimization algorithm using a fast calculation of holistic acceptabilities. 476-484 - Jinyuan Zhang, Hisao Ishibuchi, Ke Shang, Linjun He, Lie Meng Pang, Yiming Peng:
Environmental selection using a fuzzy classifier for multiobjective evolutionary algorithms. 485-492
Evolutionary numerical optimization
- Youhei Akimoto:
Saddle point optimization with approximate minimization oracle. 493-501 - Tae Jong Choi, Julian Togelius:
Self-referential quality diversity through differential MAP-Elites. 502-509 - Jacob de Nobel, Hao Wang, Thomas Bäck:
Explorative data analysis of time series based algorithm features of CMA-ES variants. 510-518 - Paul Dufossé, Nikolaus Hansen:
Augmented lagrangian, penalty techniques and surrogate modeling for constrained optimization with CMA-ES. 519-527 - Zbynek Pitra, Marek Hanus, Jan Koza, Jirí Tumpach, Martin Holena:
Interaction between model and its evolution control in surrogate-assisted CMA evolution strategy. 528-536 - Patrick Spettel, Hans-Georg Beyer:
A matrix adaptation evolution strategy for optimization on general quadratic manifolds. 537-545 - Ryoji Tanabe:
Towards exploratory landscape analysis for large-scale optimization: a dimensionality reduction framework. 546-555
Genetic algorithms
- Jakob Bossek, Aneta Neumann, Frank Neumann:
Breeding diverse packings for the knapsack problem by means of diversity-tailored evolutionary algorithms. 556-564 - Claude Carlet, Domagoj Jakobovic, Stjepan Picek:
Evolutionary algorithms-assisted construction of cryptographic boolean functions. 565-573 - Anh Viet Do, Mingyu Guo, Aneta Neumann, Frank Neumann:
Analysis of evolutionary diversity optimisation for permutation problems. 574-582 - Arkadiy Dushatskiy, Tanja Alderliesten, Peter A. N. Bosman:
A novel surrogate-assisted evolutionary algorithm applied to partition-based ensemble learning. 583-591 - Daniel Kantor, Fernando J. Von Zuben, Fabrício Olivetti de França:
Simulated annealing for symbolic regression. 592-599 - Adel Nikfarjam, Jakob Bossek, Aneta Neumann, Frank Neumann:
Entropy-based evolutionary diversity optimisation for the traveling salesperson problem. 600-608 - Michal Witold Przewozniczek, Marcin Michal Komarnicki, Bartosz Frej:
Direct linkage discovery with empirical linkage learning. 609-617 - Manou Rosenberg, Tim French, Mark Reynolds, Lyndon While:
A genetic algorithm approach for the Euclidean Steiner tree problem with soft obstacles. 618-626 - Renato Tinós, Darrell Whitley, Francisco Chicano, Gabriela Ochoa:
Partition crossover for continuous optimization: ePX. 627-635 - Swetha Varadarajan, Darrell Whitley:
A parallel ensemble genetic algorithm for the traveling salesman problem. 636-643 - Darrell Whitley, Francisco Chicano, Hernán E. Aguirre:
Quadratization of gray coded representations, long path problems and needle functions. 644-651
General evolutionary computation and hybrids
- Julian Blank, Kalyanmoy Deb:
PSAF: a probabilistic surrogate-assisted framework for single-objective optimization. 652-659 - Maxim Buzdalov, Carola Doerr:
Optimal static mutation strength distributions for the (1 + λ) evolutionary algorithm on OneMax. 660-668 - Tome Eftimov, Anja Jankovic, Gorjan Popovski, Carola Doerr, Peter Korosec:
Personalizing performance regression models to black-box optimization problems. 669-677 - Alexander Hagg, Sebastian Berns, Alexander Asteroth, Simon Colton, Thomas Bäck:
Expressivity of parameterized and data-driven representations in quality diversity search. 678-686 - Anja Jankovic, Gorjan Popovski, Tome Eftimov, Carola Doerr:
The impact of hyper-parameter tuning for landscape-aware performance regression and algorithm selection. 687-696 - Atsuhiro Miyagi, Kazuto Fukuchi, Jun Sakuma, Youhei Akimoto:
Adaptive scenario subset selection for min-max black-box continuous optimization. 697-705 - Hayato Noguchi, Tomohiro Harada, Ruck Thawonmas:
Parallel differential evolution applied to interleaving generation with precedence evaluation of tentative solutions. 706-713 - Michal Shlapentokh-Rothman, Jonathan Kelly, Avital Baral, Erik Hemberg, Una-May O'Reilly:
Coevolutionary modeling of cyber attack patterns and mitigations using public datasets. 714-722 - Nicolas Szczepanski, Gilles Audemard, Laetitia Jourdan, Christophe Lecoutre, Lucien Mousin, Nadarajen Veerapen:
A hybrid CP/MOLS approach for multi-objective imbalanced classification. 723-731 - Braden N. Tisdale, Deacon Seals, Aaron Scott Pope, Daniel R. Tauritz:
Directing evolution: the automated design of evolutionary pathways using directed graphs. 732-740 - Weijie Zheng, Qiaozhi Zhang, Huanhuan Chen, Xin Yao:
When non-elitism meets time-linkage problems. 741-749
Genetic programming
- Guilherme Seidyo Imai Aldeia, Fabrício Olivetti de França:
Measuring feature importance of symbolic regression models using partial effects. 750-758 - Mazhar Ansari Ardeh, Yi Mei, Mengjie Zhang:
A novel multi-task genetic programming approach to uncertain capacitated Arc routing problem. 759-767 - Francisco Baeta, João Correia, Tiago Martins, Penousal Machado:
Speed benchmarking of genetic programming frameworks. 768-775 - Aurélie Boisbunon, Carlo Fanara, Ingrid Grenet, Jonathan Daeden, Alexis Vighi, Marc Schoenauer:
Zoetrope genetic programming for regression. 776-784 - Thomas Helmuth, Peter Kelly:
PSB2: the second program synthesis benchmark suite. 785-794 - Domagoj Jakobovic, Luca Manzoni, Luca Mariot, Stjepan Picek, Mauro Castelli:
CoInGP: convolutional inpainting with genetic programming. 795-803 - Yang Qing, Chi Ma, Yu Zhou, Xiao Zhang, Haowen Xia:
Cooperative coevolutionary multiobjective genetic programming for microarray data classification. 804-811 - Stefano Ruberto, Valerio Terragni, Jason H. Moore:
Towards effective GP multi-class classification based on dynamic targets. 812-821 - Dominik Sobania, Franz Rothlauf:
A generalizability measure for program synthesis with genetic programming. 822-829 - Marco Virgolin:
Genetic programming is naturally suited to evolve bagging ensembles. 830-839 - Alden H. Wright, Cheyenne L. Laue:
Evolvability and complexity properties of the digital circuit genotype-phenotype map. 840-848
Neuroevolution
- Rui P. Cardoso, Emma Hart, David Burth Kurka, Jeremy V. Pitt:
Using novelty search to explicitly create diversity in ensembles of classifiers. 849-857 - Souvik Das, Anirudh Shankar, Vaneet Aggarwal:
Training spiking neural networks with a multi-agent evolutionary robotics framework. 858-865 - Olle Nilsson, Antoine Cully:
Policy gradient assisted MAP-Elites. 866-875 - Matheus Nunes, Paulo M. Fraga, Gisele L. Pappa:
Fitness landscape analysis of graph neural network architecture search spaces. 876-884 - Jason Orlosky, Tim Grabowski:
Genetic crossover in the evolution of time-dependent neural networks. 885-891 - Joachim Winther Pedersen, Sebastian Risi:
Evolving and merging hebbian learning rules: increasing generalization by decreasing the number of rules. 892-900 - Nemanja Rakicevic, Antoine Cully, Petar Kormushev:
Policy manifold search: exploring the manifold hypothesis for diversity-based neuroevolution. 901-909 - Nilotpal Sinha, Kuan-Wen Chen:
Evolving neural architecture using one shot model. 910-918 - Paul Templier, Emmanuel Rachelson, Dennis G. Wilson:
A geometric encoding for neural network evolution. 919-927
Real world applications
- Uwe Bauknecht:
A genetic algorithm approach to virtual topology design for multi-layer communication networks. 928-936 - Maximilian Böther, Leon Schiller, Philipp Fischbeck, Louise Molitor, Martin S. Krejca, Tobias Friedrich:
Evolutionary minimization of traffic congestion. 937-945 - Marcin Czajkowski, Krzysztof Jurczuk, Marek Kretowski:
Accelerated evolutionary induction of heterogeneous decision trees for gene expression-based classification. 946-954 - Alexandros Doumanoglou, Petros Drakoulis, Kyriaki Christaki, Nikolaos Zioulis, Vladimiros Sterzentsenko, Antonis Karakottas, Dimitrios Zarpalas, Petros Daras:
Zeroth-order optimizer benchmarking for 3D performance capture: a real-world use case analysis. 955-963 - Myoung Hoon Ha, Seung-geun Chi, Sangyeop Lee, Yujin Cha, Byung-Ro Moon:
Evolutionary meta reinforcement learning for portfolio optimization. 964-972 - Masood Jabarnejad:
A genetic algorithm for AC optimal transmission switching. 973-981 - Alejandro Lopez Rincon, Carmina A. Perez Romero, Lucero Mendoza Maldonado, Eric Claassen, Johan Garssen, Aletta D. Kraneveld, Alberto Tonda:
Design of specific primer sets for SARS-CoV-2 variants using evolutionary algorithms. 982-990 - Zeyuan Ma, Hongshu Guo, Yinxuan Gui, Yue-Jiao Gong:
An efficient computational approach for automatic itinerary planning on web servers. 991-999 - Amit Mandelbaum, Doron Haritan Kazakov, Natali Shechtman:
Continuously running genetic algorithm for real-time networking device optimization. 1000-1008 - Risto Miikkulainen, Elliot Meyerson, Xin Qiu, Ujjayant Sinha, Raghav Kumar, Karen Hofmann, Yiyang Matt Yan, Michael Ye, Jingyuan Yang, Damon Caiazza, Stephanie Manson Brown:
Evaluating medical aesthetics treatments through evolved age-estimation models. 1009-1017 - Dena F. Mujtaba, Nihar R. Mahapatra:
Multi-objective optimization of item selection in computerized adaptive testing. 1018-1026 - Nono S. C. Merleau, Matteo Smerlak:
A simple evolutionary algorithm guided by local mutations for an efficient RNA design. 1027-1034 - Brandon Parker, Hemant Kumar Singh, Tapabrata Ray:
Multi-objective optimization across multiple concepts: a case study on lattice structure design. 1035-1042 - Muhilan Ramamoorthy, Stephanie Forrest, Violet R. Syrotiuk:
MA-ABC: a memetic algorithm optimizing attractiveness, balance, and cost for capacitated Arc routing problems. 1043-1051 - Takumi Tanabe, Kazuto Fukuchi, Jun Sakuma, Youhei Akimoto:
Level generation for angry birds with sequential VAE and latent variable evolution. 1052-1060 - Igor Vatolkin, Fabian Ostermann, Meinard Müller:
An evolutionary multi-objective feature selection approach for detecting music segment boundaries of specific types. 1061-1069 - Wolfgang Weintritt, Nysret Musliu, Felix Winter:
Solving the paintshop scheduling problem with memetic algorithms. 1070-1078 - Yue Xie, Aneta Neumann, Frank Neumann:
Heuristic strategies for solving complex interacting stockpile blending problem with chance constraints. 1079-1087
Search-based software engineering
- Sebastian Vogl, Sebastian Schweikl, Gordon Fraser:
Encoding the certainty of boolean variables to improve the guidance for search-based test generation. 1088-1096 - Nils Weidmann, Gregor Engels:
Concurrent model synchronisation with multiple objectives. 1097-1105 - Kaiou Yin, Paolo Arcaini, Tao Yue, Shaukat Ali:
Analyzing the impact of product configuration variations on advanced driver assistance systems with search. 1106-1114
Theory
- Denis Antipov, Maxim Buzdalov, Benjamin Doerr:
Lazy parameter tuning and control: choosing all parameters randomly from a power-law distribution. 1115-1123 - Henry Bambury, Antoine Bultel, Benjamin Doerr:
Generalized jump functions. 1124-1132 - Duc-Cuong Dang, Anton V. Eremeev, Per Kristian Lehre:
Non-elitist evolutionary algorithms excel in fitness landscapes with sparse deceptive regions and dense valleys. 1133-1141 - Benjamin Doerr, Timo Kötzing:
Lower bounds from fitness levels made easy. 1142-1150 - Mario Alejandro Hevia Fajardo, Dirk Sudholt:
Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter. 1151-1159 - Per Kristian Lehre, Xiaoyu Qin:
More precise runtime analyses of non-elitist EAs in uncertain environments. 1160-1168 - Daiki Morinaga, Kazuto Fukuchi, Jun Sakuma, Youhei Akimoto:
Convergence rate of the (1+1)-evolution strategy with success-based step-size adaptation on convex quadratic functions. 1169-1177 - Amirhossein Rajabi, Carsten Witt:
Stagnation detection in highly multimodal fitness landscapes. 1178-1186 - Yue Xie, Aneta Neumann, Frank Neumann, Andrew M. Sutton:
Runtime analysis of RLS and the (1+1) EA for the chance-constrained knapsack problem with correlated uniform weights. 1187-1194
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.