Nothing Special   »   [go: up one dir, main page]

Chapter 9 Thin Film Deposition - I - Karthik CVD

Download as pptx, pdf, or txt
Download as pptx, pdf, or txt
You are on page 1of 29

Chapter 9 Thin film deposition

1. Introduction to thin film deposition.


2. Introduction to chemical vapor deposition (CVD).
3. Atmospheric Pressure Chemical Vapor Deposition (APCVD).
4. Other types of CVD (LPCVD, PECVD, HDPCVD…).
5. Introduction to evaporation.
6. Evaporation tools and issues, shadow evaporation.
7. Introduction to sputtering and DC plasma.
8. Sputtering yield, step coverage, film morphology.
9. Sputter deposition: reactive, RF, bias, magnetron, collimated,
and ion beam.
10. Deposition methods for thin films in IC fabrication.
11. Atomic layer deposition (ALD).
12. Pulsed laser deposition (PLD).
13. Epitaxy (CVD or vapor phase epitaxy , molecular beam epitaxy).

NE 343: Microfabrication and thin film technology


Instructor: Bo Cui, ECE, University of Waterloo; http://ece.uwaterloo.ca/~bcui/ 1
Textbook: Silicon VLSI Technology by Plummer, Deal and Griffin
Thin film
Thin film: thickness typically <1000nm.
Special properties of thin films: different from bulk materials, it may be –
• Not fully dense
• Under stress
• Different defect structures from bulk
• Quasi ‐ two dimensional (very thin films)
• Strongly influenced by surface and interface effects
Typical steps in making thin films:
1. Emission of particles from source (heat, high voltage . . .)
2. Transport of particles to substrate
3. Condensation of particles on substrate

Lithography, thin film deposition and


its etching are the three most
important processes for micro-nano
fabrication. 2
Thin film deposition methods

Two main deposition methods are used today:

Chemical Vapor Deposition (CVD)


Reactant gases introduced in the chamber, chemical reactions occur on wafer surface
leading to the deposition of a solid film.
E.g. APCVD, LPCVD, PECVD, most commonly used for dielectrics and Si.

Physical Vapor Deposition (PVD) (no chemical reaction involved)


Vapors of constituent materials created inside the chamber, and condensation occurs
on wafer surface leading to the deposition of a solid film.
E.g. evaporation, sputter deposition, most commonly used for metals.

Other methods that are increasingly gaining importance in ULSI fabrication:


1. Coating with a liquid that becomes solid upon heating, e.g. spin-on-glass used for
planarization.
2. Electro-deposition: coating from a solution that contains ions of the species to be
coated. E.g. Cu electroplating for global interconnects.
3. Thermal oxidation.
3
General characteristics of thin film deposition
• Deposition rate
• Film uniformity:
• Across wafer uniformity.
• Run-to-run uniformity.
• Materials that can be deposited: metal, dielectric, polymer.
• Quality of film:
• Physical and chemical properties
• Electrical property, breakdown voltage
• Mechanical properties, stress and adhesion to substrate
• Optical properties, transparency, refractive index
• Composition, stoichiometry
• Film density, defect (pinhole…) density
• Texture, grain size, boundary property, and orientation
• Impurity level, doping
• Deposition directionality:
• Directional - good for lift-off, trench filling
• Non-directional - good for step coverage
• Cost of ownership and operation.
4
Step coverage
conformal non-conformal

Poor (non-conformal) step coverage is good for liftoff.


Conformal film is good for electrical connection…

Figure 9-1 Step coverage of metal over non-planar topography.


(a) Conformal step coverage, with constant thickness on horizontal and vertical surfaces.
(b) Poor step coverage, here thinner for vertical surfaces. 5
Thin film filling of holes/trenches

Aspect ratio (AR):


AR = feature height/width
AR = h/w

Figure 9-2 Thin film filling issues.


(a) Good metal filling of a via or contact in a dielectric layer.
(b) Silicon dioxide filling of the space between metal lines, with poor filling leading to
void formation.
(c) Poor filling of the bottom of a via hole with a barrier or contact meal.

Voids in a chemical vapor deposition


(CVD) oxide layer for narrow spaces
between metal lines.
More difficult to fill without void for
Figure 9-3 higher aspect ratio.
6
Four equilibrium growth/deposition modes

7
Four growth modes
• Layer by layer growth (Frank ‐ van der Merwe): film atoms more strongly
bound to substrate than to each other and/or fast diffusion
• Island growth (Volmer ‐ Weber): film atoms more strongly bound to each
other than to substrate and/or slow diffusion.
• Mixed growth (Stranski ‐ Krastanov): initially layer by layer then forms three
dimensional islands.

Thin film types based on crystallinity:


• Epitaxial (single‐crystalline, formed layer-by-layer, lattice match to substrate): no grain
boundaries, requires high temperatures and slow growth rate. High quality thin films
such as III‐V semiconductor films (e.g. GaAs) and complex oxides.
• Polycrystalline (island or mixed growth): lots of grain boundaries, e.g. most elemental
metals grown near room temperatures.
• Amorphous (island or mixed growth): no‐crystalline structures (yet with some short
range atomic ordering), no crystalline defects, e.g. common insulators such as
amorphous SiO2.
8
Effect of substrate temperature on the lateral grain size
100 Å thick Au films deposited at 100,
100oC
200, and 300℃ by vacuum evaporation

200oC

The small islands start coalescing with each other in


an attempt to reduce the surface area.
This tendency to form bigger islands is termed 300oC
agglomeration and is enhanced by increasing the
surface mobility of the adsorbed species, such as by
increasing the substrate temperature.
Except under special conditions, the crystallographic
orientation and the topographical details of different
islands are randomly distributed.
9
Chapter 9 Thin film deposition

1. Introduction to thin film deposition.


2. Introduction to chemical vapor deposition (CVD).
3. Atmospheric Pressure Chemical Vapor Deposition (APCVD).
4. Other types of CVD (LPCVD, PECVD, HDPCVD…).
5. Introduction to evaporation.
6. Evaporation tools and issues, shadow evaporation.
7. Introduction to sputtering and DC plasma.
8. Sputtering yield, step coverage, film morphology.
9. Sputter deposition: reactive, RF, bias, magnetron, collimated,
and ion beam.

NE 343: Microfabrication and Thin Film Technology


Instructor: Bo Cui, ECE, University of Waterloo, bcui@uwaterloo.ca 10
Textbook: Silicon VLSI Technology by Plummer, Deal, Griffin
Chemical Vapor Deposition (CVD)

CVD : deposit film through chemical


reaction and surface absorption.

CVD steps:
• Introduce reactive gases to the chamber.
• Activate gases (decomposition) by heat or plasma.
• Gas absorption by substrate surface .
• Reaction take place on substrate surface, film firmed.
• Transport of volatile byproducts away form substrate.
• Exhaust waste.
11
Chemical vapor deposition (CVD) systems

Atmospheric cold-wall system used


for deposition of epitaxial silicon.
(SiCl4 + 2H2  Si + 4HCl)

Low pressure hot-wall system used


for deposition of polycrystalline and
amorphous films, such as poly-silicon
and silicon dioxide.

Figure 9-4
12
CVD advantages and disadvantages
(as compared to physical vapor deposition)
Advantages:
• High growth rates possible, good reproducibility.
• Can deposit materials which are hard to evaporate.
• Can grow epitaxial films. In this case also termed as “vapor phase epitaxy (VPE)”. For
instance, MOCVD (metal-organic CVD) is also called OMVPE (organo-metallic VPE).
• Generally better film quality, more conformal step coverage (see image below).
Disadvantages:
• High process temperatures.
• Complex processes, toxic and corrosive gasses.
• Film may not be pure (hydrogen incorporation…).

13
Types of CVD reactions
• Thermal decomposition
AB(g) ---> A(s) + B(g)
Si deposition from Silane at 650oC: SiH4(g) → Si(s) + 2H2(g)
Ni(CO)4(g)  Ni(s) + 4CO(g) (180oC)
• Reduction (using H2)
AX(g) + H2(g)  A(s) + HX(g)
W deposition at 300oC: WF6(g) + 3H2(g)  W(s) + 6HF(g)
SiCl4(g) + 2H2(g)  Si(s) + 4HCl (1200oC)
• Oxidation (using O2)
AX(g) + O2(g)  AO(s) + [O]X(g)
SiO2 deposition from silane and oxygen at 450oC (lower temp than thermal
oxidation): SiH4(g) + O2(g) ---> SiO2(s) + 2H2(g)
2AlCl3(g) + 3H2(g) + 3CO2(g)  Al2O3 + 3CO + 6HCl (1000oC)
(O is more electronegative than Cl)
• Compound formation (using NH3 or H2O)
AX(g) +NH3(g)  AN(s) + HX(g) or AX(g) + H2O(g )  AO(s) + HX(g)
Deposit wear resistant film (BN) at 1100oC: BF3(g) + NH3(g)  BN(s) + 3HF(g)
(CH3)3Ga(g) + AsH3(g)  GaAs(s) + 3CH4 (650 – 750oC)
14
Thermal (not plasma-enhanced) CVD films

(Al2O3)

15
CVD sources and substrates

• Types of sources
o Gasses (easiest)
o Volatile liquids
o Sublimable solids
o Combination
• Source materials should be
o Stable at room temperature
o Sufficiently volatile
o High enough partial pressure to get good growth rates
o Reaction temperature < melting point of substrate
o Produce desired element on substrate with easily removable
by-products
o Low toxicity
• Substrates
o Need to consider adsorption and surface reactions
o For example, WF6 deposits on Si but not on SiO2

16
Types of CVD
APCVD (Atmospheric Pressure CVD), mass transport limited growth rate, leading to non-
uniform film thickness.
LPCVD (Low Pressure CVD)
• Low deposition rate limited by surface reaction, so uniform film thickness (many
wafers stacked vertically facing each other; in APCVD, wafers have to be laid
horizontally side by side.
• Gas pressures around 1-1000mTorr (lower P => higher diffusivity of gas to substrate)
• Better film uniformity & step coverage and fewer defects
• Process temperature 500°C
PECVD (Plasma Enhanced CVD)
• Plasma helps to break up gas molecules: high reactivity, able to process at lower
temperature and lower pressure (good for electronics on plastics).
• Pressure higher than in sputter deposition: more collision in gas phase, less ion
bombardment on substrate
• Can run in RF plasma mode: avoid charge buildup for insulators
• Film quality is poorer than LPCVD.
• Process temperature around 100 - 400°C.
MOCVD (Metal-organic CVD, also called OMVPE - organo metallic VPE), epitaxial growth
for many optoelectronic devices with III-V compounds for solar cells, lasers, LEDs,
photo-cathodes and quantum wells. 17
Types of CVD

and epitaxy Si…

(can have high


deposition rate) (can be higher)

For R&D, PECVD is most popular, followed by LPCVD.

18
Chapter 9 Thin film deposition

1. Introduction to thin film deposition.


2. Introduction to chemical vapor deposition (CVD).
3. Atmospheric Pressure Chemical Vapor Deposition (APCVD).
4. Other types of CVD (LPCVD, PECVD, HDPCVD…).
5. Introduction to evaporation.
6. Evaporation tools and issues, shadow evaporation.
7. Introduction to sputtering and DC plasma.
8. Sputtering yield, step coverage, film morphology.
9. Sputter deposition: reactive, RF, bias, magnetron, collimated,
and ion beam.

NE 343: Microfabrication and Thin Film Technology


Instructor: Bo Cui, ECE, University of Waterloo, bcui@uwaterloo.ca 19
Textbook: Silicon VLSI Technology by Plummer, Deal, Griffin
Steps involved in a CVD process

Gas stream

1 7
2 6
Reaction rate may be limited by:
3 4 5 • Gas transport to/from surface.
Figure 9-5 Wafer
• Surface chemical reaction rate that
Susceptor
depends strongly on temperature.

1. Transport of reactants to the deposition region.


2. Transport of reactants from the main gas stream through the boundary layer to the wafer
surface.
3. Adsorption of reactants on the wafer surface.
4. Surface reactions, including: chemical decomposition or reaction, surface migration to
attachment sites (kinks and ledges); site incorporation; and other surface reactions
(emission and redeposition for example).
5. Desorption of byproducts.
6. Transport of byproducts through boundary layer.
7. Transport of byproducts away from the deposition region.
Steps 2-5 are most important for growth rate.
Steps 3-5 are closely related and can be grouped together as “surface reaction” processes.
20
Chapter 9 Thin film deposition

1. Introduction to thin film deposition.


2. Introduction to chemical vapor deposition (CVD).
3. Atmospheric Pressure Chemical Vapor Deposition (APCVD).
4. Other types of CVD (LPCVD, PECVD, HDPCVD…).
5. Introduction to evaporation.
6. Evaporation tools and issues, shadow evaporation.
7. Introduction to sputtering and DC plasma.
8. Sputtering yield, step coverage, film morphology.
9. Sputter deposition: reactive, RF, bias, magnetron, collimated,
and ion beam.

NE 343: Microfabrication and Thin Film Technology


Instructor: Bo Cui, ECE, University of Waterloo, bcui@uwaterloo.ca 21
Textbook: Silicon VLSI Technology by Plummer, Deal, Griffin
Low Pressure Chemical Vapor Deposition (LPCVD)

• LPCVD reactors use: P = 0.25 – 2.0Torr, T = 500 – 900°C.


• Transport of reactants from gas phase to surface through boundary layer is still not
rate limiting (despite the high T), so wafers can be stacked vertically for high
throughput (100-200 wafers per run).
• Because LPCVD operates in reaction limited regime, it is VERY sensitive to temperature
and so temperature needs to be controlled closely (within +/- 1oC), so use hot walled
reactor for this precise control.
• Again, a 5-25oC temperature gradient is often created to offset source gas depletion
effects (or one can use distributed feeding).
• Requires no carrier gas, and low gas pressure reduces gas-phase reaction which causes
particle cluster that contaminants the wafer and system.
• Less auto-doping (at lower P), as out-diffused dopant gas pumped away quickly.
22
Low Pressure Chemical Vapor Deposition (LPCVD)

Hot-wall

Possible disadvantages:
• For too low temperature, deposition rates may be too low, film quality decreases.
• Shadowing (less gas-phase collisions) due to directional diffusion to the surface, so
deterioration of the step coverage and filling.

Seems cold wall reactors also exist: cold wall reduce


deposition on walls, which leads to depletion of
deposition species and particle formation that may
flake off walls and fall on wafers.
Besides poorer temperature control than hot wall,
gas convection is another problem.
Cold-wall
23
Plasma Enhanced CVD (PECVD)
RF power input

“Good” quality films (though


Electrode generally not as good as LP or
Cold-wall

APCVD films deposited at much


Plasma
higher T): energy supplied by
Wafers
plasma (i.e. ion bombardment of
Electrode
film) increases film density,
Heater
composition, and step coverage.
Gas inlet
Gas outlet, pump
( SiH4, O2)

• Use RF-induced plasma to transfer energy into the reactant gases, forming radicals that is
very reactive. (RF: radio-frequency, typically 13.56MHz for PECVD)
• Low temperature process (<300oC), as thermal energy is less critical when RF energy exists.
• Used for depositing film on metals (Al…) and other materials that cannot sustain high
temperatures. (APCVD/LPCVD at such low temperatures gives increased porosity and poor
step coverage)
• Surface reaction limited deposition, thus substrate temperature control is important to
ensure uniformity.
• At low T, surface diffusion is slow, so one must supply kinetic energy for surface diffusion –
plasma (ion bombardment) provides that energy and enhances step coverage.
• Disadvantages: plasma damage, not pure film (often lots of H incorporated into film). 24
PECVD process parameter

Substrate temperature (100-300oC, up to 1000oC PECVD available)


• Control by external heater, very little heating from PECVD process
Gas flow (10s to 100s sccm – standard cubic centimeter per minute)
• Higher flow rates can increase deposition rate and uniformity
Pressure (P  50mTorr – 5Torr )
• Changes the energy of ions reaching electrodes
• Can change deposition rate
• Increases pressure may lead to chemical reactions in the gas
• Effects also depend on gas concentration
Power (10s to 100s watts)
• Affects the number of electrons available for activation and the energy of those
electrons
• Increased power may lead to chemical reactions in gas
• Increased power increases deposition rate
Frequency (mostly 13.56MHz, same for plasma etching and sputter deposition)
• Changes plasma characteristics
• Changes ion bombardment characteristics
25
Examples of PECVD systems and applications

26
High Density Plasma (HDP) CVD

• High density plasma CVD gives dense layers (SiO2) at


low T (150 °C) and low P (1- 10 mTorr); T increases
to 400°C by bombardment.
• Separate RF (gives substrate biasing for
bombardment) from plasma generation (electron
cyclotron resonance ECR and inductively coupled
plasma ICP).
• Simultaneous deposition and sputtering/
bombardment. Improved planarization and filling
due to preferential sputtering of sloped surface.
Mostly used for SiO2 deposition in backend
processes.

27
Miscellaneous: selective deposition and laser CVD
Selective deposition:
• Especially important in microelectronics, surface
Laser CVD
patterning and 3D-growth. (energy provided by laser)
• Reaction rate of precursor is limited on a non-growth
surface. E.g. deposition of Cu from (hfac)Cu(PMe3)
occur on Cu, Pt… but not on SiO2.
• Growth surface acts as co-reactant, and is selectively
consumed. E.g. Si reacts with WF6 or MoF6, while
reaction at SiO2 or Si3N4 is slower.
• A chemical reaction of a gaseous co-reactant occur on
the growth surface. E.g. H2 dissociation on a metal
surface, but not on SiO2 or metal oxide surfaces.

Tungsten spring
grown by laser CVD.
28
CVD reactor types: quick summary

According to the LPCVD slides, APCVD growth rate should be lower, which is not true. Because:
(?? I think)
• In APCVD reactive gas partial pressure could be set much higher than that in LPCVD.
• Its pressure could be much lower (by 10) than 1atm and is still called APCVD.
• Gas transport actually increases with T as T3/2 (APCVD is usually done at higher T than LPCVD).
29
• When putting wafer side-by-side facing the gas, more exposed to gas, thus faster transport.

You might also like