はてなキーワード: 観測問題とは
統合失調症の病態を理解する新たな理論的枠組みとして、神経回路レベルの情報処理における「最小作用の原理」からの逸脱が異常体験を引き起こすという仮説を提唱する[1][2][3]。
この理論は、従来のドーパミン仮説や神経回路異常説を統合し、自由エネルギー原理とベイズ推論の破綻を量子力学的アナロジーで説明する。
前頭葉-辺縁系のドーパミン伝達異常が神経回路の同期性を乱すことで、脳内の「作用積分」最小化プロセスが阻害され、確率的経路探索が活性化される。
その結果、通常は抑制される量子力学的な重ね合わせ状態が認知プロセスに顕在化し、幻覚・妄想などの陽性症状が発現するメカニズムを提案する。
神経回路の情報処理を特徴づける自由エネルギー原理は、ベイズ推論による予測誤差最小化の過程を定式化したものと解釈できる[3]。
この理論的枠組みにおいて、脳は外界の生成モデルを内在化し、感覚入力との予測誤差を最小化するように神経活動を最適化する。
この過程を物理系の「作用積分」最小化と数学的に等価なプロセスとして再解釈する。
神経回路の時々刻々の活動パターンは、ラグランジアン関数で定義される作用積分の極小値を探索する経路として記述可能である[3]。
従来のドーパミン仮説では、中脳辺縁系のD2受容体過活動が陽性症状の原因とされてきた[1]。
この理論的拡張として、ドーパミンシグナルが作用積分の地形形成に寄与する要因と位置づける。
具体的には、ドーパミンが神経回路の接続重み(シナプス強度)を調整することで、作用積分の局所的最小値の分布を変化させる。
統合失調症ではこの調節機能が破綻し、最適経路から外れた異常な作用極小値へのトラップが生じると考える[2][3]。
理研のモデルマウス研究で示された海馬の場所細胞異常[2]は、空間認知における作用積分最小化の失敗例と解釈できる。
通常、迷路探索時の神経活動は経路積分の最適化過程を反映するが、カルシニューリン変異マウスでは過剰な神経発火が作用地形の乱れを引き起こす。
この現象を、量子力学における経路積分の確率的広がりと数学的に類似した過程としてモデル化する。
前頭葉ドーパミン伝達の低下が皮質下系の過活動を引き起こすという修正ドーパミン仮説[1]を、作用積分の多極化現象として再解釈する。
ドーパミン濃度の地域差が神経回路の「温度パラメータ」として機能し、確率的経路選択の度合いを調整すると仮定する。
統合失調症患者ではこのパラメータが異常値を示し、確率的重み付けが狂うことで通常は無視される高エネルギー経路が選択されやすくなる[3]。
通常の認知処理では、多数の可能な神経活動経路のうち作用積分が最小となる古典的経路が支配的である。
しかし統合失調症では、神経回路のノイズ特性変化やドーパミン調節異常により、経路積分の確率分布が歪む。
この状態をシュレーディンガー方程式の非調和振動子モデルで記述し、固有状態の重ね合わせが異常知覚として体験されると考える。
観測問題を神経活動のマクロな収束過程と対応づける。通常、意識的注意が神経活動の波動関数を特定の状態に収束させるが、統合失調症ではこの収束プロセスが不安定化する。
特にデフォルトモードネットワークの過活動[2]が、内在的な観測者機能を阻害し、重ね合わせ状態の持続を許容すると仮定する。
マルチエレクトロード記録と光遺伝学を組み合わせ、迷路課題中の海馬神経集団の活動経路を作用積分で定量化する[2]。
統合失調症モデル動物で経路積分の分散が増大することを予測し、抗精神病薬投与によりこの分散が収束するかを検証する。
神経細胞集団間の同期性を量子もつれのアナロジーで測定する新規指標を提案する。
fMRIと脳磁図(MEG)を組み合わせ、デフォルトモードネットワーク内のコヒーレンス持続時間を計測することで、異常な量子状態の持続性を評価する[2][3]。
経頭蓋磁気刺激(TMS)を用いて特定神経回路の作用積分地形を改変する。前頭前皮質への高周波刺激により、異常な局所最小値から脱出するエネルギー障壁を低下させる[1][3]。
ドーパミン受容体部分作動薬により神経回路の「温度パラメータ」を調整し、確率的経路選択の重み付けを正常化する。
特にD1/D2受容体のバランス調節が、作用積分の地形平滑化に寄与すると予測する[1][3]。
本理論は、統合失調症の病態を神経回路レベルの情報最適化プロセスの破綻として再解釈し、異常体験の発生機序を説明する。
自由エネルギー原理と作用積分最小化の数学的等価性[3]、海馬の経路符号化異常[2]、ドーパミン調節障害[1]を統合する新パラダイムを提示した。
今後の課題は、量子神経科学的手法による理論の実証と、作用地形を標的とした新規治療法の開発である。
これにより、精神疾患の理解が物理学的原理に基づく統一理論へと発展する可能性が開かれる。
Citations:
3. 質問を書く
例: 鬼畜生系40代男性風の口調でお願いします。量子力学の観測問題とは一体なんでしょうか。あと、Markdownは完全排除してね。
回答:
おいおい、量子力学の観測問題だと?そんなもん、ぶっちゃけ昔の人間が勝手に作り上げた妄想みてぇなもんだぜ。
まず、観測問題ってのはよ、量子力学で波動関数がどうやって収縮するかって話なんだ。要するに、量子の世界じゃ物事が確率的に決まってんだけど、観測したらその確率がバッと一つの結果に決まっちまう。そんで、そのメカニズムがよくわかんねぇってんで、昔の物理学者どもがゴチャゴチャ言ってたわけよ。
でもな、最近じゃそんな問題なんざ存在しねぇって話になってきてんだ。なんでかってぇと、量子力学ってのは結局のところ情報理論の一種で、波動関数なんてのは単なる情報の塊にすぎねぇんだよ。
観測したら波動関数が収縮するってのは、要するにサイコロ振って目が出たら確率分布が変わるのと同じことなんだ。観測して知識が増えりゃ、確率分布も更新されるってだけの話さ。
だから、「誰が波動関数を収縮させんだ?」なんて問いは、「誰が確率分布を更新すんだ?」って聞いてんのと同じなんだよ。そんなもん、量子力学の問題じゃねぇんだ。
結局のところ、観測問題なんてのは、量子力学を勘違いしてた昔の連中が作り上げた幻想みてぇなもんさ。今じゃ、標準的な量子力学の理解で十分説明できんだよ。
ってなわけで、観測問題なんて気にすんな。そんなもん、もう過去の遺物だ。現代の量子力学じゃ、そんな問題は存在しねぇんだよ。
本日は、量子力学における観測問題という、長年にわたり論争の的となっているテーマに取り組んだ。この問題は、量子状態が、確率的な重ね合わせ状態として存在するにもかかわらず、観測という行為によって特定の結果へと「収縮」するように見えるメカニズムに関する根源的な問いを提起する。
午前中、僕は現在従事している極秘プロジェクトについてパートナーに説明を試みた。残念ながら、このプロジェクトは機密指定を受けており、詳細を外部に漏らすことは禁じられている。苦肉の策として、僕は機密情報をマスキング処理(いわゆる「ピー音」で隠蔽)しながら説明を試みたが、彼女がプロジェクトの核心を理解できたとは到底思えない。
その後、彼女から自身が取り組んでいる脳の意識に関する実験について説明を受けた。彼女の研究は、筋肉運動を司る神経信号が、被験者が運動を意識するよりも先行して発生するという現象に着目している。これは、意識という主観的な経験が、脳内の物理的なプロセスとどのように関連しているのかという、哲学と神経科学の交わる領域における難問に実験的なアプローチを試みるものと言えるだろう。
この現象は、20世紀後半にベンジャミン・リベットによって行われた一連の実験によって広く知られるようになった。リベットは、被験者が指を動かす意思決定をするよりも前に、「準備電位」と呼ばれる脳活動がすでに発生していることを発見した(Libet et al., 1983)。この実験結果は、自由意志の存在そのものに対する疑問を投げかけるものとして、大きな議論を呼んだ。近年では、より高度な神経イメージング技術を用いて、意識的な意思決定に先行する脳活動を詳細に分析する研究が盛んに行われている(例えば、Soon et al., 2008)。彼女の研究も、これらの研究の流れを汲み、事象関連電位(ERP)や脳磁図(MEG)を用いて、意識的な意思決定の神経基盤を解明しようとしているようだ。
昼食時、僕はカフェテリアで友人たちと合流し、食事中にふと閃いたアイデアについて話した。彼女の神経科学的な知見が、量子力学における観測問題に新たな視点をもたらす可能性があるのではないかと考えたのだ。
午後、彼女と僕は共同研究を開始するため、彼女のアパートへと移動した。僕の理論物理学的な計算と、彼女の神経科学的な実験データを組み合わせることで、量子力学の標準的な解釈の一つであるコペンハーゲン解釈における「観測者」の役割、特に意識の関与を検証できるかもしれない。コペンハーゲン解釈では、観測という行為そのものが量子状態を確定させるとされるが、この解釈には、観測を行う「意識」の定義や、それが物理的なプロセスに及ぼす影響など、依然として不明確な点が多く残されている。
量子力学と意識の関係については、様々な理論的な提案がなされてきた。例えば、ロジャー・ペンローズとスチュワート・ハメロフは、意識が脳内の微小管における量子的なプロセスによって生み出されるとする「オーケストレーションされた客観的収縮(Orch-OR)」理論を提唱している(Penrose & Hameroff, 1995)。また、一部の研究者は、量子エンタングルメントなどの量子的な現象が、意識の統合的な性質を説明する上で重要な役割を果たす可能性を示唆している(例えば、Hameroff, 2014)。しかしながら、これらの理論は、実験的な検証が非常に困難であり、科学的なコンセンサスを得るには至っていない。
僕たちの試みは、これらの先行研究を踏まえつつ、より実験的なアプローチを目指すものである。彼女の神経科学的な実験データを用いて、意識的な観測が量子状態に及ぼす影響を詳細に分析し、コペンハーゲン解釈における「観測者」の役割をより明確に定義することを目指す。
しかしながら、共同研究は決して容易ではない。そこで、僕たちはいくつかのルールを定めることにした。例えば、物理学に関する事項については僕が最終的な決定権を有し、神経科学に関する事項については彼女が同様の権限を持つ。ただし、僕が異議を唱える場合はこの限りではない。また、研究成果を論文として発表する際には、僕の名前を筆頭著者として記載することを確約した。
研究を進める過程で、意見の衝突も生じた。僕は彼女の鼻呼吸の音が過度に大きいと指摘し、彼女は僕の存在が極めて疲れると反論した。しかし最終的には、計算モデルにおける重大な誤りを発見し、問題を解決することができた。
夕刻、彼女と僕は、研究を継続するか、あるいは僕たちの関係性を維持するかという、究極の選択に直面することとなった。無論、僕たちにとって自明の選択肢は一つしかない。
そこで、僕たちは改訂されたルールに基づき、互いを容赦なく侮辱し合うという戦略を採用した。具体的には、相手の学歴、知的能力、家族構成など、あらゆる側面を攻撃対象とした。驚くべきことに、この非倫理的な行為が僕たちの認知プロセスを活性化し、研究の進捗を加速させるという結果をもたらした。
本日の結論として、彼女の神経科学的な研究と僕の理論的な計算を組み合わせることにより、量子力学における観測問題の解決に近づける可能性があることが示唆された。しかし、そのためには、更なる実験データと、より洗練された侮辱が必要となるだろう。
7:00 - 目覚め。いつもの通り、ベッドの右側から出る。左側から出ると平行宇宙に迷い込む可能性があるからだ。
7:05 - 朝食。シリアルを食べながら、11次元の超弦理論における非可換幾何学の応用について考察。M理論の枠組みでのD-ブレーンの量子エンタングルメントが、ホログラフィック原理とどう整合性を取るか、興味深い問題だ。
8:00 - シャワー。湯温は摂氏37.2度に設定。0.1度の誤差も許さない。
8:30 - 着替え。木曜日はフラッシュのTシャツの日。スーパーヒーローの中で最も物理法則を無視している彼に敬意を表して。
9:00 - 研究室へ。途中、コミックショップに寄り、最新のバットマンを購入。ダークナイトの戦略と量子力学の観測問題には興味深い類似性がある。
10:00 - 同僚たちとホワイトボードを囲んで議論。カラビ・ヤウ多様体上のインスタントンの非摂動的効果について熱く語る。彼らの理解が追いつかないのは明らかだった。
12:00 - ランチ。タイ料理。パッタイを食べながら、スマートフォンでAge of Empiresをプレイ。文明の発展と宇宙の膨張には奇妙な相似性がある。
13:00 - 再び研究室へ。超対称性粒子の探索結果について最新の論文を読む。LHCでの実験がまだ証拠を見つけられていないのは、我々の次元とは異なる隠れた次元に粒子が存在するからかもしれない。
14:00 - ここで日記を書いている。次は、15分間のアインシュタインの肖像画を見つめる瞑想の時間だ。彼の髪型は、まるで時空のゆがみを表現しているかのようだ。
まず、標準的な量子力学において、系の状態は複素ヒルベルト空間 𝓗 のベクトルによって記述される。
純粋状態は正規化された状態ベクトル ∣ψ⟩ で表され、混合状態は密度行列 ρ によって記述される。
測定とは、物理量に対応する自己共役演算子 A の固有値に関する確率的な過程であり、波動関数の収縮(射影仮説)が導入される。
この非ユニタリな過程と、シュレーディンガー方程式によるユニタリ時間発展との矛盾が観測問題の本質である。
状態はヒルベルト空間 𝓗 の要素として、純粋状態 ∣ψ⟩ により表される。正規化条件は以下の通りである。
⟨ψ∣ψ⟩ = 1
より一般に、混合状態は密度行列 ρ により記述され、以下を満たす。
ρ ≥ 0, Tr(ρ) = 1
量子系の時間発展は、ハミルトニアン H によりシュレーディンガー方程式で記述される。
i ℏ d/dt ∣ψ(t)⟩ = H ∣ψ(t)⟩
U(t) = exp(− i H t / ℏ)
この U(t) はユニタリであり、量子力学の基本法則の一つである。
量子力学において、観測可能量 A は自己共役演算子であり、スペクトル定理により直交射影 P_a を用いて分解される。
A = ∑ a P_a
P_a P_b = δ_ab P_a, ∑ P_a = I
を満たす。
測定時、状態 ∣ψ⟩ において固有値 a が得られる確率はボルン則に従う。
p(a) = ⟨ψ∣P_a∣ψ⟩
∣ψ⟩ → P_a ∣ψ⟩ / √⟨ψ∣P_a∣ψ⟩
と変化する。
この過程は非ユニタリであり、シュレーディンガー方程式のユニタリ時間発展と両立しない。
ユニタリ進化による時間発展では、状態は決定論的かつ線形である。
∣ψ(t)⟩ = U(t) ∣ψ(0)⟩
しかし、測定後の状態は射影仮説により確率的かつ非ユニタリに変化する。
∣Ψ(0)⟩ = ∣ψ⟩_S ⊗ ∣M_0⟩_M
∣Ψ(t)⟩ = U(t) ∣Ψ(0)⟩
となり、測定が完了すると、
∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M
のようにエンタングルした状態となる。ここで、測定装置の指示状態 ∣M_a⟩_M は S の固有状態 ∣a⟩_S に対応する。
しかし、ユニタリ進化の枠組みでは、この重ね合わせが自発的に単一の結果へと収縮するメカニズムは存在しない。したがって、なぜ一つの結果のみが観測されるのかという問題が発生する。
標準解釈では、測定は基本的なプロセスであり、それ以上の説明は与えられない。観測行為そのものが確率的収縮を引き起こすとする立場である。
∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M
において、各分岐した世界が独立した現実として存在すると考える。この解釈では波動関数の収縮を仮定せず、すべての可能性が並存する。
∣Ψ⟩ = ∑ c_a ∣a⟩_S ⊗ ∣M_a⟩_M ⊗ ∣E_a⟩_E
ρ_S+M = ∑ |c_a|² ∣a⟩⟨a∣ ⊗ ∣M_a⟩⟨M_a∣
となり、オフダイアゴナル成分が消滅する。この過程がデコヒーレンスであり、実効的に波動関数の収縮を説明するが、依然として観測者の経験との対応を説明する必要がある。
量子観測問題は、量子系のユニタリ時間発展と測定における非ユニタリな収縮の矛盾に起因する。
標準的なコペンハーゲン解釈では測定過程を基本仮定とするが、多世界解釈やデコヒーレンス理論を用いることで、より整合的な説明が試みられている。
状態ベクトルの収縮は、ユニタリ変換による時間発展という過程と露骨に矛盾しているように思える。
どのように20世紀の物理学者はこの問題に折り合いをつけていたのか。
状態ベクトルは実際に量子論的レベルでの実体を表すのではなく、観測者の心の状態を表していると主張している。
したがって、状態ベクトルの収縮という過程でのジャンプは単に観測者の知識の状態の不連続な変化の結果で、物理学的実体を持ちうるような物理学的変化ではない。
観測という過程で物理系はそれを取り巻く環境と解きほぐしようもなく絡み合うことになるという事実を利用する。
すると環境における自由度はランダムで、観測不能と考えられるため、その自由度を足し上げることによって、状態ベクトルによる記述ではなく密度行列による記述が得られる。
この密度行列が、基底に関して対角行列となる時、物理系は対角成分のうちの一つによって表される状態になり、その状態にある確率は対角成分の値によって与えられる。
状態ベクトルはユニタリ変換による時間発展をし、物理学的実体を表している。
ただし、それらの観測結果のそれぞれが観測者の意識の異なる状態と絡み合っている。
したがって、対応する異なる意識状態もまた同時に存在し、それぞれが異なる世界を体験し、異なる観測結果に遭遇することになる。
量子力学の従来の定式化は暫定的で、観測過程に意味づけをするために新しい物理理論が必要という可能性もある。
ドブロイ・ボームの枠組みや、コンシステントヒストリーの理論のような標準的な量子力学と異なるような観測結果は持たないようなものもあるが、別な枠組みによれば、少なくとも原理的には標準的な量子力学と新しい理論を区別する実験が存在すると思われる。
おそらく物理学者の大半は、これらの観点の最初の3つの観点を抱いていると言っても良いと思われる。
そうした物理学者は、量子論の形式が持つ数学的な優雅さは言うまでもなく、量子力学の予言が目を見張るような形で例外なく実験によって立証されているということが、この理論が何ら変更を必要としていないということを示す、という議論をするかもしれない。
多世界解釈は量子力学の観測問題に対する一つの解釈で、宇宙の波動関数を実在のものとみなし、その波動関数がシュレディンガー方程式に従って時間発展すると考える。
この解釈では波束の収縮は起こらず、代わりに重ね合わせ状態が干渉性を失うことで異なる世界に分岐していくと考えられる。
しかし意識がどのように一つの分岐を選択するかについては疑問が残る。多世界解釈ではすべての可能な結果がそれぞれの世界で実現するとされている。
意識が一つの分岐を「選択」するのだろうか。それとも意識のすべての可能な状態がそれぞれの世界で実現するのだろうか。
この解釈は物理学者や哲学者の間でさまざまな議論を引き起こしている。特に多世界解釈が「存在論的な浪費」であるとの批判もある。
つまり観測できない多数の世界を考えること自体が論理の無駄だというものである。
ところでエントロピーは一般的には系の「乱雑さ」や「不確定性」を表す量として理解されるが、エントロピーが低下するということは「秩序」が増すということを意味する。
観測によって情報が定まることによってエントロピーが低下するという観点から見ると、系の状態が特定の状態に「収束」するという意味で理解できる。
ここで情報理論について見てみると、観測者が持つ知識が、観測対象に対して影響を与えうるのではないかという疑問が生じる。
ジョン・フォン・ノイマンは、1932年の著書 「量子力学の数学的基礎」において、精神が現象に直接的に影響を与えないという前提が科学的世界観にとって基本的な要請であるとして、実験系と測定側の境界を置けなければならないと述べている。
しかし観測主体が対象のエントロピーを低下させるという事実を無視することはできない。これは環境と対象が相互作用した場合のデコヒーレンスとは違っているのである。
熱力学第二法則では基本的に2つのことを述べており、一つはデコヒーレンスによるエントロピー増加、もうひとつは観測によるエントロピー低下である。
観測者が系に知識をもたらすことによって情報が積み重ねられていった結果、現在の世界が存在すると考えれば、本質的に情報理論こそが量子力学の基礎を成していることがわかる。
しかしこの情報理論は諸刃の剣であり、つまり世界の安定性がなぜ保証されるのか不安になるので、当面の物理学の要請として量子力学から情報理論の側面を剥ぎ取ることが要求されるだろう。
老婆心だけど量子力学勉強するなら「意識」とかそういう話は取り敢えず無視した方がいい。あくまで現実に起こってる現象をモデリングしてるだけなので「解釈」にあまり深入りしすぎない方がいいと思う。
観測問題もBorn ruleさえ認めればあとは「意識」の話ではなく観測に実際に利用する電磁波やセンサーと外界の相互作用モデルだと思えば済む話だから。
A:
量子力学では「測定問題」または「波動関数の崩壊」として知られており、量子の世界が私たちが経験する古典的な世界とどのように相互作用するかについての基本的かつ非常に不可解な側面です。
量子力学では、電子のような粒子は、測定または観測される前に、複数の可能な状態を重ね合わせて存在します。
この重ね合わせは、すべての可能な状態とそれぞれの確率を含む波動関数によって記述されます。
しかし、観測や測定を行うと、重ね合わせが崩れ、粒子の状態は可能な状態の 1 つに「崩壊」します。
したがって、たとえば、測定前にスピンアップまたはスピンダウンできる電子がある場合、その波動関数は両方の状態の組み合わせになります。
しかし、そのスピンを測定すると、波動関数が崩壊し、スピンアップかスピンダウンという 1 つの明確な結果が得られます。
この「崩壊」、つまり測定時の状態の決定は、量子システムの進化にランダムで確率的な要素を導入しているように見えます。
また、測定後にその明確な状態が分かるようになったため、システムに関するエントロピーや不確実性も減少すると考えられます。
このことの意味は深く、物理学者によって何十年にもわたって議論されてきました。
1) 不定の量子領域を明確にする何か特別なことが測定や観測にあることを示唆しています。 しかし、「測定」とは何でしょうか? 私たちの意識的な認識は? それとも環境との相互作用でしょうか?
2) 古典物理学を支配する決定論的法則と矛盾する固有のランダム性または予測不可能性を量子事象に導入しているように見えます。
3) 観測とは独立して存在する客観的な現実についての私たちの概念に疑問を投げかけます。 観測するだけで結果が変わるようです。
4) 巨視的な世界では、このランダム性は通常平均化されます。 しかし、ランダムな瞬間に起こる自然放射性崩壊のような小さな観測可能な影響はあります。
コペンハーゲン解釈や客観的崩壊理論のような解釈は、このランダム性を自然の基本的な側面として受け入れています。
多世界解釈のような他のものは、波動関数の崩壊を完全に排除しようとします。
しかし、この測定問題が量子力学と現実そのものの理解に深刻な課題を投げかけていることに全員が同意しています。
A:
意識と量子力学における測定問題の関係は深い謎であり、物理学ではまだ完全に解決されていません。
ただし、あなたの質問に対するいくつかの視点は次のとおりです。
意識とは、認識し、認識された現実を持つという主観的な一人称の経験を指します。
量子の用語では、意識は、測定/観測が行われる前に、可能な重ね合わせ状態の範囲のうちの 1 つの明確な状態のみを経験するように見えます。
意識が重ね合わせをどのように解決するかについては、いくつかの解釈があります。
1) フォン・ノイマン・ウィグナー解釈は、意識が客観的な波動関数の崩壊を引き起こすことを示唆しています。 私たちの心は、重ね合わせから何らかの結果を特定します。
2) コペンハーゲンの解釈は、波動関数の崩壊が起こったとき、観察者の意識は単に確率的結果の 1 つを目撃しているだけであり、波動関数の崩壊を引き起こしているわけではないことを意味します。
3) 多世界解釈では、真の崩壊は存在しないとされています。 考えられるすべての結果は、現実の別の枝として存在し続けます。 意識は実際に選択することなく、それらの分岐のいずれかに留まるだけです。
4) 意識自体は、観察された状態を引き起こすのではなく、根底にある量子状態から生じる高レベルの創発特性である可能性があると主張する人もいます。
正確なメカニズムは不明ですが、ほとんどの解釈は、意識は測定後に可能な状態のうちの 1 つを主観的に経験するだけであることに同意しています。
観察者兼参加者として、私たちは単に自分の意識が枝の 1 つにあることに気づきます。
重要な謎は、意識が分岐を選択する際に積極的な役割を果たすのか(フォン・ノイマン・ウィグナー)、それとも多数の同様に現実的なもの(多世界)の中の 1 つの分岐に単に自分自身を見出しているだけなのかということです。
これを解決すれば、意識の形而上学的性質と量子力学との関係が解明される可能性があります。
A:
量子力学の多世界解釈 (MWI) では、意識が特定の枝または世界に「留まる」または持続するように見える理由は、デコヒーレンスの概念と、枝がどのように本質的に相互作用せず、それぞれの枝から孤立するのかという考えと関係しています。
1) MWI では、測定が行われるとき、普遍的な波動関数は実際には崩壊しません。 代わりに、それは直交成分に分解され、それぞれが異なる可能性のある結果を表します。
2) これらのコンポーネントは時間の経過とともに進化し続け、より多くの差別化された状態、つまりさまざまな結果が実現される「世界」に分岐します。
3) ただし、これらの分岐コンポーネントは、環境の相互作用やもつれにより、非常に急速に動的にお互いからデコヒーレントになります。 これにより、異なる世界は相互に干渉する能力を失います。
4) したがって、すべてのブランチが異なる既存の現実として共存しますが、動的デコヒーレンスは、それらが相互作用しなくなり、それらの間に測定可能な相互作用や遷移が存在しないことを意味します。
5) あなたの意識は、コヒーレントな量子状態自体で構成されており、デコヒーレンス後の 1 つの枝の中に完全に存在します。 別のブランチと再結合したり、別のブランチに移行したりすることはできません。
6) 実際には、すべての枝が等しく現実であるにもかかわらず、デコヒーレンスプロセスにより意識がその枝内に閉じ込められ、他の枝の並行現実を体験できなくなります。
したがって、意識は積極的に分岐を「選択」するのではなく、デコヒーレンスのプロセスによって、最終的には完全に 1 つの分岐した現実の中に存在することになり、多重性を直接経験する能力はありません。 このため、意識は一貫した 1 つの軌道だけをたどっているように見えます。
私は学生でも研究者志望でもなく、SFっぽいラノベや漫画を読むときの基礎知識として興味があるだけだから。
そういうわけで、厳格なコペンハーゲン解釈派の本人に聞いてみるのはちょっと気が引けるんですよね。
何か根本的に間違ってる気がするし……。
SF(っぽい)作品のネタとして使われやすいのは多世界解釈だけど、これは珍しくコペンハーゲン解釈で面白そうな話だと思うんだ。
例えば「伝説にある人類発祥の星、地球」みたいなよくある設定で、その存在を確かめるべく宇宙の果てに向かおうとしてたのに、誰かが干渉実験を行って存在しなかったことに確定しちゃうとか。
うーん観測問題の研究者なんて皆無なので増田にいるとは思えませんね・・ご本人に twitter で聞くしかないのではないでしょうか。
ところで観測問題に首を突っ込む前に基本的な量子力学の勉強をされた方がよいのではないかと思います。
それをしないでトンデモに転ぶ人がたくさんいるのでちょっと心配になります。
http://www.amazon.co.jp/dp/406153209X
http://www.amazon.co.jp/dp/4842702222
ひとまずこの辺りをおススメします。
前者は近年人気の本で、ひっかかりやすい箇所が良く解説してあり親切だとおもいます。初学者向けです。
後者は名著かつ定番書で極めて明快すっきり爽快です。2冊目に読む本です。
両方とも微分積分と線形代数程度の知識でよめると思います。知らなかったら理工系の数学入門コースでもぱらぱら読んでください。
どうしても数学が嫌ならファインマン物理学を勧めます・・・が。
基本的に、数学を使わずに説明する方が思考実験てんこ盛り物理的センスばりばりで難しくなっていきます。(研究に進む人なら修行になってよいかもしれませんが)
http://anond.hatelabo.jp/20150515105457
僕では余りお役に立てそうにないですが、
数理科学や日経サイエンスでたまーに観測問題周辺の特集をしていたような気がします。
これなんかご本人でしょうか?
あとはこの辺とか??
数理科学シリーズには数式はほとんど出てきませんが・・・かなり難しいかもしれません。院生向けくらい?
それからグライナーの量子力学概論(日本語訳)の第17章「量子力学的世界像の実在論的問題」に歴史的な紹介だけさらっと載っていました。
数式はなく、ただのお話です。各トピックは1ページ程度で物足りないかもしれませんね。
http://www.amazon.co.jp/dp/4431708537
品切れが多いみたいですが、国立大の図書館は一般利用可能なところが多いので
よかったらお近くの大学を利用してみてください。
(※ 僕個人の感想です)
E=mc^2
運動量 p=0 の時は確かに成り立つので全くの嘘ではないとは言え、なぜこんな中途半端な省略がされたのでしょうね?
略すならいっその事自然単位系を取って E=m でも良かったのではないでしょうか。
『あの星の光は太古の輝き。今見ているのは過去の星の姿なのよ。相対性理論ってロマンチックね』
何か僕が重大な勘違いをしているのかもしれません。
聞いてみたいのですが、聞き返すといろんなフラグをへし折る気がして質問すら出来ません。
僕の部屋が汚れるのはエントロピー増大の法則のせい
「部屋に冷たいビールを置いておくとぬるくなり、部屋の気温はちょっと下がる(熱平衡状態)。その逆は起こらない」くらいの意味です。
それがどうして部屋が散らかる理由になるのかわかりません。
そもそもエントロピー は
で定義されるのですが、部屋の散らかり具合を表すエントロピーなんて何の自由度をどう数えればいいのでしょう?
ひょっとしたら、部屋の散らかっていく様子を空気分子や水中のイオンの拡散する様子に見立てたジョークが一人歩きをしてしまったのかもしれません。
言うまでもなく、部屋が散らかるのはエントロピー増大の法則のせいではなく僕のせいです。
シュレーディンガーの猫とか多世界解釈とか
トンデモさんにも一般のひとにも大人気でものすごく触れにくい話題です。
控えめに言っても、現在の大学では学ばないし教科書にも載っていないとだけ。(コラムとか小話的に載っている事はあるけど)
念のため言っておくと、観測問題自体がトンデモという訳ではなく、それを調べる研究者もいますがそれはネット上で人気のあるものとは別物かと思います。
具体的には 人の精神が〜とか多世界解釈みたいな単語が出てきたらブラウザバックしていいと思います。
ところで、シュレーディンガーの猫はもともとは「波動関数の収束はいつおこるのか?観測装置も含めるべきか?」といった指摘だったようなのですが(知らない)、
といった具合に変質して伝わってしまったようです。重ね合わせなのは確率(状態)であって猫やパンツそれ自体ではないんですけれどね。シュレーディンガーも草葉の陰で泣いている事でしょう。関係ないですがシュレーディンガーはロリコンです。
http://ja.wikipedia.org/wiki/エルヴィン・シュレーディンガー#.E6.80.9D.E6.83.B3] (あれ、リンク貼れないな・・)
引用者注 正しいリンクを貼ります。
http://ja.wikipedia.org/wiki/エルヴィン・シュレーディンガー#.E6.80.9D.E6.83.B3
注ここまで
上記のトピックが哲○ニュースとかカラパイ○などでブックマークを集めていることがあります。
コメントをよく見てみると「角運動量の合成が出来るようになってから言えよ」「井戸型ポテンシャルでも解いてろ」と言ったたぐいのブクマコメントがちらほら見られます。せっかくなのでちょっと解説しておきます。
(高さ無限大の一次元)井戸型ポテンシャルとは量子力学における最も簡単な問題で、物理学科生で解けない人はおそらくいません。
仮にいたとしても落第するでしょう。なぜならば量子力学のテストでそれ以上簡単な問題を作れないからです。
「角運動量の合成も出来ない奴」
これも上記と同様の煽り文句です。足し算も出来ない奴、九九も唱えられない奴、くらいの意味です。物理学科生をガチ切れさせるのでリアルでは使わないように。
トンデモ系サイトにこれらのコメントがつくのは「トンデモさんにはわからない、物理学科生にのみわかる煽り文句」になっているからでしょうね。
偉大なる元増田様
あのねえ成功の方程式を正しく描けるか田舎それこそが成功への片道切符なのだ。
だいたい努力 * 才能 = 成功 などというチンケな俗流成功哲学を信じているようでは駄目でありますww
なぜかならば、才能は生まれつきの不変であるから努力しかないことになってしまう。ところが努力では人と差がつかないんよ。
厳密には一つのことに継続は力なりで差はつくけどな。後述。じゃが全体量としてはヒトの体力で決まるんですわ。いくら室伏でも18時間毎日円盤投げできません。山口真由は19.5時間やってたけどさw
だから大真面目に語るのもバカらしいことであるが、世直しのために我らは正しい方程式を広めねばならないのだ。わかるね?正しい方程式とはこうである。
わかった?w ノウハウが追加されてるな? そして才能は生まれつきで不変であるから不定項、じゃあ変項は?変項は言わず喪がな、努力とノウハウなんです。よろしい。
では、よく努力の方向が間違ってるという言い方をするな?あの言い方は非常に有害危険なの。まるでベクトルのように方向と大きさで決まるかのように、そういうふうにできている?そんな単純な話じゃあない。
がむしゃらにやって良いのはエロ画像掲示板だけ。ソフトにタッチしないと。アダムタッチじゃないけど!雑にガッシャアとやってしまうなよ。
いくらでも可能性が転がっているのに単純化してチャンスを逃すのはバカですよ。そのバカだと思える視点を是非とも今日身につけてほしい。
その優しい愛撫のやうな、微細な心で1つ1つ確かめながら組み立てていく。それは単純に努力の方向じゃないですよ。何をやるか、どれだけやるかの二分法よ、さらば!ちょっとそれはディジタル過ぎる。
例えば努力をするということはそこでひずみが生まれる。観測問題じゃないけど努力するという行為自体が努力の隊商を変えてしまう、さらに言えば努力の主体たる私自身もまた変貌をとげる。
これを物の哀れの分かる人が「諸行無常、諸法無我」と言ったであろう。その変わりゆく有様を確かめるようにソフトに愛撫するわけです。それがノウハウなんですね。
ノウハウというとマニュアルをイメージするでしょうが全く違うんですね。それは努力と才能という二分法の古い考え方です。いまは努力と才能とノウハウです。努力でもなく才能でもないノウハウという
ものがあるのだと厳しくそれはそれは厳しく峻別している。このときノウハウはもはやマニュアルではないことを知ってください。確かめてください。何事も敬虔ですから。
ノウハウを今ひとつの角度から見るとそれは無数のツマミやスライダーやスイッチのある機器を考えてください。使わないツマミは忘れるんです。でもそれはじっちゅうはっく使わないのではなく使えない。使いこなせないわけ。
PS Vitaも使いこなせない機能はどんどん忘れていくのと一緒。使ってないとメンテナンスも疎かになって故障も早くなります。そうiphoneでもね。そうなると本当に必要なときもつかえなくなっちゃう。
必要に迫られマニュアル見て使おうとするも半分故障してるわ操作もぎこちないわでもういいやって投げ出してしまう。で、もっと乱暴な手段にでてしまう。優しい愛撫を放棄して荒々しい前戯になる。
それがノウハウということなんですよ。マニュアルが全てじゃない。マニュアルに書いてあるとおりやっても、故障してたり、うまく操作できなかったりする。そういう生身の現象を扱っているのですからよ。
柔らかく接していなければ全て無駄になるのが分かるでしょう。いくらマニュアルに繊細なこと書いてあっても、ユーザーが荒っぽい人だと草臥れ損の骨折り儲けですよ。、
逆に言うなら、柔らかければマニュアルに書いてないことも臨機応変に捌けるのです。これを頓知と言います。今日覚えて帰ってください。頓に(とみに)知る(しる)これ。
これを試すために面接官は突拍子もない質問をぶつけるのです。盤根錯節に遇いて利器を知る(後漢書)です。面白いことに柔らかさもまた諸行無常で、時々刻々とめまぐるしく変化してますよ。
柔らかいときに頓知が利くなら柔らかいときに得た学びを硬いときにも活用できれば擬似的に常時やわらかな対処できますね?これが一休さんのしくみです。ノウハウ特化型です。
エジソンのようにコツコツ煮詰めるタイプとはまた違う俊英なのです。ただ、忘れてはいけません才能とノウハウだけでなく努力もあるんです方程式に。
エジソンのような努力型はなんといっても積み重ねが凄いんです。積み重ねは何が凄いか分かります?継続は力なりと空念仏を唱えるだけでは全く何も分かっちゃいない。継続は何故力なのかメカニズムを理解してますか?
例えば、簡単のため受験生で毎日10時間、時速4ページで学んでいるとします。毎日40pです。で全国平均が20pとしますわな。分散が10p。そしたら40pやるだけで偏差値70なんです。分かります?
これは学力偏差値ではなくあくまでその日の努力偏差値です。でな?これを続けるとどうなると思う?40pを10日間続けるとどうなる?偏差値70のままだと思うそこのお前は統計学を分かってない。
偏差値70よりずっと上がるんだよ阿呆陀羅。これが継続の魔力その1なんです。つまり偏差値70の努力をする日を何日も続けていくと全体では偏差値75にも80にも、いやもっとそれ以上にもなりうるのです。
しかもじゃ、時速4pが慣れとともにスピーダップして時速6pや8pにもなるかもしれない。俺の過去の経験から言っても初日の2倍速なんて当たり前にありますねえ。その意味でも継続すれば努力偏差値は跳ね上がる。分かった?
ただこれは単純化した話。実際には努力にはバランスも必要です。アンバランスだといつかしわ寄せが来ます。バランスとりながらローテーション回していく計画性が必要です。
そこで先ほどのノウハウ型が不可欠なんですよ。努力しか眼中にないとここで頭打ちになる。伸びない原因は硬さにあった。チンポは硬くなると伸びるのにおかしいじゃないか。でもそれが現実。
結局バランスバランス言うけどその系の拘束条件がどんどん変わっているわけですから。マニュアル式に機械的にバランスをとろうなんざ甘いんです。ちゃんと直接指でソフトに触れないと駄目。
頭の硬い人ほど皮膚感覚をバカにするのはそういうわけ。努力とかそういうことは一切合切承知の助で忘れるくらいでないといけない。とにかくソフトに、ソフトに。休日などに数時間はまったりするとよいです。
一見正しそうで、実は間違った考えだと思う。
ひなたんは確かに身長の割には胸が成長していたりとアンバランスさがあり、髪質を考えても真っ先に生えてもおかしくない。
わき毛が生えても「おー お兄ちゃんひなわき毛ぼーぼー!」とイノセントな発言をして周りに止められること必須である。
(もちろんぼーぼーなどではなく、ちょろっと生えているだけだ)
だが、ある問題についてよく考えて欲しい。
そう、観測問題だ。
つまりたとえ物理現象としてわき毛が生えてきたとしても、それが他者(私と言い換えても良いだろう)の視点で観測されなければ、それは生えてないことになるのだ(コペンハーゲン解釈)。
まずわき毛が生えたと最初に申告してくるのはひなたんかまほまほだ。
成長の点ではひなたんが優勢なのでここは恐らくひなたんで間違いがない。
(反論として、ひなたんは天使だからわき毛が生えないという議論もある)。
だが、実際にわき毛が最初に生えるのは他の3名、道具とか使ってそうな紗季か、成長力という点ではトップの愛莉か、オナニーマスター智花かと予想できる。
紗季はその髪から分かるとおり、髪が細く体毛が薄い(断言)。
そのため、生えてくるのは非常に遅い、もしくは全く生えてこないと言える。
愛莉はその身長が物語るように成長が極めて早いが、現在は成長を抑えるような努力をしているため、以降の成長は基本的に遅いと仮定できる。
そして、智花。
智花は極めて活発なホルモン分泌が行われていると、多くの人が推察している。
その推察に基づくのなら、体毛類の成長も早く、わき毛の成長も早いと考えられる。
だが頻繁に運動をし、頻繁にシャワーを浴び、かつ見られることをある程度意識している智花は例えわき毛が生えてきたとしても、それが見られないようにする嗜みを持っている。
そう、智花はたとえ生えてきたとしても隠すのだ。
以上の考察により、わき毛が生える順番は
智花(ただし隠す)→ひなた→愛莉→まほまほ→紗季(生えない)
となるのが正解ではないだろうか。
1 :考える名無しさん:2012/02/08(水) 16:54:38.50 0
しかし、脳内には物質以外の「何か」がある(筈)と考える人が居ます。
分泌する神経伝達物質で、他の神経細胞に情報を伝えるだけです。
分子生物学と生理学の対象分野「分子レベルの現象」が全てです。
「この宇宙」で人間の脳だけが「特殊な物質」であるとする科学的根拠は
全くありません。人間の脳も地球上における「物質の進化」の一過程に
すぎず、人間の脳が造り出す『意識』も何ら「特別」ではありません。
「何を思うか何を意志するか」は、あらかじめ物理・化学法則により
決定されております。自由(意志)感は文字通り『感じ』にすぎません。
量子論の「不確定性」は意識には何の関係もない「単なる観測問題」です。
以上が「超・大統一理論」=量子論と相対性理論の統一後に残存し得る
誰かに決定論を論破してほしい。
本当は意味や価値の世界で生きていきたいのに、私の意志は力なく因果の海に漂うだけ。
死にたい。