Nothing Special   »   [go: up one dir, main page]

Specialist Maths: Calculus Week 2

Download as ppt, pdf, or txt
Download as ppt, pdf, or txt
You are on page 1of 32

Specialist Maths

Calculus
Week 2
Bezier Curves
• These are graphic curves to enable us to
draw curves on computers.
• They were designed by Pierre Bezier in
1962 so he could create computer designs
for creating new car designs for Renault.
Constructing Bezier Curves
• Start the curve at point S and end it at point E.
• Introduce two control points C1 and C2, and a
parameter t where 0≤ t ≤ 1.
C1 C2



E
S
Constructing Bezier Curves
• Points F, G and H are located on SC1, C1C2 and
C2E respectively, such that SF:FC1 = t:1-t,
C1G:GC2 = t:1-t and C2H:HE = t:1-t

C1 C2
t G 1-t 
 

F 1-t t

H

t 1-t


E
S
Constructing Bezier Curves
• Points I and J are located on FG, and GH
respectively, such that FI:IG = t:1-t,
GJ:JH = t:1-t.

C1 C2
t G 1-t 
 

1-t
 1-t t t
F I
t 
J 1-t H
t 1-t


E
S
Constructing Bezier Curves
• Finally P(x(t),y(t)) are the points that describe the
Bezier curve such that IP:PJ = t:1-t

C1 C2
t G 1-t 
 

1-t
 1-t t t
F I t 
t P 1-t 
J 1-t H
t 1-t


E
S
Finding the coordinates of P
Given the start point S( x0 , y0 ), control points C1 ( x1 y1 ) and C 2 ( x2 , y2 ),
end point E( x3 , y3 ), then P x(t ), y (t )  is given by
x(t )  a x t 3  bxt 2  c x t  d x
y (t )  a y t 3  by t 2  c y t  d y

Where and
a x  x3  3 x2  3 x1  x0 a y  y3  3 y2  3 y1  y0
bx  3 x2  6 x1  3 x0 by  3 y2  6 y1  3 y0
c x  3 x1  3 x0 c y  3 y1  3 y0
d x  x0 d y  y0
Using Matricis
Given the start point S( x0 , y0 ), control points C1 ( x1 y1 ) and C 2 ( x2 , y2 ),
end point E( x3 , y3 ), then P x(t ), y (t )  is given by
x(t )  a x t 3  bx t 2  c x t  d x
y (t )  a y t 3  by t 2  c y t  d y

 a x  1  3 3  1  x3   a y  1  3 3  1   y 3 
 b  0 3  6 3   x  b  
0 3  6 3  y 
 x  2   y  2 
 c x  0 0 3  3  x1   c y  0 0 3  3  y1 
         
d
 y   0 0 0 1   y0 
 d x  0 0 0 1   x0 
Note: P is at S when t = 0, and at E when t = 1.
Example 4 (Ex 6C2)
Find the Bezier curve from A(0,1) to B(3,2) with control points
C1 (1,3) and C 2 (2,4),  a x  1  3 3  1  x3   a y  1  3 3  1  y3 
 b  0 3  6 3   x  b    
 y   0 3  6 3   y 2 
x(t )  a x t 3  bx t 2  c x t  d x  x
 c x  0 0
 2 
3  3  x1   c y  0 0 3  3  y1 
         
 d x  0 0 0 1   x0  d y  0 0 0 1   y0 
y (t )  a y t 3  by t 2  c y t  d y
Solution 4
Find the Bezier curve from A(0,1) to B(3,2) with control points
C1 (1,3) and C 2 (2,4),
 a x  1  3 3  1  x3   a y  1  3 3  1  y3 
x(t )  a x t  bx t  cx t  d x
3 2
 b  0 3  6 3   x 
 x  2 
b    
 y   0 3  6 3   y 2 
 c x  0 0 3  3  x1   c y  0 0 3  3  y1 
y (t )  a y t 3  by t 2  c y t  d y   
 d x  0 0 0
 
1   x0 
  
d y  0 0 0
 
1   y0 
Example 5 (Ex 6C2)
For the Bezier curves defined by
x(t )  4t 3  5t 2  2t  3
y (t )  t  2t  4t  5
3 2

Find the coordinates of the starting point and end point.


Solution 5
For the Bezier curves defined by
x(t )  4t 3  5t 2  2t  3
y (t )  t 3  2t 2  4t  5
Find the coordinates of the starting point and end point.
Example 6 (Ex 6C2)
For the Bezier curves defined by
S(-3,5)
x(t )  4t  5t  2t  3
3 2

E(-2,4)
y (t )  t  2t  4t  5
3 2

Find the coordinates of the highest and lowest points.


Solution 6
For the Bezier curves defined by
S(-3,5)
x(t )  4t 3  5t 2  2t  3
E(-2,4)
y (t )  t 3  2t 2  4t  5
Find the coordinates of the highest and lowest points.
Example 7 (Ex 6C2)
For the Bezier curves defined by S(-3,5)
x(t )  4t 3  5t 2  2t  3 E(-2,4)
y (t )  t 3  2t 2  4t  5
Find the coordinates of the most left and right points.
Solution 7
For the Bezier curves defined by
S(-3,5)
x (t )  4t  5t  2t  3
3 2

E(-2,4)
y (t )  t  2t  4t  5
3 2

Find the coordinates of the most left and right points.


Example 8 (Ex 6C2)
For the Bezier curves defined by
x(t )  4t 3  5t 2  2t  3
y (t )  t 3  2t 2  4t  5
Find the velocity vector and the speed of the animation when t  0.3.
Solution 8
For the Bezier curves defined by
x(t )  4t 3  5t 2  2t  3
y (t )  t 3  2t 2  4t  5
Find the velocity vector and the speed of the animation when t  0.3.
Parametric Equations of Tangents to
Curves

The direction vector of the tangent to curve ( x(t), y (t )) at t  a,


is  x' (a), y' (a)

( x(a), y (a ))

The equation of the tangent is given by


x( s )  x(a )  x' (a ) s
 y ( s )  y (a)  y ' (a) s
(x( 0 ),y( 0 ))
Example 9 (Ex 6C3)
Find the parametric equation of the tangent to the curve
x(t )  t 3  t 2  2t  3
y (t )  t 2  6t  5
at the point where t  -2
Solution 9
Find the parametric equation of the tangent to the curve
x(t )  t 3  t 2  2t  3
y (t )  t 2  6t  5
at the point where t  -2
Using Parametric Forms
• Parametric representation enables us to
express the coordinates of any point in
terms of one variable “t”.
• Example P(t2-2,2t+1).
• We need however to be able to convert
from parametric form back to Cartesian
form.
Example 11 (Ex 6E1)
Find the Cartesian equations of the curve with
parametric equations
x(t )  5  t  2t 2
y (t )  8  4t
Solution 11
Find the Cartesian equations of the curve with
parametric equations

x(t )  5  t  2t 2

y (t )  8  4t
Example 12 (Ex 6E1)
Find the Cartesian equations of the curve with
parametric equations
1
x(t )   t
t
1
y (t )   t
t
Solution 12
Find the Cartesian
equations of the
curve with
parametric
equations
1
x(t )   t
t
1
y (t )   t
t
Tangents and Normals
• If P has coordinates (x(t),y(t)), then
dy y ' (t )

dx x' (t )
• The slope of the tangent at t=a is given by:
y ' (a )
m
x' (a )
Example 13 (Ex 6E2)
• Find the equation to the tangent and the normal to
the curve with paramedic equations when t = -1:
x(t )  t  4
2

y (t )  4t  5
Solution 13
Example 14 (Ex 6E2)
• Find the equation of the tangent to the curve
with parametric equations x = 3t +7 and
y = 8 – 2t2, having slope –4.
Solution 14
This Week
• Text pages 216 to 220, 223 to 226
• Exercise 6C2 Q 1 - 5
• Exercise 6C3 Q1, 2
• Exercise 6E1 Q 1, 2
• Exercise 6E2 Q 1-5

You might also like