Calculator Techniques Seminar: BY: Engr. Jose Lorenzo D. Bucton
Calculator Techniques Seminar: BY: Engr. Jose Lorenzo D. Bucton
Calculator Techniques Seminar: BY: Engr. Jose Lorenzo D. Bucton
SEMINAR
BY:
x
180 x ( 120)
12
x
180 x 120
12
3600 60 min s 600
x ( )
11 360 11
x 54.545 min s
time : 4 : 54 : 32.73
COINCIDENT
SOLUTION (CONVENTIONAL)
x
120 x
12
1440 60 min s 240
x ( )
11 360 11
x 21.818 min s
time : 4 : 21 : 49.09
RIGHT ANGLE (1 TIME)
ST
SOLUTION (CONVENTIONAL)
x
120 x 90
12
360 60 min s 60
x ( )
11 360 11
x 5.4545 min s
time : 4 : 05 : 27.27
RIGHT ANGLE (2 TIME)
ND
SOLUTION (CONVENTIONAL)
x
90 x (120 )
12
2520 60 min s 420
x( )( )
11 360 11
x 38.18 min s
time : 4 : 38 : 10.91
CALCULATOR TECHNIQUE
INITIAL CONDITION (4:00) FINAL CONDITION (5:00)
MODE STAT
• A+BX A.)OPPOSITE TO EACH OTHER: C.)RIGHT ANGLE (1ST TIME):
an a1 ( n 1)( d )
a30 4 (30 1)(3)
a2 b2 c2
cos A
COSINE LAW: 2bc
CALTECH VARIATION: a b A c;a c Ab
TRIGONOMETRY:
5.1466 a 5.1466 b
;
sin(35) sin(53) sin(35) sin(92)
a 7.166
b 8.967
CALCULATOR TECHNIQUE
a b c
Cos(92) Cos(53) 5.1466
Sin(92) -Sin(53) 0
a=7.166
b=8.976
TRIGONOMETRY
FIND SIDE c:
SOLUTION (CONVENTIONAL)
c 2 a 2 b 2 2ab cos(C )
c 7.26 2 9.03932 2(7.26)(9.0393) cos(35)
c 5.1867
CALCULATOR TECHNIQUE
h2
v ( A Bx Cx 2 )dx
h1
USING
STAT MODE:_+Cx^2
X Y
0 0
1.8214 10.42222
3.6428 0
h2
v ( A Bx Cx A=0; STORE TO A
2
) dx
h1 B=11.44419;STORE TO B
1.8214 C=-3.14159;STORE TO C
v ) dx 3.83714
2
( A Bx Cx
1.4480
AREA OF CIRCULAR SEGMENT
A 2 Dx x 2 dx,0, h,0.001
A 2 Dx x 2 dx,0, h,0.001
A 2 3.6428 x x 2 dx,0,0.7323,0.001
A 1.49484
LATERAL EARTH PRESSURE
A RETAINING WALL 8M HIGH SUPPORTS A COHESIONLESS SOIL AS SHOWN IN THE PROFILE
WITH A SHEAR RESISTANCE OF 33. THE SURFACE OF THE SOIL IS HORIZONTAL AND LEVEL
WITH THE TOP OF THE WALL. NEGLECT WALL FRICTION AND USE RANKINE’S FORMULA
FOR ACTIVE EARTH PRESSURE ON A COHESIONLESS SOIL.
A.)DETERMINE THE TOTAL EARTH THRUST ON THE WALL IN Kn/m IF SOIL IS DRY.
B.) DETERMINE THE TOTAL EARTH THRUST ON THE WALL IN Kn/m IF SOIL IS WATERLOGGED
3.5m BELOW SURFACE.
C.)DETERMINE LOCATION OF LATERAL THRUST DURING WATERLOGGED CONDITION.
D.)DETERMINE MOMENT GENERATED FROM LATERAL THRUST.
SOLUTION (CONVENTIONAL)
1 sin 1 sin 33
Ka 0.2948
1 sin 1 sin 33
1 1
Fa K aH 2 (0.2948)(15.696)(8) 2
2 2
Fa 148.1kN
SOLUTION (CONVENTIONAL)
PRESSURES :
P1 K aH
P1 (0.2948)(15.696)(3.5)
P1 16.195Kpa
P2 K aH
P2 (0.2948)(9.857)(4.5)
P2 13.076 Kpa
P3 H 2O H
P3 (9.81)(4.5)
P3 44.145Kpa
SOLUTION (CONVENTIONAL)
Y COORDINATE : FORCES :
3.5 1
Y1 4.5 5.667 m F1 (16.195)(3.5)(1) 28.34 KN
3 2
1 F2 16.195( 4.5)(1) 72.88KN
Y2 ( 4.5) 2.25m 1
2 F3 (13.076)(4.5)(1) 29.421KN
4.5 2
Y3 1.5m 1
3 F4 (9.81)(4.5) 2 99.33KN
4.5 2
Y4 1.5m
3
SOLUTION (CONVENTIONAL)
VARIGNON ' S THEOREM :
FT F1 F2 F3 ...
FT 28.43 72.88 29.421 99.33
FT 229.97 KN
FT Y T F1Y 1 F2Y 2 F3Y 3...
229.97Y T (28.43)(5.667) (72.88)(2.25) (29.421)(1.5) (99.33)(1.5)
YT 2.251m
M 517.70928KN .m
CALCULATOR TECHNIQUE
PRESSURES :
P1 K aH
P1 (0.2948)(15.696)(3.5)
P1 16.195Kpa
P2 K aH
P2 (0.2948)(9.857)(4.5)
P2 13.076 Kpa
P3 H 2O H
P3 (9.81)(4.5)
P3 44.145Kpa
CALCULATOR TECHNIQUE
X(Y-COORDINATE) FREQUENCY (AREA) DATA :
5.667 28.34 N 229.971KN
2.25 72.88 ___
20 42.3
28 38.6
INPUT:
25Y’
=39.9875%
=40%
3D TRUSS
IF THE CAPACITY OF EACH LEG IS 15KN, WHAT IS
THE SAFE VALUE OF W?
EQUATIONS OF EQUILIBRIUM:
FX 0 MX 0
FY 0 MY 0
FZ 0 MZ 0
CALCULATOR TECHNIQUE:
COORDINATES:
POINT X Y Z
A 0 0 2.4
B 0.9 1.8 0
C -1.8 0 0
D 0.9 -1.8 0
MEMBER VECTORS:
MEMBER X Y Z
AD 0.9 -1.8 -2.4
AB 0.9 1.8 -2.4
AC -1.8 0 -2.4
CALCULATOR TECHNIQUE:
0.9 0.9 1.8
matA
1.8 1.8 0
MEMBER LENGTH
2.4 2.4 2.4
AD 3.132 3.132 0 0
matB
0 3.132 0
AB 3.132
0 0 3
AC 3 0
matC 0
1
n 19500 AREA
__
X 108.846 CENTROID
2
n( x ) 177461538.5 STORE ( A)
y' 1
B.)e x x e x 2
(e ln( x ))
x e x ( ln( x ))
y x
x
C.) x 2 e (1 e x ln( x )) x 1 x ln( x )
x
1
y' e x x e ( )
D.) x e e x (1 ln( x x )) x
dy x
x e 1e x (1 ln( x x ))
dx
DIFFERENTIAL EQUATIONS
• THE POPULATION OF THE TOWN GROWS AT THE RATE
PROPORTIONAL TO THE POPULATION PRESENT AT ANY TIME
T. THE INITIAL POPULATION OF 500 INCREASED BY 15% IN 10
YEARS. WHAT WILL BE THE POPULATION IN 30 YEARS?
BOUNDARY CONDITIONS: SOLUTION :
A.) p 500; t 0
P=500;T=0 dP
kp 500 ce 0 k
P=575;T=10 dt
dP c 500
p k dt B.) p 575; t 10
ln( p ) kt c 575 ce10 k
e ln p e kt c k 0.01397
p ce kt C.) p 500e 0.01397t
@ t 30
p 760.4375
STRUCTURAL ANALYSIS
X Y
0 40
10 0
x2
ya 2 (3L a )da
6 EI 40000
x1
10
( A Bx) x 2 (30 x)dx 3EI
0
6 EI
CONTINUOUS BEAM
FOR SPAN AB:
FOR THE CONTINUOUS BEAM SHOWN IN THE FIGURE,
DETERMINE THE MOMENT AT B: X Y
0 600
2 600
0 1200
3 0
THREE MOMENT EQUATION:
MOMENT AREA AB: MOMENT AREA CB:
3
2
( A Bx)( x)(4 x )dx
2 2 ( A Bx)( x)(32 x 2 )dx
0 4
4200 0 3
3780
900(3)(4 3 )
2 2 3780 store
D
4725
4
4200 4725 8925 store
C
SOLUTION :
R 4000 200150 300240 300300
R 226.7949192 419.6152423i
R 476.9831097 61.6095305
WELDED CONNECTIONS
FIND THE MAXIMUM MASTER EQUATION:
SHEARING STRESS IN THE
WELDED CONNECTION: T P
R( x, y ) i ( x yi)( )
J L
2
J n x y
2
L3
12
WHERE:
T-TORSIONAL FORCE
J-POLAR MOMENT OF INERTIA
P-AXIAL LOAD
Ө-ANGLE WITH X AXIS
L-LENGTH OF WELD
WELDED CONNECTIONS
T P
R ( x, y ) i ( x yi )( )
J L
J n x y
2 2
L3
12
1503
J 4750000 (3)( ) 5593750
12
T 90( 233.33) 21000kn.mm
L n 450mm
P 90kn
270
21000 90270
R ( x, y ) i ( x yi )()
5593750 450
R max 755.0237 kn / mm
SOURCES AND ACKNOWLEDGEMENTS:
Mega Review
Review Innovations
Gillesania Review
XU College of Engineering
PICE-XUSC
Tolentino and Associates Review