Tags: buttons

40

sparkline

Friday, January 26th, 2024

Nuberodesign > Blog > In Praise of Buttons – Part One

I concur:

Just because a user interface uses 3D-buttons and some shading doesn’t mean that it has to look tacky. In fact, if you have to make the choice between tacky-but-usable and minimalistic-but-hard-to-use, tacky is the way to go. You don’t have to make that choice though: It’s perfectly possible to create something that is both good-looking and easy to use.

Tuesday, December 12th, 2023

button invoketarget=”share”

I’ve written quite a bit about how I’d like to see a declarative version of the Web Share API. My current proposal involves extending the type attribute on the button element to support a value of “share”.

Well, maybe a different attribute will end up accomplishing what I want! Check out the explainer for the “invokers” proposal over on Open UI. The idea is to extend the button element with a few more attributes.

The initial work revolves around declaratively opening and closing a dialog, which is an excellent use case and definitely where the effort should be focused to begin with.

But there’s also investigation underway into how this could be away to provide a declarative way of invoking JavaScript APIs. The initial proposal is already discussing the fullscreen API, and how it might be invoked like this:

button invoketarget="toggleFullsceen"

They’re also looking into a copy-to-clipboard action. It’s not much of a stretch to go from that to:

button invoketarget="share"

Remember, these are APIs that require a user interaction anyway so extending the button element makes a lot of sense.

I’ll be watching this proposal keenly. I’d love to see some of these JavaScript cowpaths paved with a nice smooth coating of declarative goodness.

Tuesday, December 5th, 2023

Invokers (Explainer) | Open UI

This is a really interesting proposal, and I have thoughts.

Monday, June 19th, 2023

Button types

I’ve been banging the drum for a button type="share" for a while now.

I’ve also written about other potential button types. The pattern I noticed was that, if a JavaScript API first requires a user interaction—like the Web Share API—then that’s a good hint that a declarative option would be useful:

The Fullscreen API has the same restriction. You can’t make the browser go fullscreen unless you’re responding to user gesture, like a click. So why not have button type=”fullscreen” in HTML to encapsulate that? And again, the fallback in non-supporting browsers is predictable—it behaves like a regular button—so this is trivial to polyfill.

There’s another “smell” that points to some potential button types: what functionality do browsers provide in their interfaces?

Some browsers provide a print button. So how about button type="print"? The functionality is currently doable with button so this would be a nicer, more declarative way of doing something that’s already possible.

It’s the same with back buttons, forward buttons, and refresh buttons. The functionality is available through a browser interface, and it’s also scriptable, so why not have a declarative equivalent?

How about bookmarking?

And remember, the browser interface isn’t always visible: progressive web apps that launch with minimal browser UI need to provide this functionality.

Šime Vidas was wondering about button type="copy” for copying to clipboard. Again, it’s something that’s currently scriptable and requires a user gesture. It’s a little more complex than the other actions because there needs to be some way of providing the text to be copied, but it’s definitely a valid use case.

  • button type="share"
  • button type="fullscreen"
  • button type="print"
  • button type="bookmark"
  • button type="back"
  • button type="forward"
  • button type="refresh"
  • button type="copy"

Any more?

Wednesday, February 22nd, 2023

Buttons, links, and focus – tempertemper

This is a handy guideline to remember, even if there exceptions:

When a keyboard user follows a link, their focus should be taken to the new place; when a keyboard user presses a button, focus should remain on that button.

Sunday, October 30th, 2022

Overloading buttons

It’s been almost two years since I added audio playback on The Session. The interface is quite straightforward. For any tune setting, there’s a button that says “play audio”. When you press that button, audio plays and the button’s text changes to “pause audio.”

By updating the button’s text like this, I’m updating the button’s accessible name. In other situations, where the button text doesn’t change, you can indicate whether a button is active or not by toggling the aria-pressed attribute. I’ve been doing that on the “share” buttons that act as the interface for a progressive disclosure. The label on the button—“share”—doesn’t change when the button is pressed. For that kind of progressive disclosure pattern, the button also has an aria-controls and aria-expanded attribute.

From all the advice I’ve read about button states, you should either update the accessible name or change the aria-pressed attribute, but not both. That would lead to the confusing situation of having a button labelled “pause audio” as having a state of “pressed” when in fact the audio is playing.

That was all fine until I recently added some more functionality to The Session. As well as being able to play back audio, you can now adjust the tempo of the playback speed. The interface element for this is a slider, input type="range".

But this means that the “play audio” button now does two things. It plays the audio, but it also acts as a progressive disclosure control, revealing the tempo slider. The button is simultaneously a push button for playing and pausing music, and a toggle button for showing and hiding another interface element.

So should I be toggling the aria-pressed attribute now, even though the accessible name is changing? Or is it enough to have the relationship defined by aria-controls and the state defined by aria-expanded?

Based on past experience, my gut feeling is that I’m probably using too much ARIA. Maybe it’s an anti-pattern to use both aria-expanded and aria-pressed on a progressive disclosure control.

I’m kind of rubber-ducking here, and now that I’ve written down what I’m thinking, I’m pretty sure I’m going to remove the toggling of aria-pressed in any situation where I’m already toggling aria-expanded.

What I really need to do is enlist the help of actual screen reader users. There are a number of members of The Session who use screen readers. I should get in touch and see if the new functionality makes sense to them.

Tuesday, July 26th, 2022

A good reset | Trys Mudford

Prompted by my recent post about using native button elements, Trys puts forward a simple explanation for why someone would choose to use a div instead.

The one common feature between every codebase I’ve encountered on that doesn’t use buttons well, is a bad CSS reset. Developers try to use a button, and find that it still looks like a native browser button, so they grab a plain old, blank canvas div, and build from there.

Occam’s Razor makes Trys’s explanation the most likely one.

Monday, July 25th, 2022

Control

In two of my recent talks—In And Out Of Style and Design Principles For The Web—I finish by looking at three different components:

  1. a button,
  2. a dropdown, and
  3. a datepicker.

In each case you could use native HTML elements:

  1. button,
  2. select, and
  3. input type="date".

Or you could use divs with a whole bunch of JavaScript and ARIA.

In the case of a datepicker, I totally understand why you’d go for writing your own JavaScript and ARIA. The native HTML element is quite restricted, especially when it comes to styling.

In the case of a dropdown, it’s less clear-cut. Personally, I’d use a select element. While it’s currently impossible to style the open state of a select element, you can style the closed state with relative ease. That’s good enough for me.

Still, I can understand why that wouldn’t be good enough for some cases. If pixel-perfect consistency across platforms is a priority, then you’re going to have to break out the JavaScript and ARIA.

Personally, I think chasing pixel-perfect consistency across platforms isn’t even desirable, but I get it. I too would like to have more control over styling select elements. That’s one of the reasons why the work being done by the Open UI group is so important.

But there’s one more component: a button.

Again, you could use the native button element, or you could use a div or a span and add your own JavaScript and ARIA.

Now, in this case, I must admit that I just don’t get it. Why wouldn’t you just use the native button element? It has no styling issues and the browser gives you all the interactivity and accessibility out of the box.

I’ve been trying to understand the mindset of a developer who wouldn’t use a native button element. The easy answer would be that they’re just bad people, and dismiss them. But that would probably be lazy and inaccurate. Nobody sets out to make a website with poor performance or poor accessibility. And yet, by choosing not to use the native HTML element, that’s what’s likely to happen.

I think I might have finally figured out what might be going on in the mind of such a developer. I think the issue is one of control.

When I hear that there’s a native HTML element—like button or select—that comes with built-in behaviours around interaction and accessibility, I think “Great! That’s less work for me. I can just let the browser deal with it.” In other words, I relinquish control to the browser (though not entirely—I still want the styling to be under my control as much as possible).

But I now understand that someone else might hear that there’s a native HTML element—like button or select—that comes with built-in behaviours around interaction and accessibility, and think “Uh-oh! What if there unexpected side-effects of these built-in behaviours that might bite me on the ass?” In other words, they don’t trust the browsers enough to relinquish control.

I get it. I don’t agree. But I get it.

If your background is in computer science, then the ability to precisely predict how a programme will behave is a virtue. Any potential side-effects that aren’t within your control are undesirable. The only way to ensure that an interface will behave exactly as you want is to write it entirely from scratch, even if that means using more JavaScript and ARIA than is necessary.

But I don’t think it’s a great mindset for the web. The web is filled with uncertainties—browsers, devices, networks. You can’t possibly account for all of the possible variations. On the web, you have to relinquish some control.

Still, I’m glad that I now have a bit more insight into why someone would choose to attempt to retain control by using div, JavaScript and ARIA. It’s not what I would do, but I think I understand the motivation a bit better now.

Tuesday, May 31st, 2022

Declarative design systems

When I wrote about the idea of declarative design it really resonated with a lot of people.

I think that there’s a general feeling of frustration with the imperative approach to designing and developing—attempting to specify everything exactly up front. It just doesn’t scale. As Jason put it, the traditional web design process is fundamentally broken:

This is the worst of all worlds—a waterfall process creating dozens of artifacts, none of which accurately capture how the design will look and behave in the browser.

In theory, design systems could help overcome this problem; spend a lot of time up front getting a component to be correct and then it can be deployed quickly in all sorts of situations. But the word “correct” is doing a lot of work there.

If you’re approaching a design system with an imperative mindset then “correct” means “exact.” With this approach, precision is seen as valuable: precise spacing, precise numbers, precise pixels.

But if you’re approaching a design system with a declarative mindset, then “correct” means “resilient.” With this approach, flexibility is seen as valuable: flexible spacing, flexible ranges, flexible outputs.

These are two fundamentally different design approaches and yet the results of both would be described as a design system. The term “design system” is tricky enough to define as it is. This is one more layer of potential misunderstanding: one person says “design system” and means a collection of very precise, controlled, and exact components; another person says “design system” and means a predefined set of boundary conditions that can be used to generate components.

Personally, I think the word “system” is the important part of a design system. But all too often design systems are really collections rather than systems: a collection of pre-generated components rather than a system for generating components.

The systematic approach is at the heart of declarative design; setting up the rules and ratios in advance but leaving the detail of the final implementation to the browser at runtime.

Let me give an example of what I think is a declarative approach to a component. I’ll use the “hello world” of design system components—the humble button.

Two years ago I wrote about programming CSS to perform Sass colour functions. I described how CSS features like custom properties and calc() can be used to recreate mixins like darken() and lighten().

I showed some CSS for declaring the different colour elements of a button using hue, saturation and lightness encoded as custom properties. Here’s a CodePen with some examples of different buttons.

See the Pen Button colours by Jeremy Keith (@adactio) on CodePen.

If these buttons were in an imperative design system, then the output would be the important part. The design system would supply the code needed to make those buttons exactly. If you need a different button, it would have to be added to the design system as a variation.

But in a declarative design system, the output isn’t as important as the underlying ruleset. In this case, there are rules like:

For the hover state of a button, the lightness of its background colour should dip by 5%.

That ends up encoded in CSS like this:

button:hover {
    background-color: hsl(
        var(--button-colour-hue),
        var(--button-colour-saturation),
        calc(var(--button-colour-lightness) - 5%)
    );
}

In this kind of design system you can look at some examples to see the results of this rule in action. But those outputs are illustrative. They’re not the final word. If you don’t see the exact button you want, that’s okay; you’ve got the information you need to generate what you need and still stay within the pre-defined rules about, say, the hover state of buttons.

This seems like a more scalable approach to me. It also seems more empowering.

One of the hardest parts of embedding a design system within an organisation is getting people to adopt it. In my experience, nobody likes adopting something that’s being delivered from on-high as a pre-made sets of components. It’s meant to be helpful: “here, use this pre-made components to save time not reinventing the wheel”, but it can come across as overly controlling: “we don’t trust you to exercise good judgement so stick to these pre-made components.”

The declarative approach is less controlling: “here are pre-defined rules and guidelines to help you make components.” But this lack of precision comes at a cost. The people using the design system need to have the mindset—and the ability—to create the components they need from the systematic rules they’ve been provided.

My gut feeling is that the imperative mindset is a good match for most of today’s graphic design tools like Figma or Sketch. Those tools deal with precise numbers rather than ranges and rules.

The declarative mindset, on the other hand, increasingly feels like a good match for CSS. The language has evolved to allow rules to be set up through custom properties, calc(), clamp(), minmax(), and so on.

So, as always, there isn’t a right or wrong approach here. It all comes down to what’s most suitable for your organisation.

If your designers and developers have an imperative mindset and Figma files are considered the source of truth, than they would be better served by an imperative design system.

But if you’re lucky enough to have a team of design engineers that think in terms of HTML and CSS, then a declarative design system will be a force multiplier. A bicycle for the design engineering mind.

Wednesday, March 9th, 2022

When should there be a declarative version of a JavaScript API?

I feel like it’s high time I revived some interest in my proposal for button type="share". Last I left it, I was gathering use cases and they seem to suggest that the most common use case for the Web Share API is sharing the URL of the current page.

If you want to catch up on the history of this proposal, here’s what I’ve previously written:

Remember, my proposal isn’t to replace the JavaScript API, it’s to complement it with a declarative option. The declarative option doesn’t need to be as fully featured as the JavaScript API, but it should be able to cover the majority use case. I think this should hold true of most APIs.

A good example is the Constraint Validation API. For the most common use cases, the required attribute and input types like “email”, “url”, and “number” have you covered. If you need more power, reach for the JavaScript API.

A bad example is the Geolocation API. The most common use case is getting the user’s current location. But there’s no input type="geolocation" (or button type="geolocation"). Your only choice is to use JavaScript. It feels heavy-handed.

I recently got an email from Taylor Hunt who has come up with a good litmus test for JavaScript APIs that should have a complementary declarative option:

I’ve been thinking about how a lot of recently-proposed APIs end up having to deal with what Chrome devrel’s been calling the “user gesture/activation budget”, and wondering if that’s a good indicator of when something should have been HTML in the first place.

I think he’s onto something here!

Think about any API that requires a user gesture. Often the documentation or demo literally shows you how to generate a button in JavaScript in order to add an event handler to it in order to use the API. Surely that’s an indication that a new button type could be minted?

The Web Share API is a classic example. You can’t invoke the API after an event like the page loading. You have to invoke the API after a user-initiated event like, oh, I don’t know …clicking on a button!

The Fullscreen API has the same restriction. You can’t make the browser go fullscreen unless you’re responding to user gesture, like a click. So why not have button type="fullscreen" in HTML to encapsulate that? And again, the fallback in non-supporting browsers is predictable—it behaves like a regular button—so this is trivial to polyfill. I should probably whip up a polyfill to demonstrate this.

I can’t find a list of all the JavaScript APIs that require a user gesture, but I know there’s more that I’m just not thinking of. I’d love to see if they’d all fit this pattern of being candidates for a new button type value.

The only potential flaw in this thinking is that some APIs that require a user gesture might also require a secure context (either being served over HTTPS or localhost). But as far as I know, HTML has never had the concept of features being restricted by context. An element is either supported or it isn’t.

That said, there is some prior art here. If you use input type="password" in a non-secure context—like a page being served over HTTP—the browser updates the interface to provide scary warnings. Perhaps browsers could do something similar for any new button types that complement secure-context JavaScript APIs.

Wednesday, October 20th, 2021

The Button Cheat Sheet

Do you need a button for your next project but you’re not sure about the right markup? Don’t worry, The Button Cheat Sheet™️ has got you covered.

Spoiler alert: it’s the button element.

Wednesday, March 24th, 2021

Show/Hide password accessibility and password hints tutorial | Part of a Whole

A good tutorial on making password fields accessible when you’ve got the option to show and hide the input.

Wednesday, October 21st, 2020

Accessible interactions

Accessibility on the web is easy. Accessibility on the web is also hard.

I think it’s one of those 80/20 situations. The most common accessibility problems turn out to be very low-hanging fruit. Take, for example, Holly Tuke’s list of the 5 most annoying website features she faces as a blind person every single day:

  • Unlabelled links and buttons
  • No image descriptions
  • Poor use of headings
  • Inaccessible web forms
  • Auto-playing audio and video

None of those problems are hard to fix. That’s what I mean when I say that accessibility on the web is easy. As long as you’re providing a logical page structure with sensible headings, associating form fields with labels, and providing alt text for images, you’re at least 80% of the way there (you’re also doing way better than the majority of websites, sadly).

Ah, but that last 20% or so—that’s where things get tricky. Instead of easy-to-follow rules (“Always provide alt text”, “Always label form fields”, “Use sensible heading levels”), you enter an area of uncertainty and doubt where there are no clear answers. Different combinations of screen readers, browsers, and operating systems might yield very different results.

This is the domain of interaction design. Here be dragons. ARIA can help you …but if you overuse its power, it may cause more harm than good.

When I start to feel overwhelmed by this, I find it’s helpful to take a step back. Instead of trying to imagine all the possible permutations of screen readers and browsers, I start with a more straightforward use case: keyboard users. Keyboard users are (usually) a subset of screen reader users.

The pattern that comes up the most is to do with toggling content. I suppose you could categorise this as progressive disclosure, but I’m talking about quite a wide range of patterns:

  • accordions,
  • menus (including mega menu monstrosities),
  • modal dialogs,
  • tabs.

In each case, there’s some kind of “trigger” that toggles the appearance of a “target”—some chunk of content.

The first question I ask myself is whether the trigger should be a button or a link (at the very least you can narrow it down to that shortlist—you can discount divs, spans, and most other elements immediately; use a trigger that’s focusable and interactive by default).

As is so often the case, the answer is “it depends”, but generally you can’t go wrong with a button. It’s an element designed for general-purpose interactivity. It carries the expectation that when it’s activated, something somewhere happens. That’s certainly true in all the examples I’ve listed above.

That said, I think that links can also make sense in certain situations. It’s related to the second question I ask myself: should the target automatically receive focus?

Again, the answer is “it depends”, but here’s the litmus test I give myself: how far away from each other are the trigger and the target?

If the target content is right after the trigger in the DOM, then a button is almost certainly the right element to use for the trigger. And you probably don’t need to automatically focus the target when the trigger is activated: the content already flows nicely.

<button>Trigger Text</button>
<div id="target">
<p>Target content.</p>
</div>

But if the target is far away from the trigger in the DOM, I often find myself using a good old-fashioned hyperlink with a fragment identifier.

<a href="#target">Trigger Text</a>
…
<div id="target">
<p>Target content.</p>
</div>

Let’s say I’ve got a “log in” link in the main navigation. But it doesn’t go to a separate page. The design shows it popping open a modal window. In this case, the markup for the log-in form might be right at the bottom of the page. This is when I think there’s a reasonable argument for using a link. If, for any reason, the JavaScript fails, the link still works. But if the JavaScript executes, then I can hijack that link and show the form in a modal window. I’ll almost certainly want to automatically focus the form when it appears.

The expectation with links (as opposed to buttons) is that you will be taken somewhere. Let’s face it, modal dialogs are like fake web pages so following through on that expectation makes sense in this context.

So I can answer my first two questions:

  • “Should the trigger be a link or button?” and
  • “Should the target be automatically focused?”

…by answering a different question:

  • “How far away from each other are the trigger and the target?”

It’s not a hard and fast rule, but it helps me out when I’m unsure.

At this point I can write some JavaScript to make sure that both keyboard and mouse users can interact with the interactive component. There’ll certainly be an addEventListener(), some tabindex action, and maybe a focus() method.

Now I can start to think about making sure screen reader users aren’t getting left out. At the very least, I can toggle an aria-expanded attribute on the trigger that corresponds to whether the target is being shown or not. I can also toggle an aria-hidden attribute on the target.

When the target isn’t being shown:

  • the trigger has aria-expanded="false",
  • the target has aria-hidden="true".

When the target is shown:

  • the trigger has aria-expanded="true",
  • the target has aria-hidden="false".

There’s also an aria-controls attribute that allows me to explicitly associate the trigger and the target:

<button aria-controls="target">Trigger Text</button>
<div id="target">
<p>Target content.</p>
</div>

But don’t assume that’s going to help you. As Heydon put it, aria-controls is poop. Still, Léonie points out that you can still go ahead and use it. Personally, I find it a useful “hook” to use in my JavaScript so I know which target is controlled by which trigger.

Here’s some example code I wrote a while back. And here are some old Codepens I made that use this pattern: one with a button and one with a link. See the difference? In the example with a link, the target automatically receives focus. But in this situation, I’d choose the example with a button because the trigger and target are close to each other in the DOM.

At this point, I’ve probably reached the limits of what can be abstracted into a single trigger/target pattern. Depending on the specific component, there might be much more work to do. If it’s a modal dialog, for example, you’ve got to figure out where to put the focus, how to trap the focus, and figure out where the focus should return to when the modal dialog is closed.

I’ve mostly been talking about websites that have some interactive components. If you’re building a single page app, then pretty much every single interaction needs to be made accessible. Good luck with that. (Pro tip: consider not building a single page app—let the browser do what it has been designed to do.)

Anyway, I hope this little stroll through my thought process is useful. If nothing else, it shows how I attempt to cope with an accessibility landscape that looks daunting and ever-changing. Remember though, the fact that you’re even considering this stuff means you care more than most web developers. And you are not alone. There are smart people out there sharing what they learn. The A11y Project is a great hub for finding resources.

And when it comes to interactive patterns like the trigger/target examples I’ve been talking about, there’s one more question I ask myself: what would Heydon do?

Tuesday, October 20th, 2020

Standards processing

I’ve been like a dog with a bone the way I’ve been pushing for a declarative option for the Web Share API in the shape of button type=“share”. It’s been an interesting window into the world of web standards.

The story so far…

That’s the situation currently. The general consensus seems to be that it’s probably too soon to be talking about implementation at this stage—the Web Share API itself is still pretty new—but gathering data to inform future work is good.

In planning for the next TPAC meeting (the big web standards gathering), Marcos summarised the situation like this:

Not blocking: but a proposal was made by @adactio to come up with a declarative solution, but at least two implementers have said that now is not the appropriate time to add such a thing to the spec (we need more implementation experience + and also to see how devs use the API) - but it would be great to see a proposal incubated at the WICG.

Now this where things can get a little confusing because it used to be that if you wanted to incubate a proposal, you’d have to do on Discourse, which is a steaming pile of crap that requires JavaScript in order to put text on a screen. But Šime pointed out that proposals can now be submitted on Github.

So that’s where I’ve submitted my proposal, linking through to the explainer document.

Like I said, I’m not expecting anything to happen anytime soon, but it would be really good to gather as much data as possible around existing usage of the Web Share API. If you’re using it, or you know anyone who’s using it, please, please, please take a moment to provide a quick description. And if you could help spread the word to get that issue in front of as many devs as possible, I’d be very grateful.

(Many thanks to everyone who’s already contributed to that issue—much appreciated!)

Monday, October 5th, 2020

The reason for a share button type

If you’re at all interested in what I wrote about a declarative Web Share API—and its sequel, a polyfill for button type=”share”—then you might be interested in an explainer document I’ve put together.

It’s a useful exercise for me to enumerate the reasoning for button type=“share” in one place. If you have any feedback, feel free to fork it or create an issue.

The document is based on my initial blog posts and the discussion that followed in this issue on the repo for the Web Share API. In that thread I got some pushback from Marcos. There are three points he makes. I think that two of them lack merit, but the third one is actually spot on.

Here’s the first bit of pushback:

Apart from placing a button in the content, I’m not sure what the proposal offers over what (at least one) browser already provides? For instance, Safari UI already provides a share button by default on every page

But that is addressed in the explainer document for the Web Share API itself:

The browser UI may not always be available, e.g., when a web app has been installed as a standalone/fullscreen app.

That’s exactly what I wanted to address. Browser UI is not always available and as progressive web apps become more popular, authors will need to provide a way for users to share the current URL—something that previously was handled by browsers.

That use-case of sharing the current page leads nicely into the second bit of pushback:

The API is specialized… using it to share the same page is kinda pointless.

But again, the explainer document for the Web Share API directly contradicts this:

Sharing the page’s own URL (a very common case)…

Rather than being a difference of opinion, this is something that could be resolved with data. I’d really like to find out how people are currently using the Web Share API. How much of the current usage falls into the category of “share the current page”? I don’t know the best way to gather this data though. If you have any ideas, let me know. I’ve started an issue where you can share how you’re using the Web Share API. Or if you’re not using the Web Share API, but you know someone who is, please let them know.

Okay, so those first two bits of pushback directly contradict what’s in the explainer document for the Web Share API. The third bit of pushback is more philosophical and, I think, more interesting.

The Web Share API explainer document does a good job of explaining why a declarative solution is desirable:

The link can be placed declaratively on the page, with no need for a JavaScript click event handler.

That’s also my justification for having a declarative alternative: it would be easier for more people to use. I said:

At a fundamental level, declarative technologies have a lower barrier to entry than imperative technologies.

But Marcos wrote:

That’s demonstrably false and a common misconception: See OWL, XForms, SVG, or any XML+namespace spec. Even HTML is poorly understood, but it just happens to have extremely robust error recovery (giving the illusion of it being easy). However, that’s not a function of it being “declarative”.

He’s absolutely right.

It’s not so much that I want a declarative option—I want an option that has robust error recovery. After all, XML is a declarative language but its error handling is as strict as an imperative language like JavaScript: make one syntactical error and nothing works. XML has a brittle error-handling model by design. HTML and CSS have extremely robust error recovery by design. It’s that error-handling model that gives HTML and CSS their robustness.

I’ve been using the word “declarative” when I actually meant “robust in handling errors”.

I guess that when I’ve been talking about “a declarative solution”, I’ve been thinking in terms of the three languages parsed by browsers: HTML, CSS, and JavaScript. Two of those languages are declarative, and those two also happen to have much more forgiving error-handling than the third language. That’s the important part—the error handling—not the fact that they’re declarative.

I’ve been using “declarative” as a shorthand for “either HTML or CSS”, but really I should try to be more precise in my language. The word “declarative” covers a wide range of possible languages, and not all of them lower the barrier to entry. A declarative language with a brittle error-handling model is as daunting as an imperative language.

I should try to use a more descriptive word than “declarative” when I’m describing HTML or CSS. Resilient? Robust?

With that in mind, button type=“share” is worth pursuing. Yes, it’s a declarative option for using the Web Share API, but more important, it’s a robust option for using the Web Share API.

I invite you to read the explainer document for a share button type and I welcome your feedback …especially if you’re currently using the Web Share API!

Thursday, October 1st, 2020

share-button-type/explainer.md

If you’ve been following my recent blog posts about a declarative option for the Web Share API, you might be interested in this explainer document I’ve put together. It outlines the use case for button type="share".

Wednesday, September 16th, 2020

A polyfill for button type=”share”

After writing about a declarative Web Share API here yesterday I thought I’d better share the idea (see what I did there?).

I opened an issue on the Github repo for the spec.

(I hope that’s the right place for this proposal. I know that in the past ideas were kicked around on the Discourse site for Web platform Incubator Community Group but I can’t stand Discourse. It literally requires JavaScript to render anything to the screen even though the entire content is text. If it turns out that that is the place I should’ve posted, I guess I’ll hold my nose and do it using the most over-engineered reinvention of the browser I’ve ever seen. But I believe that the plan is for WICG to migrate proposals to Github anyway.)

I also realised that, as the JavaScript Web Share API already exists, I can use it to polyfill my suggestion for:

<button type="share">

The polyfill also demonstrates how feature detection could work. Here’s the code.

This polyfill takes an Inception approach to feature detection. There are three nested levels:

  1. This browser supports button type="share". Great! Don’t do anything. Otherwise proceed to level two.
  2. This browser supports the JavaScript Web Share API. Use that API to share the current page URL and title. Otherwise proceed to level three.
  3. Use a mailto: link to prefill an email with the page title as the subject and the URL in the body. Ya basic!

The idea is that, as long as you include the 20 lines of polyfill code, you could start using button type="share" in your pages today.

I’ve made a test page on Codepen. I’m just using plain text in the button but you could use a nice image or SVG or combination. You can use the Codepen test page to observe two of the three possible behaviours browsers could exhibit:

  1. A browser supports button type="share". Currently that’s none because I literally made this shit up yesterday.
  2. A browser supports the JavaScript Web Share API. This is Safari on Mac, Edge on Windows, Safari on iOS, and Chrome, Samsung Internet, and Firefox on Android.
  3. A browser supports neither button type="share" nor the existing JavaScript Web Share API. This is Firefox and Chrome on desktop (and Edge if you’re on a Mac).

See the Pen Polyfill for button type=”share" by Jeremy Keith (@adactio) on CodePen.

The polyfill doesn’t support Internet Explorer 11 or lower because it uses the DOM closest() method. Feel free to fork and rewrite if you need to support old IE.

Tuesday, September 15th, 2020

A declarative Web Share API

I’ve written about the Web Share API before. It’s a handy little bit of JavaScript that—if supported—brings up a system-level way of sharing a page. Seeing as it probably won’t be long before we won’t be able to see full URLs in browsers anymore, it’s going to fall on us as site owners to provide this kind of fundamental access.

Right now the Web Share API exists entirely in JavaScript. There are quite a few browser APIs like that, and it always feels like a bit of a shame to me. Ideally there should be a JavaScript API and a declarative option, even if the declarative option isn’t as powerful.

Take form validation. To cover the most common use cases, you probably only need to use declarative markup like input type="email" or the required attribute. But if your use case gets a bit more complicated, you can reach for the Constraint Validation API in JavaScript.

I like that pattern. I wish it were an option for JavaScript-only APIs. Take the Geolocation API, for example. Right now it’s only available through JavaScript. But what if there were an input type="geolocation" ? It wouldn’t cover all use cases, but it wouldn’t have to. For the simple case of getting someone’s location (like getting someone’s email or telephone number), it would do. For anything more complex than that, that’s what the JavaScript API is for.

I was reminded of this recently when Ada Rose Cannon tweeted:

It really feels like there should be a semantic version of the share API, like a mailto: link

I think she’s absolutely right. The Web Share API has one primary use case: let the user share the current page. If that use case could be met in a declarative way, then it would have a lower barrier to entry. And for anyone who needs to do something more complicated, that’s what the JavaScript API is for.

But Pete LePage asked:

How would you feature detect for it?

Good question. With the JavaScript API you can do feature detection—if the API isn’t supported you can either bail or provide your own implementation.

There a few different ways of extending HTML that allow you to provide a fallback for non-supporting browsers.

You could mint a new element with a content model that says “Browsers, if you do support this element, ignore everything inside the opening and closing tags.” That’s the way that the canvas element works. It’s the same for audio and video—they ignore everything inside them that isn’t a source element. So developers can provide a fallback within the opening and closing tags.

But forging a new element would be overkill for something like the Web Share API (or Geolocation). There are more subtle ways of extending HTML that I’ve already alluded to.

Making a new element is a lot of work. Making a new attribute could also be a lot of work. But making a new attribute value might hit the sweet spot. That’s why I suggested something like input type="geolocation" for the declarative version of the Geolocation API. There’s prior art here; this is how we got input types for email, url, tel, color, date, etc. The key piece of behaviour is that non-supporting browsers will treat any value they don’t understand as “text”.

I don’t think there should be input type="share". The action of sharing isn’t an input. But I do think we could find an existing HTML element with an attribute that currently accepts a list of possible values. Adding one more value to that list feels like an inexpensive move.

Here’s what I suggested:

<button type=”share” value=”title,text”>

For non-supporting browsers, it’s a regular button and needs polyfilling, no different to the situation with the JavaScript API. But if supported, no JS needed?

The type attribute of the button element currently accepts three possible values: “submit”, “reset”, or “button”. If you give it any other value, it will behave as though you gave it a type of “submit” or “button” (depending on whether it’s in a form or not) …just like an unknown type value on an input element will behave like “text”.

If a browser supports button type="share”, then when the user clicks on it, the browser can go “Right, I’m handing over to the operating system now.”

There’s still the question of how to pass data to the operating system on what gets shared. Currently the JavaScript API allows you to share any combination of URL, text, and description.

Initially I was thinking that the value attribute could be used to store this data in some kind of key/value pairing, but the more I think about it, the more I think that this aspect should remain the exclusive domain of the JavaScript API. The declarative version could grab the current URL and the value of the page’s title element and pass those along to the operating system. If you need anything more complex than that, use the JavaScript API.

So what I’m proposing is:

<button type="share">

That’s it.

But how would you test for browser support? The same way as you can currently test for supported input types. Make use of the fact that an element’s attribute value and an element’s property value (which 99% of the time are the same), will be different if the attribute value isn’t supported:

var testButton = document.createElement("button");
testButton.setAttribute("type","share");
if (testButton.type != "share") {
// polyfill
}

So that’s my modest proposal. Extend the list of possible values for the type attribute on the button element to include “share” (or something like that). In supporting browsers, it triggers a very bare-bones handover to the OS (the current URL and the current page title). In non-supporting browsers, it behaves like a button currently behaves.

Sunday, July 5th, 2020

Dark Ages of the Web

Notes on the old internet, its design and frontend.

Saturday, May 30th, 2020

Programming CSS to perform Sass colour functions

I wrote recently about moving away from Sass to using native CSS features. I had this to say on the topic of mixins in Sass:

These can be very useful, but now there’s a lot that you can do just in CSS with calc(). The built-in darken() and lighten() mixins are handy though when it comes to colours.

I know we will be getting these in the future but we’re not there yet with CSS.

Anyway, I had all this in the back of my mind when I was reading Lea’s excellent feature in this month’s Increment: A user’s guide to CSS variables. She’s written about a really clever technique of combining custom properites with hsl() colour values for creating colour palettes. (See also: Una’s post on dynamic colour theming with pure CSS.)

As so often happens when I’m reading something written by Lea—or seeing her give a talk—light bulbs started popping over my head (my usual response to Lea’s knowledge bombs is either “I didn’t know you could do that!” or “I never thought of doing that!”).

I immediately set about implementing this technique over on The Session. The trick here is to use separate custom properties for the hue, saturation, and lightness parts of hsl() colour values. Then, when you want to lighten or darken the colour—say, on hover—you can update the lightness part.

I’ve made a Codepen to show what I’m doing.

Let’s say I’m styling a button element. I make custom propertes for hsl() values:

button {
  --button-colour-hue: 19;
  --button-colour-saturation: 82%;
  --button-colour-lightness: 38%;
  background-color: hsl(
    var(--button-colour-hue),
    var(--button-colour-saturation),
    var(--button-colour-lightness)
  );
}

For my buttons, I want the borders to be slightly darker than the background colour. When I was using Sass, I used the darken() function to this. Now I use calc(). Here’s how I make the borders 10% darker:

border-color: hsl(
  var(--button-colour-hue),
  var(--button-colour-saturation),
  calc(var(--button-colour-lightness) - 10%)
);

That calc() function is substracting a percentage from a percentage: 38% minus 10% in this case. The borders will have a lightness of 28%.

I make the bottom border even darker and the top border lighter to give a feeling of depth.

On The Session there’s a “cancel” button style that’s deep red.

Here’s how I set its colour:

.cancel {
  --button-colour-hue: 0;
  --button-colour-saturation: 100%;
  --button-colour-lightness: 40%;
}

That’s it. The existing button declarations take care of assigning the right shades for the border colours.

Here’s another example. Site admins see buttons for some actions only available to them. I want those buttons to have their own colour:

.admin {
  --button-colour-hue: 45;
  --button-colour-saturation: 100%;
  --button-colour-lightness: 40%;
}

You get the idea. It doesn’t matter how many differently-coloured buttons I create, the effect of darkening or lightening their borders is all taken care of.

So it turns out that the lighten() and darken() functions from Sass are available to us in CSS by using a combination of custom properties, hsl(), and calc().

I’m also using this combination to lighten or darken background and border colours on :hover. You can poke around the Codepen if you want to see that in action.

I love seeing the combinatorial power of these different bits of CSS coming together. It really is a remarkably powerful programming language.