Nothing Special   »   [go: up one dir, main page]

Class 12 Hindi Part 1

Download as pdf or txt
Download as pdf or txt
You are on page 1of 276
At a glance
Powered by AI
The document discusses mathematical concepts related to functions including derivatives, critical points, local extrema and methods to find them.

The document is about mathematical concepts in calculus including derivatives, critical points, local extrema and methods to find absolute maxima and minima of functions.

The steps mentioned to find the local maxima and minima of a function are: 1) Find all critical points of the function where either the derivative is 0 or the function is non-differentiable. 2) Apply the first derivative test to determine if each critical point is a local max, min or point of inflection.

xf.

kr
Hkkx & I

d{kk 12 osQ fy, ikB~;iqLrd

2018-19
ISBN 81-7450-668-3

izFke laLdj.k lokZf/dkj lqjf{kr


q izdk'kd dh iwoZ vuqefr osQ fcuk bl izdk'ku osQ fdlh Hkkx dks
iQjojh 2007 iQkYxqu 1928 Nkiuk rFkk bySDVªkWfudh] e'khuh] iQksVksizfrfyfi] fjdkWfMZ±x vFkok
fdlh vU; fof/ ls iqu% iz;ksx i¼fr }kjk mldk laxzg.k vFkok
iqueqZæ.k izlkj.k oftZr gSA
vDrwcj 2007 dk£rd 1929 q bl iqLrd dh fcØh bl 'krZ osQ lkFk dh xbZ gS fd izdk'kd dh
iwoZ vuqefr osQ fcuk ;g iqLrd vius ewy vkoj.k vFkok ftYn osQ
tuojh 2009 ek?k 1930 vykok fdlh vU; izdkj ls O;kikj }kjk m/kjh ij] iqufoZØ; ;k
uoacj 2009 dkfrZd 1931 fdjk, ij u nh tk,xh] u csph tk,xhA
q bl izdk'ku dk lgh ewY; bl i`"B ij eqfæzr gSA jcM+ dh eqgj vFkok
fnlacj 2010 vxzgk;.k 1932 fpidkbZ xbZ iphZ (fLVdj) ;k fdlh vU; fof/ }kjk vafdr dksbZ Hkh
la'kksf/r ewY; xyr gS rFkk ekU; ugha gksxkA
tuojh 2012 ikS"k 1933
ekpZ 2013 iQkYxqu 1934 ,u lh bZ vkj Vh osQ izdk'ku izHkkx osQ dk;kZy;
iQjojh 2014 ek?k 1935 ,u-lh-bZ-vkj-Vh- oSaQil
fnlacj 2015 ikS"k 1937 Jh vjfoan ekxZ
u;h fnYyh 110 016 iQksu % 011&26562708
fnlacj 2016 ikS"k 1938 108, 100 iQhV jksM
tuojh 2018 ek?k 1939 gsyh ,DlVsas'ku] gksLMsosQjs
cuk'kadjh III bLVst
cSaxyq# 560 085 iQksu % 080&26725740
PD 6T RSP
uothou VªLV Hkou
Mkd?kj uothou
vgenkckn 380 014 iQksu % 079&27541446
© jk"Vªh; 'kSf{kd vuql/
a ku vkSj izf'k{k.k lh-MCY;w-lh- oSaQil
ifj"kn~ ] 2007 fudV% /udy cl LVkWi ifugVh
dksydkrk 700 114 iQksu % 033&25530454
lh-MCY;w-lh- dkWEIySDl
ekyhxkao
xqokgkVh 781021 iQksu % 0361&2674869

` 115.00 izdk'ku lg;ksx


vè;{k] izdk'ku izHkkx % ,e- fljkt vuoj
,u-lh-bZ-vkj-Vh- okVjekoZQ 80 th-,l-,e- eq[; laiknd % 'osrk mIiy
isij ij eqfnzrA eq[; O;kikj izca/d % xkSre xkaxqyh
eq[; mRiknu vfèkdkjh % v#.k fprdkjk
izdk'ku izHkkx esa lfpo] jk"Vªh; 'kSf{kd (izHkkjh)
vuqLakèkku vkSj izf'k{k.k ifj"kn~] Jh vj¯on
ekxZ] u;h fnYyh 110 016 }kjk izdkf'kr rFkk laiknd % js[kk vxzoky
jkt fizafVax oDlZ] 2&bZ] m|ksx fogkj] lwjtiqj lgk;d mRiknu vf/dkjh % tgku yky
baMfLVª;y ,fj;k] xzsVj uks,Mk (m-iz-) }kjk fp=kkadu lTtk ,oa vkoj.k
eqfnzrA vjfoanj pkoyk

2018-19
vkeq[k
jk"Vªh; ikB~;p;kZ dh :ijs[kk (2005) lq>krh gS fd cPpksa osQ LowQyh thou dks ckgj osQ thou
ls tksM+k tkuk pkfg,A ;g fl¼kar fdrkch Kku dh ml fojklr osQ foijhr gS ftlosQ izHkkoo'k
gekjh O;oLFkk vkt rd LowQy vkSj ?kj osQ chp varjky cuk, gq, gSA u;h jk"Vªh; ikB~;p;kZ ij
vk/kfjr ikB~;Øe vkSj ikB~;iqLrosaQ bl cqfu;knh fopkj ij vey djus dk iz;kl gSA bl iz;kl
esa gj fo"k; dks ,d e”kcwr nhokj ls ?ksj nsus vkSj tkudkjh dks jVk nsus dh izo`fÙk dk fojks/ 'kkfey
gSA vk'kk gS fd ;s dne gesa jk"Vªh; f'k{kk uhfr (1986) esa of.kZr cky&osaQfnzr O;oLFkk dh fn'kk
esa dkiQh nwj rd ys tk,¡xsA
bl iz;Ru dh liQyrk vc bl ckr ij fuHkZj gS fd LowQyksa osQ izkpk;Z vkSj vè;kid cPpksa
dks dYiuk'khy xfrfof/;ksa vkSj lokyksa dh enn ls lh[kus vkSj lh[kus osQ nkSjku vius vuqHko
ij fopkj djus dk volj nsrs gSaA gesa ;g ekuuk gksxk fd ;fn txg] le; vkSj vkt+knh nh tk,
rks cPps cM+ksa }kjk lkSaih xbZ lwpuk&lkexzh ls tqM+dj vkSj tw>dj u, Kku dk l`tu dj ldrs gSaA
f'k{kk osQ fofo/ lk/uksa ,oa lzksrksa dh vuns[kh fd, tkus dk izeq[k dkj.k ikB~;iqLrd dks ijh{kk
dk ,dek=k vk/kj cukus dh izo`fÙk gSA ltZuk vkSj igy dks fodflr djus osQ fy, t+:jh gS fd
ge cPpksa dks lh[kus dh izfØ;k esa iwjk Hkkxhnkj ekusa vkSj cuk,¡] mUgsa Kku dh fu/kZfjr [kqjkd dk
xzkgd ekuuk NksM+ nsaA
;s mís'; LowQy dh nSfud f”kanxh vkSj dk;Z'kSyh esa dkiQh isQjcny dh ek¡x djrs gSaA nSfud
le;&lkj.kh esa yphykiu mruk gh ”k:jh gS] ftruk okf"kZd dSysaMj osQ vey esa pqLrh] ftlls
f'k{k.k osQ fy, fu;r fnuksa dh la[;k gdhdr cu losQA f'k{k.k vkSj ewY;kadu dh
fof/;k¡ Hkh bl ckr dks r; djsaxh fd ;g ikB~;iqLrd LowQy esa cPpksa osQ thou dks ekufld ncko
rFkk cksfj;r dh txg [kq'kh dk vuqHko cukus esa fdruh izHkkoh fl¼ gksrh gSA cks> dh leL;k
ls fuiVus osQ fy, miyC/ le; dk è;ku j[kus dh igys ls vf/d lpsr dksf'k'k dh gSA bl
dksf'k'k dks vkSj xgjkus osQ ;Ru esa ;g ikB~;iqLrd lksp&fopkj vkSj foLe;] NksVs lewgksa esa ckrphr
,oa cgl vkSj gkFk ls dh tkus okyh xfrfof/;ksa dks izkFkfedrk nsrh gSA
,u-lh-bZ-vkj-Vh- bl iqLrd dh jpuk osQ fy, cukbZ xbZ ikB~;iqLrd fuekZ.k lfefr osQ ifjJe
osQ fy, o`QrKrk O;Dr djrh gSA ifj"kn~ bl ikB~;iqLrd osQ lykgdkj lewg osQ vè;{k izksi+sQlj
t;ar fo".kq ukjyhdj vkSj bl iqLrd osQ lykgdkj izkis + sQlj iou oqQekj tSu dh fo'ks"k vkHkkjh gSA
bl ikB~;iqLrd osQ fodkl esa dbZ f'k{kdksa us ;ksxnku fn;k_ bl ;ksxnku dks laHko cukus osQ fy,

2018-19
iv

ge muosQ izkpk;ks± osQ vkHkkjh gSaA ge mu lHkh laLFkkvksa vkSj laxBuksa osQ izfr o`QrK gSa ftUgksaus vius
lalk/uksa] lkexzh rFkk lg;ksfx;ksa dh enn ysus esa gesa mnkjrkiwoZd lg;ksx fn;kA ge] fo'ks"k :i
ls ekè;fed ,oa mPprj f'k{kk foHkkx] ekuo lalk/u fodkl ea=kky; }kjk izks- e`.kky fejh vkSj
izks- th-ih- ns'kikaMs dh vè;{krk esa xfBr] jk"Vªh; ekuhVfjax lfefr }kjk iznÙk cgqewY; le; ,oa
;ksxnku osQ fy, o`QrK gSaA O;oLFkkxr lq/kjksa vkSj vius izdk'kuksa esa fujarj fu[kkj ykus osQ izfr
lefiZ r ,u-lh-bZ - vkj-Vh- fVIif.k;ks a ,oa lq > koks a dk Lokxr djs x h ftuls Hkkoh
la'kks/uksa esa enn yh tk losQA

funs'kd
u;h fnYyh jk"Vªh; 'kSf{kd vuqla/ku
20 uoacj 2006 vkSj izf'k{k.k ifj"kn~

2018-19
izLrkouk
jk"Vªh; 'kSf{kd vuqla/ku vkSj izf'k{k.k ifj"kn us fo|ky;h f'k{kk ls lacaf/r fofHkUu fo"k;ksa osQ
vè;;u osQ fy,] jk"Vªh; ikB~; p;kZ :ijs[kk dh leh{kk gsrq fo|ky;h f'k{kk&2000 (,u-lh-,iQ-
,l-bZ&2000) osQ varxZr vkfoHkkZo pqukSfr;ksa vkSj fo"k; oLrq osQ :ikarj.k] tks f'k{kk 'kkL=k osQ {ks=k
esa varfuZfgr gSa] mUgsa jk"Vªh; ,oa varjkZ"Vªh; Lrj ij fo|ky;h f'k{kk osQ fy, 21 iQksdl lewgksa dk
xBu fd;k gSA bl iQksdl lewg us fo|ky;h f'k{kk {ks=k osQ fofHkUu igyqvksa ij viuh O;kid vkSj
fo'ks"k fVIif.k;k¡ dh gSAa blh osQ iQyLo:i] bu lewgksa }kjk viuh fjiksVks± osQ vk/kj ij jk"Vªh; ikB~;
p;kZ :ijs[kk&2005 dks fodflr fd;k x;kA
u, fn'kk&funsZ'kksa osQ varxZr gh jk"Vªh; 'kSf{kd vuqla/ku vkSj izf'k{k.k ifj"kn us d{kk XI vkSj
XII dh xf.kr fo"k; dk ikB~;Øe rS;kj fd;k rFkk ikB~;iqLrosaQ rS;kj djus osQ fy, ,d Vhe dk
xBu fd;kA d{kk XI dh ikB~;&iqLrd igys ls gh iz;ksx esa gS tks 2005 esa izdkf'kr dh tk
pqdh gSA
iqLrd dk izFke izk:i (d{kk XII) ,u-lh-bZ-vkj-Vh- ladk;] fo'ks"kK vkSj dk;Zjr~ vè;kidksa
dh Vhe }kjk rS;kj dj fy;k x;kA rRi'pkr~ fodkl'khy Vhe us fofHkUu cSBosaQ vk;ksftr dj bl
izk:i dks ifj"o`Qr fd;k FkkA
iqLrd osQ bl izk:i dks ns'k osQ fofHkUu Hkkxksa esa mPprj ekè;fed Lrj ij xf.kr osQ vè;kiu
ls lac¼ vè;kiujr~ f'k{kdksa dh ,d Vhe osQ le{k izLrqr fd;k FkkA iqu% izk#i dh ,ulhbZvkjVh
}kjk vk;ksftr dk;Z'kkyk esa leh{kk dh xbZA lgHkkfx;ksa }kjk fn, x, lq>koksa ,oa fVIif.k;ksa dks izk:i
ikB~;iqLrd esa lek;ksftr dj fy;k x;kA fodkl'khy Vhe esa ls gh xfBr ,d laikndh; eaMy
us ikB~;&iqLrd osQ bl izk:i dks vafre :i ns fn;kA varr%] foKku ,oa xf.kr ds lykgdkj lewg
rFkk ekuo lalk/u ea=kky;] Hkkjr ljdkj }kjk xfBr fuxjkuh lfefr (Monitoring Committee)
us bl ikB~;iqLrd izk:i dks vuqeksfnr dj fn;kA
fo"k; dh izekf.kdrk dh n`f"V ls iqLrd dks izHkkfor djus okys oqQN vko';d rRoksa dk mYys[k
djrs gSaA ;s fof'k"Vrk,¡ yxHkx bl iqLrd osQ lHkh ikBksa esa ifjyf{kr gSaA izLrqr ikB~;iqLrd esa 13
eq[; vè;k; vkSj nks ifjf'k"V 'kkfey gSAa izR;sd vè;k; fuEufyf[kr fcanq lekfgr djrk gS%
• Hkwfedk % fo"k; osQ egRoiw.kZ fcanqvksa ij cy_ iwoZ esa i<+k, x, fo"k;&oLrqvksa dk ijLij
laca/_ vè;k; esa yxHkx u;h vo/kj.kkvksa dk lkj&:i esa foospukA
• vè;k; esa [kaMks dks 'kfey djrs gq, /kj.kkvksa vkSj vo/kj.kkvksa dk laxBuA
• /kj.kkvksa @ vo/kj.kkvksa dh tkudkjh dks izsj.kknk;d cukrs gq,] tgk¡ Hkh laHko gks ldk n`"Vakr
miyC/ djk, x, gSaA

2018-19
vi

• miifÙk@leL;k osQ gy fl¼kar vkSj vuqiz;ksx nksuksa i{kksa ij cy nsrs gq, ;k rkfoZQd] cgqfo/
lk/u] tgk¡ Hkh bUgsa viukus dh vko';drk iM+h] viuk;k gSA
• T;kfefr; n`f"Vdks.k@ladYiukvksa dk izLrqrhdj.k vko';d gksus ij fn;k x;k gSA
• xf.krh; vo/kj.kkvksa vkSj blosQ lg&fo"k;ksa tSls% foKku ,oa lkekftd foKku ls Hkh tksM+k
x;k gSA
• fo"k; osQ izR;sd [kaM esa i;kZIr vkSj fofo/ mnkgj.k@vH;kl fn, x, gSaA
• leL;kvksa dks gy djus dh {kerk ;k dkS'ky ,oa vuqiz;ksx djus dh le> dks osaQnzhr ,oa
etcwr djus gsrq vè;k; osQ var esa nks ;k nks ls vf/d ladYiukvksa dks lekosf'kr djus okys
mnkgj.kksa rFkk vH;kl&iz'uksa dk lek;kstu fd;k x;k gS] tSlk fd jk"Vªh; ikB~;&p;kZ :i js[kk
2005 esa dgk x;k gS] blh osQ vuq:i es/koh Nk=kksa osQ fy, Hkh ikB~;&iqLrd esa pqukSrhiw.kZ
leL;kvksa dks 'kkfey fd;k x;k gSA
• fo"k; dks vkSj vf/d izsj.kknk;d cukus osQ mn~ns'; ls fo"k; dh laf{kIr ,sfrgkfld i`"BHkwfe
ikB osQ var esa nh xbZ gS vkSj izR;sd ikB osQ izkjaHk esa lacaf/r dFku ,oa lqizfl¼ xf.krKksa osQ
fp=k fn;s x, gSa ftUgksaus fo'ks"kr;k fo"k;&oLrq dks fodflr vkSj lqcks/ cukus osQ fy, viuk
;ksxnku fn;kA
• varr% fo"k; dh ladYukvksa osQ lw=k ,oa ifj.kke osQ izR;{k lkj&dFku osQ fy, ikB dk laf{kIr
lkjka'k Hkh izLrqr fd;k x;k gSA
eSa fo'ks"k :i ls jk"Vªh; 'kSf{kd vuqla/ku vkSj izf'k{k.k ifj"kn~ osQ funs'kd izks- o`Q".k oqQekj dk
vkHkkjh gw¡ ftUgksaus eq>s fueaf=kr dj xf.kr f'k{kk osQ jk"Vªh; iz;kl dh dM+h ls tksM+k gSA mUgksaus gesa
bl gsrq ckSf¼d ifjizs{; rFkk LoLF; okrkoj.k iznku fd;kA bl iqLrd dks rS;kj djus dk dk;Z
vR;Ur lq[kn ,oa iz'kaluh; jgkA eSa] foKku ,oa xf.kr dh lykgdkj lewg osQ vè;{k izks-ts-oh-
ukjyhdj dk o`QrK gw¡ ftUgksaus le;&le; ij bl iqLrd osQ fy, vius fo'ks"k lq>ko ,oa lg;ksx
nsdj iqLrd osQ lq/kj esa dk;Z fd;kA eSa ifj"kn~ osQ la;qDr funs'kd izks-th-johUnzk dks Hkh /U;okn
nsrk g¡w ftUgksus le;&le; ij ikB~;&iqLrd ls lacaf/r fØ;k&fof/ dks lapkfyr djus esa ;ksxnku
fd;kA
eSa izks- gqoqQe flag] eq[; la;kstd ,oa vè;{k] foKku ,oa xf.kr] MkW-oh-ih-flag] la;kstd rFkk
izks- ,l-osQ-flag xkSre osQ izfr lân; /U;okn O;Dr djrk gWw¡ ftUgkasus bl ifj;kstuk dks liQy cukus
gsrq 'kSf{kd vkSj iz'kklfud :i ls layXu jgsA eSa bl usd dk;Z ls lac¼ lHkh Vhe osQ lnL;ksa vkSj
f'k{kdksa dh iz'kalk djrk g¡w rFkk mUgsa /U;okn nsrk gw¡ tks bl dk;Z esa fdlh Hkh :i esa ;ksxnku
fd;k gksA

iou osQ- tSu


eq[; lykgdkj
ikB~;iqLrd lao/Zu lfefr

2018-19
ikB~;iqLrd fodkl lfefr
foKku ,oa xf.kr lykgdkj lewg osQ vè;{k
t;ar fo".kq ukjyhdj behfjVl izkis + sQlj] vè;{k] vkbZ-;w-lh-,-] iwuk fo'ofo|ky;] iwukA
eq[; lykgdkj
ih-osQ- tSu] izksi+sQlj xf.kr foHkkx] fnYyh fo'ofo|ky;] fnYyhA
eq[; leUo;d
gqoqQe flag] izkis + sQlj ,oa foHkkxkè;{k] Mh-bZ-,l-,e-] ,u-lh-bZ-vkj-Vh-] u;h fnYyhA
lnL;
v#.k iky flag] lhfu;j izoDrk] xf.kr foHkkx] n;ky flag dkWyt s ] fnYyh fo'ofo|ky;] fnYyhA
,-osQ-jktiwr] ,lksf'k,V izksi+sQlj] {ks-f'k-l- ,u-lh-bZ-vkj-Vh-] HkksikyA
izksi+sQlj] ch-,l-ih- jktw] {ks-f'k-l- ,u-lh-bZ-vkj-Vh-] eSlwj] dukZVdA
lh-vkj-iznhi] lgk;d izksi+sQlj] xf.kr foHkkx] Hkkjrh; foKku laLFkku] caxykSj] dukZVdA
vkj-Mh- 'kekZ] ih-th-Vh-] tokgj uoksn; fo|ky;] eqaxs'kiqj] fnYyhA
jke vorkj] izksi+sQlj (vodk'k izkIr) ,oa lykgdkj] Mh-bZ-,l-,e-] ,u-lh-bZ-vkj-Vh-] u;h fnYyhA
vkj-ih-ekS;Z] ,lksf'k,V izksi+sQlj] Mh-bZ-,l-,e-] ,u-lh-bZ-vkj-Vh-] u;h fnYyhA
,l-,l-[ksj] izksi+sQlj] le mi oqQyifr] ,u-bZ-,l-;w-] rqjk oSaQil es?kky;A
,l-osQ-,l- xkSre] izksi+sQlj] Mh-bZ-,l-,e-] ,u-lh-bZ-vkj-Vh-] u;h fnYyhA
,l-osQ-dkSf'kd] ,lksf'k,V izksi+sQlj] xf.kr foHkkx] fdjksM+hey dkWyst] fnYyh fo'ofo|ky;] fnYyhA
laxhrk vjksM+k] ih-th-Vh-] ,ihts LowQy] lkosQr] u;h fnYyhA
'kSytk frokjh] ih-th-Vh-] osaQnzh; fo|ky;] cjdkdkuk] gtkjhckx] >kj[kaMA
fouk;d cqtkMs] ysDpjj] fonZHk cqfu;knh twfu;j dkWyst] lDdjnkjk pkSd] ukxiqj] egkjk"VªA
lqfuy ctkt] lhfu;j Lis'kfyLV] ,l-lh-bZ-vkj-Vh-] xqM+xk¡o] gfj;k.kkA
lnL; leUo;d
oh-ih-flag] ,lksf'k,V izksi+sQlj] Mh-bZ-,l-,e-] ,u-lh-bZ-vkj-Vh-] u;h fnYyhA

2018-19
viii

fganh :ikarj.kdrkZ
Mh-vkj-'kekZ] ih-th-Vh-] tokgj uoksn; fo|ky;] eqaxs'kiqj] fnYyhA
ih-osQ- frokjh] lgk;d vk;qDr (v-izk-) oasQnzh; fo|ky; laxBuA
,l-ch-f=kikBh] ysDpjj] (xf.kr) jktdh; izfrHkk fodkl fo|ky;] lwjtey fogkj] fnYyhA
,-osQ- jktiwr] ,lksf'k,V izkis + sQlj] (xf.kr)] {ks-f'k-l- ,u-lh-bZ-vkj-Vh-] Hkksiky] eè; izns'kA
oh-ih-flag] ,lksf'k,V izksi+sQlj] (xf.kr)] Mh-bZ-,l-,e-] ,u-lh-bZ-vkj-Vh-] u;h fnYyhA
fganh leUo;d
,l-osQ-flag xkSre] izksi+sQlj] Mh-bZ-,l-,e-] ,u-lh-bZ-vkj-Vh-] u;h fnYyhA

2018-19
vkHkkj
ifj"kn~ bl ikB~;iqLrd leh{kk dk;kZ'kkyk osQ fuEufyf[kr izfrHkkfx;ksa osQ cgqewY; lg;ksx osQ fy,
viuk gkfnZd vkHkkj O;Dr djrh gS% txnh'k lju] izksi+sQlj] lkaf[;dh; foHkkx] fnYyh
fo'ofo|ky;_ oqQíwl [kku] ysDpjj] f'kcyh us'kuy ih-th- dkWyst vktex<] (m-iz-)_ ih-osQ-
frokjh] lgk;d vk;qDr (v-izk-)] osaQnzh; fo|ky; laxBu_ ,l-ch- f=kikBh] ysDpjj] vkj-ih-ch-
fo- lwjtey fogkj] fnYyh_ vks-,u- flag] jhMj] vkj-vkbZ-bZ- Hkqous'oj] mM+hlk_ oqQekjh ljkst]
ysDpjj] xouZeVas xYlZ lhfu;j lsoQas Mjh LowQy] u- 1] :iuxj] fnYyh_ ih-HkkLdj oqQekj] ih-th-Vh-]
tokgj uoksn; fo|ky;] ysik{kh] vuariqj] (vka/z izns'k)_ Jherh dYikxe~] ih-th-Vh] osQ-oh- uky
oSQail] cSaxyksj_ jkgqy lksiQr] ysDpjj] ,vj iQkslZ xksYMu tqcyh bafLVV~;wV] lqczrks ikoZQ] u;h
fnYyh_ oafnrk dkyjk] loksZn; dU;k fo|ky;] fodkliqjh tuin osaQnz] u;h fnYyh_ tuknZu
f=kikBh] ysDpjj] xouZesaV vkj-,p-,l-,l- ,stkOy] fetksje vkSj lqJh lq"kek t;jFk] jhMj] Mh-
MCy;w-,l-] ,u-lh-bZ-vkj-Vh] u;h fnYyhA
ifj"kn~ ,u-lh-bZ-vkj-Vh- esa fganh :ikraj.k osQ iqujkoyksdu gsrq dk;Z'kkyk esa fuEufyf[kr
izfrHkkfx;ksa dh cgqewY; fVIif.k;ksa osQ fy, vkHkkjh gS_ th-Mh-<y] vodk'k izkIr jhMj] ,u-lh-bZ-
vkj-Vh-] u;h fnYyh_ th-,l-jkBkSj] vflLVSaV izksi+sQlj] xf.kr ,oa lakf[;dh foHkkx] ,e-,y-
lq[kkfM+;k fo'ofo|ky;] mn;iqj] jktLFkku_ eukst oqQekj BkoqQj] Mh-,-oh- ifCyd LowQy] jktsUnz
uxj] lkfgckckn] xkft;kckn (m-iz-)_ jkes'oj n;ky 'kekZ] jktdh; baVj dkWyst] eFkqjk (m-iz-)_
MkW-vkj-ih-fxgkjs] CykWd fjlksZl dksvkfMZusVj] tuin f'k{kk osaQnz] fppkSyh] csrqy (e-iz-)_ lquhy
ctkt] ,l-lh-bZ-vkj-Vh-] xqM+xk¡o] gfj;k.kk_ Jherh ohuk /haxjk] lj y{eh ckfydk lhfu;j
lsosaQMjh LowQy] [kkjh ckoyh] fnYyh_ ,-osQ-o>yokj] jhMj] ,u-lh-bZ-vkj-Vh] u;h fnYyhA
ifj"kn~ fp=kkadu vjfoanj pkoyk] daI;wVj LVs'ku izHkkjh nhid diwj_ jkosQ'k oqQekj ,oa
lTtkn gSnj valkjh] ujfxl bLyke] Mh-Vh-ih- vkWijsVj_ osQ-ih-,l-;kno] eukst eksgu]
dkWih ,fMVj vkSj :ch oqQekjh rFkk j.k/hj BkoqQj] izwi+ Q jhMj] }kjk fd, x, iz;klksa osQ izfr viuk
vkHkkj izdV djrh gSA ,-ih-lh- vkWfiQl] foKku ,oa xf.kr f'k{kk foHkkx ,oa izdk'ku foHkkx Hkh
vius lg;ksx osQ fy, vkHkkj osQ ik=k gSaA

2018-19
2018-19
fo"k;&lwph
Hkkx & I
vkeq[k iii
izLrkouk v
1. laca/ ,oa iQyu 1
1.1 Hkwfedk 1
1.2 laca/ksa osQ izdkj 2
1.3 iQyuksa osQ izdkj 8
1.4 iQyuksa dk la;kstu rFkk O;qRØe.kh; iQyu 13
1.5 f}&vk/kjh lafØ;k,¡ 22
2. izfrykse f=kdks.kferh; iQyu 38
2.1 Hkwfedk 38
2.2 vk/kjHkwr ladYiuk,¡ 38
2.3 izfrykse f=kdks.kferh; iQyuksa osQ xq.k/eZ 48
3. vkO;wg 62
3.1 Hkwfedk 62
3.2 vkO;wg 62
3.3 vkO;wgksa osQ izdkj 67
3.4 vkO;wgksa ij lafØ;k,¡ 71
3.5 vkO;wg dk ifjorZ 91
3.6 lefer rFkk fo"ke lefer vkO;wg 93
3.7 vkO;wg ij izkjafHkd lafØ;k (vkO;wg :ikarj.k) 98
3.8 O;qRØe.kh; vkO;wg 99
4. lkjf.kd 112
4.1 Hkwfedk 112
4.2 lkjf.kd 113
4.3 lkjf.kdksa osQ xq.k/eZ 119

2018-19
xii

4.4 f=kHkqt dk {ks=kiQy 131


4.5 milkjf.kd vkSj lg[kaM 133
4.6 vkO;wg osQ lg[kaMt vkSj O;qRØe 137
4.7 lkjf.kdksa vkSj vkO;wgksa osQ vuqiz;ksx 144
5. lkarR; rFkk vodyuh;rk 160
5.1 Hkwfedk 160
5.2 lkarR; 160
5.3 vodyuh;rk 176
5.4 pj?kkrakdh rFkk y?kqx.kdh; iQyu 185
5.5 y?kqx.kdh; vodyu 191
5.6 iQyuksa osQ izkpfyd :iksa osQ vodyt 195
5.7 f}rh; dksfV dk vodyt 197
5.8 ekè;eku izes; 200
6. vodyt osQ vuqiz;ksx 210
6.1 Hkwfedk 210
6.2 jkf'k;ksa osQ ifjorZu dh nj 210
6.3 o/Zeku vkSj ßkleku iQyu 215
6.4 Li'kZ js[kk,¡ vkSj vfHkyac 223
6.5 lfUudVu 229
6.6 mPpre vkSj fuEure 233
ifjf'k"V1% xf.kr esa miifÙk;k¡ 265
A.1.1 Hkwfedk 265
A.1.2 miifÙk D;k gS? 265
ifjf'k"V 2: xf.krh; fun'kZu 274
A.2.1 Hkwfedk 274
A.2.2 xf.krh; fun'kZu D;ksa\ 274
A.2.3 xf.krh; fun'kZu osQ fl¼kar 275
mÙkjekyk 286
iwjd ikB~; lkexzh 303

2018-19
vè;k; 1
laca/ ,oa iQyu
(Relations and Functions)

vThere is no permanent place in the world for ugly mathematics ... . It may
be very hard to define mathematical beauty but that is just as true of
beauty of any kind, we may not know quite what we mean by a
beautiful poem, but that does not prevent us from recognising
one when we read it. — G. H. Hardy v

1.1 Hkwfedk (Introduction)


Lej.k dhft, fd d{kk XI esa] laca/ ,oa iQyu] izkar] lgizkar rFkk
ifjlj vkfn dh vo/kj.kkvksa dk] fofHkUu izdkj osQ okLrfod
ekuh; iQyuksa vkSj muosQ vkys[kksa lfgr ifjp; djk;k tk pqdk
gSA xf.kr esa 'kCn ^laca/ (Relation)* dh loaQYiuk dks vaxzs”kh
Hkk"kk esa bl 'kCn osQ vFkZ ls fy;k x;k gS] ftlosQ vuqlkj nks
oLrq,¡ ijLij lacaf/r gksrh gS] ;fn muosQ chp ,d vfHkKs;
(Recognisable) dM+h gksA eku yhft, fd A, fdlh LowQy dh
d{kk XII osQ fo|kfFkZ;ksa dk leqPp; gS rFkk B mlh LowQy dh
d{kk XI osQ fo|kfFkZ;ksa dk leqPp; gSaA vc leqPp; A ls
leqPp; B rd osQ laca/ksa osQ oqQN mnkgj.k bl izdkj gSa
(i) {(a, b) ∈ A × B: a, b dk HkkbZ gS}, Lejeune Dirichlet
(1805-1859)
(ii) {(a, b) ∈ A × B: a, b dh cgu gS},
(iii) {(a, b) ∈ A × B: a dh vk;q b dh vk;q ls vf/d gS},
(iv) {(a, b) ∈ A × B: fiNyh vafre ijh{kk esa a }kjk izkIr iw.kk±d b }kjk izkIr iw.kk±d ls
de gS },
(v) {(a, b) ∈ A × B: a mlh txg jgrk gS tgk¡ b jgrk gS}.
rFkkfi A ls B rd osQ fdlh laca/ R dks vewrZ:i (Abstracting) ls ge xf.kr esa
A × B osQ ,d LosPN (Arbitrary) mileqPp; dh rjg ifjHkkf"kr djrs gSaA

2018-19
2 xf.kr

;fn (a, b) ∈ R, rks ge dgrs gSa fd laca/ R osQ varxZr a, b ls lacaf/r gS vkSj ge bls
a R b fy[krs gSaA lkekU;r%] ;fn (a, b) ∈ R, rks ge bl ckr dh fpark ugha djrs gSa fd
a rFkk b osQ chp dksbZ vfHkKs; dM+h gS vFkok ugha gSA tSlk fd d{kk XI esa ns[k pqosQ gSa] iQyu
,d fo'ks"k izdkj osQ laca/ gksrk gSaA
bl vè;k; esa] ge fofHkUu izdkj osQ laca/ksa ,oa iQyuksa] iQyuksa osQ la;kstu (composition)]
O;qRØe.kh; (Invertible) iQyuksa vkSj f}vk/kjh lafØ;kvksa dk vè;;u djsaxsA
1.2 laca/ksa osQ izdkj (Types of Relations)
bl vuqPNsn esa ge fofHkUu izdkj osQ laca/ksa dk vè;;u djsaxsA gesa Kkr gS fd fdlh leqPp; A
esa laca/] A × A dk ,d mileqPp; gksrk gSA vr% fjDr leqPp; φ ⊂ A × A rFkk
A × A Lo;a] nks vUR; laca/ gSaA Li"Vhdj.k gsrq] R = {(a, b): a – b = 10} }kjk iznÙk leqPp;
A = {1, 2, 3, 4} ij ifjHkkf"kr ,d laca/ R ij fopkj dhft,A ;g ,d fjDr leqPp; gS] D;ksafd
,slk dksbZ Hkh ;qXe (pair) ugha gS tks izfrca/ a – b = 10 dks larq"V djrk gSA blh izdkj
R′ = {(a, b) : | a – b | ≥ 0}] laiw.kZ leqPp; A × A osQ rqY; gS] D;ksafd A × A osQ lHkh ;qXe
(a, b), | a – b | ≥ 0 dks larq"V djrs gSaA ;g nksuksa vUR; osQ mnkgj.k gesa fuEufyf[kr ifjHkk"kkvksa
osQ fy, izsfjr djrs gSaA
ifjHkk"kk 1 leqPp; A ij ifjHkkf"kr laca/ R ,d fjDr laca/ dgykrk gS] ;fn A dk dksbZ Hkh
vo;o A osQ fdlh Hkh vo;o ls lacaf/r ugha gS] vFkkZr~ R = φ ⊂ A × A.
ifjHkk"kk 2 leqPp; A ij ifjHkkf"kr laca/ R, ,d lkoZf=kd (universal) laca/ dgykrk gS] ;fn
A dk izR;sd vo;o A osQ lHkh vo;oksa ls lacaf/r gS] vFkkZr~ R = A × A.
fjDr laca/ rFkk lkoZf=kd laca/ dks dHkh&dHkh rqPN (trivial) laca/ Hkh dgrs gSaA
mnkgj.k 1 eku yhft, fd A fdlh ckydksa osQ LowQy osQ lHkh fo|kfFkZ;ksa dk leqPp; gSA n'kkZb,
fd R = {(a, b) : a, b dh cgu gS } }kjk iznÙk laca/ ,d fjDr laca/ gS rFkk R′ = {(a, b) :
a rFkk b dh Å¡pkbZ;ksa dk varj 3 ehVj ls de gS } }kjk iznÙk laca/ ,d lkoZf=kd laca/ gSA
gy iz'ukuqlkj] D;ksafd LowQy ckydksa dk gS] vr,o LowQy dk dksbZ Hkh fo|kFkhZ] LowQy osQ fdlh
Hkh fo|kFkhZ dh cgu ugha gks ldrk gSA vr% R = φ] ftlls iznf'kZr gksrk gS fd R fjDr laca/ gSA
;g Hkh Li"V gS fd fdUgha Hkh nks fo|kfFkZ;ksa dh Å¡pkb;ksa dk varj 3 ehVj ls de gksuk gh pkfg,A
blls izdV gksrk gS fd R′ = A × A lkoZf=kd laca/ gSA
fVIi.kh d{kk XI esa fo|kFkhZx.k lh[k pqosQ gSa fd fdlh laca/ dks nks izdkj ls fu:fir fd;k tk
ldrk gS] uker% jksLVj fof/ rFkk leqPp; fuekZ.k fof/A rFkkfi cgqr ls ys[kdksa }kjk leqPp;
{1, 2, 3, 4} ij ifjHkkf"kr laca/ R = {(a, b) : b = a + 1} dks a R b }kjk Hkh fu:fir fd;k tkrk
gS] ;fn vkSj osQoy ;fn b = a + 1 gksA tc dHkh lqfo/ktud gksxk] ge Hkh bl laosQru (notation)
dk iz;ksx djsaxsA

2018-19
laca/ ,oa iQyu 3

;fn (a, b) ∈ R, rks ge dgrs gSa fd a,b ls lacaf/r gS* vkSj bl ckr dks ge a R b }kjk
izdV djrs gSaA
,d vR;Ur egRoiw.kZ laca/] ftldh xf.kr esa ,d lkFkZd (significant) Hkwfedk gS] rqY;rk
laca/ (Equivalence Relation) dgykrk gSA rqY;rk laca/ dk vè;;u djus osQ fy, ge igys
rhu izdkj osQ laca/ksa] uker% LorqY; (Reflexive)] lefer (Symmetric) rFkk laØked
(Transitive) laca/ksa ij fopkj djrs gSaA
ifjHkk"kk 3 leqPp; A ij ifjHkkf"kr laca/ R;
(i) LorqY; (reflexive) dgykrk gS] ;fn izR;sd a ∈ A osQ fy, (a, a) ∈ R,
(ii) lefer (symmetric) dgykrk gS] ;fn leLr a1, a2 ∈ A osQ fy, (a1, a2) ∈ R ls
(a2, a1) ∈ R izkIr gksA
(iii) laØked (transitive) dgykrk gS] ;fn leLr, a1, a2, a3 ∈ A osQ fy, (a1, a2) ∈ R rFkk
(a2, a3) ∈ R ls (a1, a3) ∈ R izkIr gksA
ifjHkk"kk 4 A ij ifjHkkf"kr laca/ R ,d rqY;rk laca/ dgykrk gS] ;fn R LorqY;] lefer rFkk
laØked gSA
mnkgj.k 2 eku yhft, fd T fdlh lery esa fLFkr leLr f=kHkqtksa dk ,d leqPp; gSA leqPp;
T esa R = {(T1, T2) : T1, T2osQ lokZxale gS} ,d laca/ gSA fl¼ dhft, fd R ,d rqY;rk
laca/ gSA
gy la c a / R Lorq Y ; gS ] D;ks a f d iz R ;s d f=kHkq t Lo;a os Q lokx± l e gks r k gS A iq u %
(T1, T2) ∈ R ⇒ T1 , T2 osQ lokZxale gS ⇒ T2 , T1 osQ lokZxale gS ⇒ (T2, T1) ∈ R. vr%
laca/ R lefer gSA blosQ vfrfjDr (T1, T2), (T2, T3) ∈ R ⇒ T1 , T2 osQ lokZxale gS rFkk
T2, T3 osQ lokZxale gS ⇒ T1, T3 osQ lokZxale gS ⇒ (T1, T3) ∈ R. vr% laca/ R laØked gSA
bl izdkj R ,d rqY;rk laca/ gSA
mnkgj.k 3 eku yhft, fd L fdlh lery esa fLFkr leLr js[kkvksa dk ,d leqPp; gS rFkk
R = {(L1, L2) : L1, L2 ij yac gS} leqPp; L esa ifjHkkf"kr ,d laca/ gSA fl¼ dhft, fd R
lefer gS ¯drq ;g u rks LorqY; gS vkSj u laØked gSA
gy R LorqY; ugha gS] D;ksafd dksbZ js[kk L1 vius vki ij yac ugha gks ldrh gS] vFkkZr~
(L1, L1) ∉ R- R lefer gS] D;ksafd (L1, L2) ∈ R
⇒ L1, L2 ij yac gS
⇒ L2 , L1 ij yac gS
⇒ (L2, L1) ∈ R

2018-19
4 xf.kr

R laØked ugha gSA fu'p; gh] ;fn L1, L2 ij yac gS rFkk L2 ,


L3 ij yac gS] rks L1 , L3 ij dHkh Hkh yac ugha gks ldrh gSA okLro
esa ,slh n'kk esa L1 , L3 osQ lekUrj gksxhA vFkkZr~] (L1, L2) ∈ R,
(L2, L3) ∈ R ijarq (L1, L3) ∉ R
mnkgj.k 4 fl¼ dhft, fd leqPp; {1, 2, 3} esa R = {(1, 1), (2, 2), vko`Qfr 1-1
(3, 3), (1, 2), (2, 3)} }kjk iznÙk laca/ LorqY; gS] ijarq u rks lefer gS vkSj u laØked gSA
gy R LorqY; gS D;ksafd (1, 1), (2, 2) vkSj (3, 3), R osQ vo;o gSaA R lefer ugha gS] D;ksafd
(1, 2) ∈ R ¯drq (2, 1) ∉ R. blh izdkj R laØked ugha gS] D;ksafd (1, 2) ∈ R rFkk (2, 3)∈R
ijarq (1, 3) ∉ R
mnkgj.k 5 fl¼ dhft, fd iw.kk±dksa osQ leqPp; Z esa R = {(a, b) : la[;k 2, (a – b) dks
foHkkftr djrh gS} }kjk iznÙk laca/ ,d rqY;rk laca/ gSA
gy R LorqY; gS] D;ksafd leLr a ∈ Z osQ fy, 2] (a – a) dks foHkkftr djrk gSA vr%
(a, a) ∈ R. iqu%] ;fn (a, b) ∈ R, rks 2] a – b dks foHkkftr djrk gS A vr,o b – a dks Hkh
2 foHkkftr djrk gSA vr% (b, a) ∈ R, ftlls fl¼ gksrk gS fd R lefer gSA blh izdkj] ;fn
(a, b) ∈ R rFkk (b, c) ∈ R, rks a – b rFkk b – c la [ ;k 2 ls HkkT; gS A vc]
a – c = (a – b) + (b – c) le (even) gS (D;ksa\)A vr% (a – c) Hkh 2 ls HkkT; gSA blls fl¼
gksrk gS fd R laØked gSA vr% leqPp; Z esa R ,d rqY;rk laca/ gSA
mnkgj.k 5 esa] uksV dhft, fd lHkh le iw.kk±d 'kwU; ls lacaf/r gSa] D;ksafd (0, ± 2),
(0, ± 4), ---vkfn R esa gSa vkSj dksbZ Hkh fo"ke iw.kk±d 0 ls lacaf/r ugha gS] D;ksafd (0, ± 1),
(0, ± 3), ---vkfn R esa ugha gSAa blh izdkj lHkh fo"ke iw.kk±d 1 ls lacfa /r gSa vkSj dksbZ Hkh le iw.kk±d
1 ls lacaf/r ugha gSA vr,o] leLr le iw.kk±dksa dk leqPp; E rFkk leLr fo"ke iw.kk±dksa dk
leqPp; O leqPp; Z osQ mi leqPp; gSa] tks fuEufyf[kr izfrca/ksa dks larq"V djrs gSaA
(i) E osQ leLr vo;o ,d nwljs ls lacaf/r gSa rFkk O osQ leLr vo;o ,d nwljs ls
lacaf/r gSaA
(ii) E dk dksbZ Hkh vo;o O osQ fdlh Hkh vo;o ls lacaf/r ugha gS vkSj foykser% O dk dksbZ
Hkh vo;o E osQ fdlh Hkh vo;o ls lacaf/r ugha gSA
(iii) E rFkk O vla;qDr gS vkSj Z = E ∪ O gSA
mileqPp; E, 'kwU; dks varfoZ"V (contain) djus okyk rqY;rk&oxZ (Equivalence Class)
dgykrk gS vkSj ftls izrhd [0] ls fu:fir djrs gSaA blh izdkj O, 1 dks varfoZ"V djus okyk
rqY;rk&oxZ gS] ftls [1] }kjk fu:fir djrs gSaA uksV dhft, fd [0] ≠ [1], [0] = [2r] vkSj

2018-19
laca/ ,oa iQyu 5

[1]= [2r + 1], r ∈ Z. okLro esa] tks oqQN geus Åij ns[kk gS] og fdlh Hkh leqPp; X esa ,d
LosPN rqY;rk laca/ R osQ fy, lR; gksrk gSA fdlh iznÙk LosPN leqPp; X esa iznÙk ,d LosPN
(arbitrary) rqY;rk laca/ R, X dks ijLij vla;qDr mileqPp;ksa Ai esa foHkkftr dj nsrk gS] ftUgsa
X dk foHkktu (Partition) dgrs gSa vksj tks fuEufyf[kr izfrca/ksa dks larq"V djrs gSa%
(i) leLr i osQ fy, Ai osQ lHkh vo;o ,d nwljs ls lacaf/r gksrs gSaA
(ii) Ai dk dksbZ Hkh vo;o] Aj osQ fdlh Hkh vo;o ls lacaf/r ugha gksrk gS] tgk¡ i ≠ j
(iii) ∪ Aj = X rFkk Ai ∩ Aj = φ, i ≠ j
mileqPp; Ai rqY;rk&oxZ dgykrs gSaA bl fLFkfr dk jkspd i{k ;g gS fd ge foijhr fØ;k
Hkh dj ldrs gSaA mnkgj.k osQ fy, Z osQ mu mifoHkktuksa ij fopkj dhft,] tks Z osQ ,sls rhu
ijLij vla;qDr mileqPp;ksa A1, A2 rFkk A3 }kjk iznÙk gSa] ftudk lfEeyu (Union) Z gS]
A1 = {x ∈ Z : x la[;k 3 dk xq.kt gS } = {..., – 6, – 3, 0, 3, 6, ...}
A2 = {x ∈ Z : x – 1 la[;k 3 dk xq.kt gS } = {..., – 5, – 2, 1, 4, 7, ...}
A3 = {x ∈ Z : x – 2 la[;k 3 dk xq.kt gS } = {..., – 4, – 1, 2, 5, 8, ...}
Z esa ,d laca/ R = {(a, b) : 3, a – b dks foHkkftr djrk gS} ifjHkkf"kr dhft,A mnkgj.k
5 esa iz;qDr roZQ osQ vuqlkj ge fl¼ dj ldrs gSa fd R ,d rqY;rk laca/ gSaA blosQ vfrfjDr
A1, Z osQ mu lHkh iw.kk±dksa osQ leqPp; osQ cjkcj gS] tks 'kwU; ls lacaf/r gSa] A2, Z osQ mu lHkh
iw.kk±dksa osQ leqPp; osQ cjkcj gS] tks 1 ls lacaf/r gSa vkSj A3 , Z osQ mu lHkh iw.kk±dksa osQ leqPp;
cjkcj gS] tks 2 ls lacaf/r gSaA vr% A1 = [0], A2 = [1] vkSj A3 = [2]. okLro esa A1 = [3r],
A2 = [3r + 1] vkSj A3 = [3r + 2], tgk¡ r ∈ Z.
mnkgj.k 6 eku yhft, fd leqPp; A = {1, 2, 3, 4, 5, 6, 7} esa R = {(a, b) : a rFkk b nksuksa gh
;k rks fo"ke gSa ;k le gSa} }kjk ifjHkkf"kr ,d laca/ gSA fl¼ dhft, fd R ,d rqY;rk laca/ gSA
lkFk gh fl¼ dhft, fd mileqPp; {1, 3, 5, 7} osQ lHkh vo;o ,d nwljs ls lacaf/r gS] vkSj
mileqPp; {2, 4, 6} osQ lHkh vo;o ,d nwljs ls lacaf/r gS] ijarq mileqPp; {1, 3, 5,7} dk
dksbZ Hkh vo;o mileqPp; {2, 4, 6} osQ fdlh Hkh vo;o ls lacaf/r ugha gSA
gy A dk iznÙk dksbZ vo;o a ;k rks fo"ke gS ;k le gS] vr,o (a, a) ∈ R- blosQ vfrfjDr
(a, b) ∈ R ⇒ a rFkk b nksuksa gh] ;k rks fo"ke gSa ;k le gSa ⇒ (b, a) ∈ R- blh izdkj
(a, b) ∈ R rFkk (b, c) ∈ R ⇒ vo;o a, b, c, lHkh ;k rks fo"ke gSa ;k le gSa ⇒ (a, c) ∈ R.
vr% R ,d rqY;rk laca/ gSA iqu%] {1, 3, 5, 7} osQ lHkh vo;o ,d nwljs ls lacaf/r gSa] D;ksafd
bl mileqPp; osQ lHkh vo;o fo"ke gSaA blh izdkj {2, 4, 6,} osQ lHkh vo;o ,d nwljs ls
lacaf/r gSa] D;ksafd ;s lHkh le gSaA lkFk gh mileqPp; {1, 3, 5, 7} dk dksbZ Hkh vo;o
{2, 4, 6} osQ fdlh Hkh vo;o ls lacaf/r ugha gks ldrk gS] D;ksafd {1, 3, 5, 7} osQ vo;o fo"ke
gSa] tc fd {2, 4, 6}, osQ vo;o le gSaA

2018-19
6 xf.kr

iz'ukoyh 1-1
1. fu/kZfjr dhft, fd D;k fuEufyf[kr laca/ksa esa ls izR;sd LorqY;] lefer rFkk
laØked gSa%
(i) leqPp; A = {1, 2, 3, ..., 13, 14} esa laca/ R, bl izdkj ifjHkkf"kr gS fd
R = {(x, y) : 3x – y = 0}
(ii) izko`Qr la[;kvksa osQ leqPp; N esa R = {(x, y) : y = x + 5 rFkk x < 4}}kjk ifjHkkf"kr
laca/ R.
(iii) leqPp; A = {1, 2, 3, 4, 5, 6} esa R = {(x, y) : y HkkT; gS x ls} }kjk ifjHkkf"kr lac/
a RgSA
(iv) leLr iw.kk±dksa osQ leqPp; Z esa R = {(x, y) : x – y ,d iw.kk±d gS} }kjk ifjHkkf"kr
laca/ R-
(v) fdlh fo'ks"k le; ij fdlh uxj osQ fuokfl;ksa osQ leqPp; esa fuEufyf[kr
laca/ R
(a) R = {(x, y) : x rFkk y ,d gh LFkku ij dk;Z djrs gSa}
(b) R = {(x, y) : x rFkk y ,d gh eksgYys esa jgrs gSa}
(c) R = {(x, y) : x, y ls Bhd&Bhd 7 lseh yack gS}
(d) R = {(x, y) : x , y dh iRuh gS}
(e) R = {(x, y) : x, y osQ firk gSa}
2. fl¼ dhft, fd okLrfod la[;kvksa osQ leqPp; R esa R = {(a, b) : a ≤ b2}, }kjk
ifjHkkf"kr laca/ R] u rks LorqY; gS] u lefer gSa vkSj u gh laØked gSA
3. tk¡p dhft, fd D;k leqPp; {1, 2, 3, 4, 5, 6} esa R = {(a, b) : b = a + 1} }kjk ifjHkkf"kr
laca/ R LorqY;] lefer ;k laØked gSA
4. fl¼ dhft, fd R esa R = {(a, b) : a ≤ b}, }kjk ifjHkkf"kr laca/ R LorqY; rFkk laØked
gS ¯drq lefer ugha gSA
5. tk¡p dhft, fd D;k R esa R = {(a, b) : a ≤ b3} }kjk ifjHkkf"kr laca/ LorqY;] lefer
vFkok laØked gS\
6. fl¼ dhft, fd leqPp; {1, 2, 3} esa R = {(1, 2), (2, 1)} }kjk iznÙk laca/ R lefer
gS ¯drq u rks LorqY; gS vkSj u laØked gSA
7. fl¼ dhft, fd fdlh dkWyst osQ iqLrdky; dh leLr iqLrdksa osQ leqPp; A esa
R = {(x, y) : x rFkk y esa istksa dh la[;k leku gS} }kjk iznÙk laca/ R ,d rqY;rk
laca/ gSA

2018-19
laca/ ,oa iQyu 7

8. fl¼ dhft, fd A = {1, 2, 3, 4, 5} esa] R = {(a, b) : |a – b| le gS} }kjk iznÙk laca/


R ,d rqY;rk laca/ gSA izekf.kr dhft, fd {1, 3, 5} osQ lHkh vo;o ,d nwljs ls
lacaf/r gSa vkSj leqPp; {2, 4} osQ lHkh vo;o ,d nwljs ls lacaf/r gSa ijarq {1, 3, 5} dk
dksbZ Hkh vo;o {2, 4} osQ fdlh vo;o ls lacaf/r ugha gSA
9. fl¼ fdft, fd leqPp; A = {x ∈ Z : 0 ≤ x ≤ 12}, esa fn, x, fuEufyf[kr laca/ksa R
esa ls izR;sd ,d rqY;rk laca/ gS%
(i) R = {(a, b) : |a – b|, 4 dk ,d xq.kt gS},
(ii) R = {(a, b) : a = b},
izR;sd n'kk esa 1 ls lacaf/r vo;oksa dks Kkr dhft,A
10. ,sls laca/ dk mnkgj.k nhft,] tks
(i) lefer gks ijarq u rks LorqY; gks vkSj u laØked gksA
(ii) laØked gks ijarq u rks LorqY; gks vkSj u lefer gksA .
(iii) LorqY; rFkk lefer gks ¯drq laØked u gksA
(iv) LorqY; rFkk laØked gks ¯drq lefer u gksA
(v) lefer rFkk laØked gks ¯drq LorqY; u gksA
11. fl¼ dhft, fd fdlh lery esa fLFkr fcanqvksa osQ leqPp; esa] R = {(P, Q) : fcanq P dh
ewy fcanq ls nwjh] fcanq Q dh ewy fcanq ls nwjh osQ leku gS} }kjk iznÙk laca/ R ,d rqY;rk
laca/ gSA iqu% fl¼ dhft, fd fcanq P ≠ (0, 0) ls lacaf/r lHkh fcanqvksa dk leqPp; P
ls gksdj tkus okys ,d ,sls o`Ùk dks fu:fir djrk gS] ftldk osaQnz ewyfcanq ij gSA
12. fl¼ dhft, fd leLr f=kHkqtksa osQ leqPp; A esa] R = {(T1, T2) : T1, T2 osQ le:i gS}
}kjk ifjHkkf"kr laca/ R ,d rqY;rk laca/ gSA Hkqtkvksa 3] 4] 5 okys ledks.k f=kHkqt T1 ]
Hkqtkvksa 5] 12] 13 okys ledks.k f=kHkqt T2 rFkk Hkqtkvksa 6] 8] 10 okys ledks.k f=kHkqt
T3 ij fopkj dhft,A T1, T2 vkSj T3 esa ls dkSu ls f=kHkqt ijLij lacaf/r gSa\
13. fl¼ dhft, fd leLr cgqHkqtksa osQ leqPp; A esa, R = {(P1, P2) : P1 rFkk P2 dh Hkqtkvksa
dh la[;k leku gS}izdkj ls ifjHkkf"kr laca/ R ,d rqY;rk laca/ gSA 3] 4] vkSj 5 yackbZ
dh Hkqtkvksa okys ledks.k f=kHkqt ls lacaf/r leqPp; A osQ lHkh vo;oksa dk leqPp; Kkr
dhft,A
14. eku yhft, fd XY-ry esa fLFkr leLr js[kkvksa dk leqPp; L gS vkSj L esa R = {(L1,L2)
: L1 lekUrj gS L2 osQ} }kjk ifjHkkf"kr laca/ R gSA fl¼ dhft, fd R ,d rqY;rk laca/
gSA js[kk y = 2x + 4 ls lacaf/r leLr js[kkvksa dk leqPp; Kkr dhft,A

2018-19
8 xf.kr

15. eku yhft, fd leqPp; {1, 2, 3, 4} esa] R = {(1, 2), (2, 2), (1, 1), (4,4),
(1, 3), (3, 3), (3, 2)} }kjk ifjHkkf"kr laca/ R gSA fuEufyf[kr esa ls lgh mÙkj pqfu,A
(A) R LorqY; rFkk lefer gS ¯drq laØked ugha gSA
(B) R LorqY; rFkk laØked gS ¯drq lefer ugha gSA
(C) R lefer rFkk laØked gS ¯drq LorqY; ugha gSA
(D) R ,d rqY;rk laca/ gSA
16. eku yhft, fd leqPp; N esa] R = {(a, b) : a = b – 2, b > 6} }kjk iznÙk laca/ R gSA
fuEufyf[kr esa ls lgh mÙkj pqfu,%
(A) (2, 4) ∈ R (B) (3, 8) ∈ R (C) (6, 8) ∈ R (D) (8, 7) ∈ R

1.3 iQyuksa osQ izdkj (Types of Functions)


iQyuksa dh vo/kj.kk] oqQN fo'ks"k iQyu tSls rRled iQyu] vpj iQyu] cgqin iQyu] ifjes;
iQyu] ekikad iQyu] fpg~u iQyu vkfn dk o.kZu muosQ vkys[kksa lfgr d{kk XI esa fd;k tk
pqdk gSA
nks iQyuksa osQ ;ksx] varj] xq.kk rFkk Hkkx dk Hkh vè;;u fd;k tk pqdk gSA D;ksafd iQyu dh
ladYiuk xf.kr rFkk vè;;u dh vU; 'kk[kkvksa (Disciplines) esa lokZf/d egRoiw.kZ gS] blfy,
ge iQyu osQ ckjs esa viuk vè;;u ogk¡ ls vkxs c<+kuk pkgrs gSa] tgk¡ bls igys lekIr fd;k FkkA
bl vuqPNsn esa] ge fofHkUu izdkj osQ iQyuksa dk vè;;u djsaxsA
fuEufyf[kr vko`Qfr;ksa }kjk n'kkZ, x, iQyu f1, f2, f3 rFkk f4 ij fopkj dhft,A
vko`Qfr 1.2 esa ge ns[krs gSa fd X1 osQ fHkUu (distinct) vo;oksa osQ] iQyu f1 osQ varxZr]
izfrfcac Hkh fHkUu gSa] ¯drq f2 osQ varxZr nks fHkUu vo;oksa 1 rFkk 2 osQ izfrfcac ,d gh gSa uker%
b gSA iqu% X2 esa oqQN ,sls vo;o gS tSls e rFkk f tks f1 osQ varxZr X1 osQ fdlh Hkh vo;o
osQ izfrfcac ugha gSa] tcfd f3 osQ varxZr X3 osQ lHkh vo;o X1 osQ fdlh u fdlh vo;o osQ
izfrfcac gSaA
mi;qZDr ifjppkZ ls gesa fuEufyf[kr ifjHkk"kk,¡ izkIr gksrh gSaA
ifjHkk"kk 5 ,d iQyu f : X → Y ,oSQdh (one-one) vFkok ,oSQd (injective) iQyu dgykrk
gS] ;fn f osQ varxZr X osQ fHkUu vo;oksa osQ izfrfcac Hkh fHkUu gksrs gSa] vFkkZr~ izR;sd
x1, x2 ∈ X, osQ fy, f (x1) = f (x2) dk rkRi;Z gS fd x1 = x2, vU;Fkk f ,d cgq,d
(many-one) iQyu dgykrk gSA
vko`Qfr 1-2 (i) esa iQyu f1 ,oSQdh iQyu gS rFkk vko`Qfr 1-2 (ii) esa f2 ,d cgq,d iQyu gSA

2018-19
laca/ ,oa iQyu 9

vko`Qfr 1-2
ifjHkk"kk 6 iQyu f : X → Y vkPNknd (onto) vFkok vkPNknh (surjective) dgykrk gS] ;fn
f osQ varxZr Y dk izR;sd vo;o] X osQ fdlh u fdlh vo;o dk izfrfcac gksrk gS] vFkkZr~ izR;sd
y ∈ Y, osQ fy,] X esa ,d ,sls vo;o x dk vfLrRo gS fd f (x) = y.
vko`Qfr 1-2 (iii) esa] iQyu f3 vkPNknd gS rFkk vko`Qfr 1-2 (i) esa] iQyu f1 vkPNknd
ugha gS] D;ksafd X2 osQ vo;o e, rFkk f, f1 osQ varxZr X1 osQ fdlh Hkh vo;o osQ izfrfcac
ugha gSaA
fVIi.kh f : X → Y ,d vkPNknd iQyu gS] ;fn vkSj osQoy ;fn f dk ifjlj (range)= Y.
ifjHkk"kk 7 ,d iQyu f : X → Y ,d ,oSQdh rFkk vkPNknd (one-one and onto) vFkok ,oSQdh
vkPNknh (bijective) iQyu dgykrk gS] ;fn f ,oSQdh rFkk vkPNknd nksuksa gh gksrk gSA
vko`Qfr 1-2 (iv) esa] iQyu f4 ,d ,oSQdh rFkk vkPNknh iQyu gSA
mnkgj.k 7 eku yhft, fd d{kk X osQ lHkh 50 fo|kfFkZ;ksa dk leqPp; A gSA eku yhft,
f : A → N ] f (x) = fo|kFkhZ x dk jksy uacj] }kjk ifjHkkf"kr ,d iQyu gSA fl¼ dhft, fd
f ,oSQdh gS ¯drq vkPNknd ugha gSA
gy d{kk osQ nks fHkUu&fHkUu fo|kfFkZ;ksa osQ jksy uacj leku ugha gks ldrs gSaA vr,o f ,oSQdh gSA
O;kidrk dh fcuk {kfr fd, ge eku ldrs gSa fd fo|kfFkZ;ksa osQ jksy uacj 1 ls 50 rd gSaA bldk

2018-19
10 xf.kr

rkRi;Z ;g gqvk fd N dk vo;o 51] d{kk osQ fdlh Hkh fo|kFkhZ dk jksy uacj ugha gS] vr,o
f osQ varxZr 51] A osQ fdlh Hkh vo;o dk izfrfcac ugha gSA vr% f vkPNknd ugha gSA
mnkgj.k 8 fl¼ dhft, fd f (x) = 2x }kjk iznÙk iQyu f : N → N, ,oSQdh gS ¯drq vkPNknd
ugha gSA
gy iQyu f ,oSQdh gS] D;ksafd f (x1) = f (x2) ⇒ 2x1 = 2x2 ⇒ x1 = x2. iqu%, f vkPNnd ugha
gS] D;ksafd 1 ∈ N, osQ fy, N esa ,sls fdlh x dk vfLrRo ugha gS rkfd f (x) = 2x = 1 gksA
mnkgj.k 9 fl¼ dhft, fd f (x) = 2x }kjk iznÙk iQyu f : R → R, ,oSQdh rFkk vkPNknd gSA
gy f ,oSQdh gS] D;ksafd f (x1) = f (x2) ⇒ 2x1 = 2x2 ⇒ x1 = x2- lkFk gh] R esa iznÙk fdlh
y y y
Hkh okLrfod la[;k y osQ fy, R esa dk vfLrRo gS] tgk¡ f ( ) = 2 . ( ) = y gSA vr% f
2 2 2
vkPNknd Hkh gSA

vko`Qfr 1-3
mnkgj.k 10 fl¼ fdft, fd f (1) = f (2) = 1 rFkk x > 2 osQ fy, f (x) = x – 1 }kjk iznÙk
iQyu f : N → N, vkPNknd rks gS ¯drq ,oSQdh ugha gSA
gy f ,oSQdh ugha gS] D;kasfd f (1) = f (2) = 1, ijarq f vkPNknd gS] D;ksafd fdlh iznÙk
y ∈ N, y ≠ 1, osQ fy,] ge x dks y + 1 pqu ysrs gS]a rkfd f (y+ 1) = y + 1 – 1 = y lkFk gh
1 ∈ N osQ fy, f (1) = 1 gSA

mnkgj.k 11 fl¼ dhft, fd f (x) = x2 }kjk ifjHkkf"kr iQyu f : R → R, u rks ,oSQdh gS vkSj
u vkPNknd gSA

2018-19
laca/ ,oa iQyu 11

gy D;ksafd f (– 1) = 1 = f (1), blfy, f ,oSQdh


ugha gSA iqu% lgizkar R dk vo;o &2] izkar R osQ
fdlh Hkh vo;o x dk izfrfcac ugha gS (D;ksa\)A
vr% f vkPNknd ugha gSA
mnkgj.k 12 fl¼ dhft, fd uhps ifjHkkf"kr iQyu
f : N → N, ,oSQdh rFkk vkPNknd nksuksa gh gS

 x + 1, ;fn x fo"ke gS
f ( x) = 
 x − 1, ;fn x le gS
vko`Qfr 1-4
gy eku yhft, f (x1) = f (x2) gSA uksV dhft, fd ;fn x1 fo"ke gS rFkk x2 le gS] rks x1 + 1
= x2 – 1, vFkkZr~ x2 – x1 = 2 tks vlEHko gSA bl izdkj x1 osQ le rFkk x2 osQ fo"ke gksus dh Hkh
laHkkouk ugha gSA blfy, x1 rFkk x2 nksuksa gh ;k rks fo"ke gksaxs ;k le gksaxsA eku yhft, fd x1
rFkk x2 nksuksa fo"ke gSa] rks f (x1) = f (x2) ⇒ x1 + 1 = x2 + 1 ⇒ x1 = x2. blh izdkj ;fn x1 rFkk
x2 nksuksa le gSa] rks Hkh f (x1) = f (x2) ⇒ x1 – 1 = x2 – 1 ⇒ x1 = x2- vr% f ,oSQdh gSA lkFk gh
lgizkar N dh dksbZ Hkh fo"ke la[;k 2r + 1, izkar N dh la[;k 2r + 2 dk izfrfcac gS vkSj lgizkar
N dh dksbZ Hkh le la[;k 2r, N dh la[;k 2r – 1 dk izfrfcac gSA vr% f vkPNknd gSA
mnkgj.k 13 fl¼ dhft, fd vkPNknd iQyu f : {1, 2, 3} → {1, 2, 3} lnSo ,oSQdh iQyu gksrk gSA
gy eku yhft, fd f ,oSQdh ugha gSA vr% blosQ izkar esa de ls de nks vo;o eku fy;k fd
1 rFkk 2 dk vfLrRo gS ftuosQ lgizkar esa izfrfcac leku gSA lkFk gh f osQ varxZr 3 dk izfrfcac
osQoy ,d gh vo;o gSA vr%] ifjlj esa] lgizkar {1, 2, 3} osQ] vf/dre nks gh vo;o gks ldrs
gSa] ftlls izdV gksrk gS fd f vkPNknd ugha gS] tks fd ,d fojks/ksfDr gSA vr% f dks ,oSQdh
gksuk gh pkfg,A
mnkgj.k 14 fl¼ dhft, fd ,d ,oSQdh iQyu f : {1, 2, 3} → {1, 2, 3}vfuok;Z :i ls
vkPNknd Hkh gSA
gy pw¡fd f ,oSQdh gS] blfy, {1, 2, 3} osQ rhu vo;o f osQ varxZr lgizkar {1, 2, 3} osQ rhu
vyx&vyx vo;oksa ls Øe'k% lacaf/r gksaxsA vr% f vkPNknd Hkh gSA
fVIi.kh mnkgj.k 13 rFkk 14 esa izkIr ifj.kke fdlh Hkh LosPN ifjfer (finite) leqPp; X, osQ
fy, lR; gS] vFkkZr~ ,d ,oSQdh iQyu f : X → X vfuok;Zr% vkPNknd gksrk gS rFkk izR;sd
ifjfer leqPp; X osQ fy, ,d vkPNknd iQyu f : X → X vfuok;Zr% ,oSQdh gksrk gSA blosQ

2018-19
12 xf.kr

foijhr mnkgj.k 8 rFkk 10 ls Li"V gksrk gS fd fdlh vifjfer (Infinite) leqPp; osQ fy, ;g
lgh ugha Hkh gks ldrk gSA okLro esa ;g ifjfer rFkk vifjfer leqPp;ksa osQ chp ,d vfHky{kf.kd
(characteristic) varj gSA

iz'ukoyh 1-2
1
1. fl¼ dhft, fd f (x) = }kjk ifjHkkf"kr iQyu f : R∗ → R∗ ,oSQdh rFkk vkPNknd
x
gS] tgk¡ R∗ lHkh ½.ksrj okLrfod la[;kvksa dk leqPp; gSA ;fn izkar R∗ dks N ls cny
fn;k tk,] tc fd lgizkar iwoZor R∗gh jgs] rks Hkh D;k ;g ifj.kke lR; gksxk\
2. fuEufyf[kr iQyuksa dh ,oSQd (Injective) rFkk vkPNknh (Surjective) xq.kksa dh tk¡p
dhft,%
(i) f (x) = x2 }kjk iznÙk f : N → N iQyu gSA
(ii) f (x) = x2 }kjk iznÙk f : Z → Z iQyu gSA
(iii) f (x) = x2 }kjk iznÙk f : R → R iQyu gSA
(iv) f (x) = x3 }kjk iznÙk f : N → N iQyu gSA
(v) f (x) = x3 }kjk iznÙk f : Z → Z iQyu gSA
3. fl¼ dhft, fd f (x) = [x] }kjk iznÙk egÙke iw.kk±d iQyu f : R → R, u rks ,oSQdh gS
vkSj u vkPNknd gS] tgk¡ [x], x ls de ;k mlosQ cjkcj egÙke iw.kk±d dks fu:fir
djrk gSA
4. fl¼ dhft, fd f (x) = | x | }kjk iznÙk ekikad iQyu f : R → R, u rks ,oSQdh gS vkSj
u vkPNknd gS] tgk¡ | x | cjkcj x, ;fn x /u ;k 'kwU; gS rFkk | x | cjkcj – x, ;fn
x ½.k gSA
5. fl¼ dhft, fd f : R → R,

1, ;fn x > 0



f ( x ) = 0, ;fn x = 0
µ1, ;fn x < 0,

}kjk iznÙk fpg~u iQyu u rks ,oSQdh gS vkSj u vkPNknd gSA
6. eku yhft, fd A = {1, 2, 3}, B = {4, 5, 6, 7} rFkk f = {(1, 4), (2, 5), (3, 6)} A ls B
rd ,d iQyu gSA fl¼ dhft, fd f ,oSQdh gSA

2018-19
laca/ ,oa iQyu 13

7. fuEufyf[kr esa ls izR;sd fLFkfr esa crykb, fd D;k fn, gq, iQyu ,oSQdh] vkPNknd
vFkok ,oSQdh vkPNknh (bijective) gSaA vius mÙkj dk vkSfpR; Hkh crykb,A
(i) f (x) = 3 – 4x }kjk ifjHkkf"kr iQyu f : R → R gSA

(ii) f (x) = 1 + x2 }kjk ifjHkkf"kr iQyu f : R → R gSA


8. eku yhft, fd A rFkk B nks leqPp; gSaA fl¼ dhft, fd f : A × B → B × A, bl izdkj
fd f (a, b) = (b, a) ,d ,oSQdh vkPNknh (bijective) iQyu gSA

n +1
 2 , ;fn n fo"ke gS
9. eku yhft, fd leLr n ∈ N osQ fy,] f (n) =  n
, ;fn n le gS
 2
}kjk ifjHkkf"kr ,d iQyu f : N → N gSA crykb, fd D;k iQyu f ,oSQdh vkPNknh
(bijective) gSA vius mÙkj dk vkSfpR; Hkh crykb,A
 x−2
10. eku yhft, fd A = R – {3} rFkk B = R – {1} gSaA f (x) =   }kjk ifjHkkf"kr iQyu
 x−3
f : A → B ij fopkj dhft,A D;k f ,oSQdh rFkk vkPNknd gS\ vius mÙkj dk vkSfpR;
Hkh crykb,A
11. eku yhft, fd f : R → R , f(x) = x4 }kjk ifjHkkf"kr gSA lgh mÙkj dk p;u dhft,A
(A) f ,oSQdh vkPNknd gS (B) f cgq,d vkPNknd gS
(C) f ,oSQdh gS ¯drq vkPNknd ugha gS (D) f u rks ,oSQdh gS vkSj u vkPNknd gSA
12. eku yhft, fd f (x) = 3x }kjk ifjHkkf"kr iQyu f : R → R gSA lgh mÙkj pqfu,%
(A) f ,oSQdh vkPNknd gS (B) f cgq,d vkPNknd gS
(C) f ,oSQdh gS ijarq vkPNknd ugha gS (D) f u rks ,oSQdh gS vkSj u vkPNknd gS

1.4 iQyuksa dk la;kstu rFkk O;qRØe.kh; iQyu (Composition of Functions and


Invertible Function)
bl vuqPNsn esa ge nks iQyuksa osQ la;kstu rFkk fdlh ,oSQdh vkPNknh (bijective) iQyu osQ
izfrykse (Inverse) dk vè;;u djsaxsA lu~ 2006 dh fdlh cksMZ (ifj"kn~~) dh d{kk X dh ijh{kk
esa cSB pqosQ lHkh fo|kfFkZ;ksa osQ leqPp; A ij fopkj dhft,A cksMZ dh ijh{kk esa cSBus okys izR;sd
fo|kFkhZ dks cksMZ }kjk ,d jksy uacj fn;k tkrk gS] ftls fo|kFkhZ ijh{kk osQ le; viuh mÙkj iqfLrdk
ij fy[krk gSA xksiuh;rk j[kus osQ fy, cksMZ fo|kfFkZ;ksa osQ jksy uacjksa dks fo:i (deface) djosQ]

2018-19
14 xf.kr

izR;sd jksy uacj dks ,d udyh lakosQfrd uacj (Fake Code Number) esa cny nsrk gSaA eku
yhft, fd B ⊂ N leLr jksy uacjksa dk leqPp; gS] rFkk C ⊂ N leLr lkaosQfrd uacjksa dk
leqPp; gSA blls nks iQyu f : A → B rFkk g : B → C curs gSa tks Øe'k% f (a) = fo|kFkhZ a
dks fn;k x;k jksy uacj rFkk g (b) = jksy uacj b dks cny dj fn;k x;k lkaosQfrd uacj] }kjk
ifjHkkf"kr gSaA bl izfØ;k esa iQyu f }kjk izR;sd fo|kFkhZ osQ fy, ,d jksy uacj fu/kZfjr gksrk gS
rFkk iQyu g }kjk izR;sd jksy uacj osQ fy, ,d lkaosQfrd uacj fu/kZfjr gksrk gSA vr% bu nksuksa
iQyuksa osQ la;kstu ls izR;sd fo|kFkhZ dks varr% ,d lkaosQfrd uacj ls laca/ dj fn;k tkrk gsA
blls fuEufyf[kr ifjHkk"kk izkIr gksrh gSA
ifjHkk"kk 8 eku yhft, fd f : A → B rFkk g : B → C nks iQyu gSaA rc f vkSj g dk la;kstu]
gof }kjk fu:fir gksrk gS] rFkk iQyu gof : A → C, gof (x) = g (f (x)), ∀ x ∈ A }kjk
ifjHkkf"kr gksrk gSA

vko`Qfr 1-5
mnkgj.k 15 eku yhft, fd f : {2, 3, 4, 5} → {3, 4, 5, 9} vkSj g : {3, 4, 5, 9} → {7, 11, 15}
nks iQyu bl izdkj gSa fd f (2) = 3, f (3) = 4, f (4) = f (5) = 5 vkSj g (3) = g (4) = 7 rFkk
g (5) = g (9) = 11, rks gof Kkr dhft,A
gy ;gk¡ gof (2) = g (f (2)) = g (3) = 7, gof (3) = g (f (3)) = g (4) = 7, gof (4) = g (f (4))
= g (5) = 11 vkSj gof (5) = g (5) = 11.
mnkgj.k 16 ;fn f : R → R rFkk g : R → R iQyu Øe'k% f (x) = cos x rFkk g (x) = 3x2 }kjk
ifjHkkf"kr gS rks gof vkSj fog Kkr dhft,A fl¼ dhft, gof ≠ fog.
gy ;gk¡ gof (x) = g (f (x)) = g (cos x) = 3 (cos x)2 = 3 cos2 x. blh izdkj, fog (x) =
f (g (x)) = f (3x2) = cos (3x2) gSaA uksV dhft, fd x = 0 osQ fy, 3cos2 x ≠ cos 3x2 gSA vr%
gof ≠ fog.
3x + 4 7  3
mnkgj.k 17 ;fn f ( x) = }kjk ifjHkkf"kr iQyu f : R −   → R −   rFkk
5x − 7 5  5
7x + 4
}kjk ifjHkkf"kr iQyu g : R −   → R −   iznÙk gSa] rks fl¼ dhft, fd
3 7
g ( x) =
5x − 3 5  5

2018-19
laca/ ,oa iQyu 15

fog = IA rFkk gof = IB, bl izdkj fd IA (x) = x, ∀ x ∈ A vkSj IB (x) = x, ∀ x ∈ B, tgk¡


3 7 
A = R –   , B = R –   gSaA IA rFkk IB dks Øe'k% leqPp; A rFkk B ij rRled (Identity)
 
5 5 
iQyu dgrs gSaA
gy ;gk¡ ij
 (3x + 4) 
7 +4
 3 x + 4   (5 x − 7)  21x + 28 + 20 x − 28 41x
gof ( x) = g  = = = =x
 5x − 7   (3x + 4)  15 x + 20 − 15 x + 21 41
5 −3
 (5 x − 7) 

 (7 x + 4) 
3 +4
 7x + 4   (5 x − 3)  21x + 12 + 20 x − 12 41x
blh izdkj] fog ( x) = f  = = = =x
 5x − 3   (7 x + 4)  35 x + 20 − 35 x + 21 41
5 −7
 (5 x − 3) 

vr% gof (x) = x, ∀ x ∈ B vkSj fog (x) = x, ∀ x ∈ A, ftldk rkRi;Z ;g gS fd


gof = IB vkSj fog = IA.

mnkgj.k 18 fl¼ dhft, fd ;fn f : A → B rFkk g : B → C ,oSQdh gSa] rks gof : A → C


Hkh ,oSQdh gSA
gy gof (x1) = gof (x 2)
⇒ g (f (x1)) = g(f (x 2))
⇒ f (x1) = f (x2), D;ksafd g ,oSQdh gS
⇒ x1 = x2, D;ksafd f ,oSQdh gS
vr% gof Hkh ,oSQdh gSA
mnkgj.k 19 fl¼ dhft, fd ;fn f : A → B rFkk g : B → C vkPNknd gSa] rks gof : A →C
Hkh vkPNknd gSA
gy eku yhft, fd ,d LosPN vo;o z ∈ C gSA g osQ varxZr z osQ ,d iwoZ izfrfcac
(Pre-image) y ∈ B dk vfLrRo bl izdkj gS fd] g (y) = z, D;ksafd g vkPNknd gSA blh izdkj
y ∈ B osQ fy, A esa ,d vo;o x dk vfLrRo bl izdkj gS fd] f (x) = y, D;ksafd f vkPNknd
gSA vr% gof (x) = g (f (x)) = g (y) = z, ftlls izekf.kr gksrk gS fd gof vkPNknd gSA

2018-19
16 xf.kr

mnkgj.k 20 f rFkk g ,sls nks iQyuksa ij fopkj dhft, fd gof ifjHkkf"kr gS rFkk ,oSQdh gSA
D;k f rFkk g nksuksa vfuok;Zr% ,oSQdh gSa\
gy iQyu f : {1, 2, 3, 4} → {1, 2, 3, 4, 5, 6} f (x) = x, ∀ x }kjk ifjHkkf"kr vkSj g (x) = x,
x = 1, 2, 3, 4 rFkk g (5) = g (6) = 5 }kjk ifjHkkf"kr g : {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4, 5, 6} ij
fopkj dhft,A ;gk¡ gof : {1, 2, 3, 4} → {1, 2, 3, 4, 5, 6} ifjHkkf"kr gS rFkk gof (x) = x, ∀ x,
ftlls izekf.kr gksrk gS fd gof ,oSQdh gSA ¯drq g Li"Vr;k ,oSQdh ugha gSA
mnkgj.k 21 ;fn gof vkPNnd gS] rks D;k f rFkk g nksuksa vfuok;Zr% vkPNknd gSa?
gy f : {1, 2, 3, 4} → {1, 2, 3, 4} rFkk g : {1, 2, 3, 4} → {1, 2, 3} ij fopkj dhft,] tks]
Øe'k% f (1) = 1, f (2) = 2, f (3) = f (4) = 3, g (1) = 1, g (2) = 2 rFkk g (3) = g (4) = 3. }kjk
ifjHkkf"kr gSaA ;gk¡ ljyrk ls ns[kk tk ldrk gS fd gof vkPNknd gS] ¯drq f vkPNknd ugha gSA
fVIi.kh ;g lR;kfir fd;k tk ldrk gS fd O;kid :i ls gof osQ ,oSQdh gksus dk rkRi;Z gS
fd f ,oSQdh gksrk gSA blh izdkj gof vkPNknd gksus dk rkRi;Z gS fd g vkPNknd gksrk gSA
vc ge bl vuqPNsn osQ izkjaHk esa cksMZ dh ijh{kk osQ lanHkZ esa of.kZr iQyu f vkSj g ij ckjhdh
ls fopkj djuk pkgrs gSaA cksMZ dh d{kk X dh ijh{kk esa cSBus okys izR;sd fo|kFkhZ dks iQyu f
osQ varxZr ,d jksy uacj iznku fd;k tkrk gS vkSj izR;sd jksy uacj dks g osQ varxZr ,d lkaosQfrd
uacj iznku fd;k tkrk gSA mÙkj iqfLrdkvksa osQ ewY;kadu osQ ckn ijh{kd izR;sd ewY;kafdr iqfLrdk
ij lkaosQfrd uacj osQ le{k izkIrkad fy[k dj cksMZ osQ dk;kZy; esa izLrqr djrk gSA cksMZ osQ
vf/dkjh] g osQ foijhr izfØ;k }kjk] izR;sd lkaosQfrd uacj dks cny dj iqu% laxr jksy uacj iznku
dj nsrs gSa vkSj bl izdkj izkIrkad lkaosQfrd uacj osQ ctk, lh/s jksy uacj ls lacaf/r gks tkrk gSA
iqu%] f dh foijhr izfØ;k }kjk] izR;sd jksy uacj dks ml jksy uacj okys fo|kFkhZ ls cny fn;k
tkrk gSA blls izkIrkad lh/s lacaf/r fo|kFkhZ osQ uke fu/kZfjr gks tkrk gSA ge ns[krs gSa fd f rFkk
g, osQ la;kstu }kjk gof, izkIr djrs le;] igys f vkSj fiQj g dks iz;qDr djrs gSa] tc fd la;qDr
gof, dh foijhr izfØ;k esa] igys g dh foijhr izfØ;k vkSj fiQj f dh foijhr izfØ;k djrs gSaA

mnkgj.k 22 eku yhft, fd f : {1, 2, 3} → {a, b, c} ,d ,oSQdh rFkk vPNknd iQyu bl


izdkj gS fd f (1) = a, f (2) = b vkSj f (3) = c, rks fl¼ dhft, fd iQyu g : {a, b, c} → {1, 2, 3}
dk ,s l k vfLrRo gS ] rkfd gof = I X rFkk fog = IY, tgk¡ X = {1, 2, 3} rFkk
Y = {a, b, c}gksA

gy iQyu g : {a, b, c} → {1, 2, 3} gS tgk¡ g (a) = 1, g (b) = 2 vkSj g (c) = 3, ij fopkj


dhft,A ;g lR;kfir djuk ljy gS fd la;qDr iQyu gof = IX , X ij rRled iQyu gS vkSj
l;aqDr iQyu fog = IY , Y ij rRled iQyu gaSA

2018-19
laca/ ,oa iQyu 17

fVIi.kh ;g ,d jkspd rF; gS fd mi;qZDr mnkgj.k esa of.kZr ifj.kke fdlh Hkh LosPN ,oSQdh
rFkk vkPNknd iQyu f : X → Y osQ fy, lR; gksrk gSA osQoy ;gh ugha vfirq bldk foykse
(converse) Hkh lR; gksrk gS] vFkkZr~] ;fn f : X → Y ,d ,slk iQyu gS fd fdlh iQyu
g : Y → X dk vfLrRo bl izdkj gS fd gof = IX rFkk fog = IY, rks f ,oSQdh rFkk vkPNknd
gksrk gSA
mi;qZDr ifjppkZ] mnkgj.k 22 rFkk fVIi.kh fuEufyf[kr ifjHkk"kk osQ fy, izsfjr djrs gSa%
ifjHkk"kk 9 iQyu f : X → Y O;qRØe.kh; (Invertible) dgykrk gS] ;fn ,d iQyu
g : Y → X dk vfLrRo bl izdkj gS fd gof = IX rFkk fog = IY gSA iQyu g dks iQyu f dk
izfrykse (Inverse) dgrs gSa vkSj bls izrhd f –1 }kjk izdV djrs gSaA
vr%] ;fn f O;qRØe.kh; gS] rks f vfuok;Zr% ,oSQdh rFkk vkPNknd gksrk gS vkSj foykser%]
;fn f ,oSQdh rFkk vkPNknd gS] rks f vfuok;Zr% O;qRØe.kh; gksrk gSA ;g rF;] f dks ,oSQdh
rFkk vkPNknd fl¼ djosQ] O;qRØe.kh; izekf.kr djus esa egRoiw.kZ :i ls lgk;d gksrk gS] fo'ks"k
:i ls tc f dk izfrykse okLro esa Kkr ugha djuk gksA
mnkgj.k 23 eku yhft, fd f : N → Y, f (x) = 4x + 3, }kjk ifjHkkf"kr ,d iQyu gS] tgk¡
Y = {y ∈ N : y = 4x + 3 fdlh x ∈ N osQ fy,}A fl¼ dhft, fd f O;qRØe.kh; gSA izfrykse
iQyu Hkh Kkr dhft,A
gy Y osQ fdlh LosPN vo;o y ij fopkj dhft,A Y, dh ifjHkk"kk }kjk] izkar N osQ fdlh vo;o
( y − 3) ( y − 3)
x osQ fy, y = 4x + 3 gSA blls fu"d"kZ fudyrk gS fd x = gSA vc g ( y) = }kjk
4 4
(4 x + 3 − 3)
g : Y → N dks ifjHkkf"kr dhft,A bl izdkj gof (x) = g (f (x)) = g (4x + 3) = =x
4
( y − 3)  4 ( y − 3)
rFkk fog (y) = f (g (y)) = f  = + 3 = y – 3 + 3 = y gSA blls Li"V gksrk
 4  4
gS fd gof = IN rFkk fog = IY, ftldk rkRi;Z ;g gqvk fd f O;qRØe.kh; gS vkSj iQyu g iQyu
f dk izfrykse gSA

mnkgj.k 24 eku yhft, fd Y = {n2 : n ∈ N } ⊂ N gSA iQyu f : N → Y tgk¡ f (n) = n2


ij fopkj dhft,A fl¼ dhft, fd f O;qRØe.kh; gSA f dk izfrykse Hkh Kkr dhft,A

gy Y dk ,d LosPN vo;o y, n2 osQ :i dk gS tgk¡ n ∈ N . bldk rkRi;Z ;g gS fd n = y


blls g (y) = y }kjk ifjHkkf"kr ,d iQyu g : Y → N iz k Ir gks r k gS A vc

2018-19
18 xf.kr

( y)=( y)
2
gof (n) = g (n2) = n 2 = n vkSj fog (y) = f = y , ftlls izekf.kr gksrk gS fd

gof = IN rFkk fog = IYgSA vr% f O;qRØe.kh; gS rFkk f –1 = g.

mnkgj.k 25 eku yhft, fd f : N → R , f (x) = 4x2 + 12x + 15 }kjk ifjHkkf"kr ,d iQyu


gSA fl¼ dhft, fd f : N → S, tgk¡ S, f dk ifjlj gS] O;qRØe.kh; gSA f dk izfrykse Hkh Kkr
dhft,A
gy eku yhft, fd f osQ ifjlj dk y ,d LosPN vo;o gSA blfy, y = 4x2 + 12x + 15, tgk¡

x ∈ N- bldk rkRi;Z ;g gS fd y = (2x + 3)2 + 6. vr,o x =


(( y −6)−3 )) .
2

(( y − 6)−3 ))
vc] ,d iQyu g : S → N , g (y) = }kjk ifjHkkf"kr dhft,A
2
bl izdkj gof (x) = g (f (x)) = g (4x2 + 12x + 15) = g ((2x + 3)2 + 6))

=
(( (2 x + 3) 2 + 6 − 6 − 3 ) ) ( 2 x + 3 − 3)
= =x
2 2

(( )
y − 6) − 3   2 (( y − 6) − 3 ) + 3 
2

vkSj fog (y) = f   =   +6
 2   2 

(( y −6)−3+3 )) + 6 = ( y − 6 ) + 6 = y – 6 + 6 = y.
2 2
=

vr% gof = IN rFkk fog =ISgSA bldk rkRi;Z ;g gS fd f O;qRØe.kh; gS rFkk f –1 = g gSA

mnkgj.k 26 rhu iQyu f : N → N, g : N → N rFkk h : N → R ij fopkj dhft, tgk¡


f (x) = 2x, g (y) = 3y + 4 rFkk h (z) = sin z, ∀ x, y rFkk z ∈ N- fl¼ dhft, fd
ho(gof) = (hog) of.
gy ;gk¡
ho(gof) (x) = h(gof (x)) = h(g (f (x))) = h (g (2x))
= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4), ∀ x ∈ N
lkFk gh] ((hog) o f ) (x) = (hog) ( f (x)) = (hog) (2x) = h ( g (2x))
= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4), ∀ x ∈ N

2018-19
laca/ ,oa iQyu 19

blls izekf.kr gksrk gS fd ho(gof) = (hog) o f


;g ifj.kke O;kid fLFkfr esa Hkh lR; gksrk gSA
izes; 1 ;fn f : X → Y, g : Y → Z rFkkk h : Z → S rhu iQyu gSa] rks
ho(gof) = (hog) o f
miifÙk ;gk¡ ge ns[krs gSa fd
ho(gof) (x) = h(gof (x)) = h(g (f (x))), ∀ x in X
rFkk (hog) of (x) = hog (f (x)) = h(g(f (x))), ∀ x in X
vr% ho(gof) = (hog) o f
mnkgj.k 27 f : {1, 2, 3} → {a, b, c} rFkk g : {a, b, c} → {lsc] xsan] fcYyh} f (1) = a,
f (2) = b, f (3) = c, g(a) = lsc, g(b) = xsan rFkk g(c) = fcYyh }kjk ifjHkkf"kr iQyuksa ij fopkj
dhft,A fl¼ dhft, fd f, g vkSj gof O;qRØe.kh; gSaA f –1, g–1 rFkk (gof)–1 Kkr dhft, rFkk
izekf.kr dhft, fd (gof) –1 = f –1o g–1 gSA
gy uksV dhft, fd ifjHkk"kk }kjk f vkSj g ,oSQdh vkPNknh iQyu gSaA eku yhft, fd
f –1: {a, b, c} → (1, 2, 3} vkSj g–1 : {lsc] xsan] fcYyh} → {a, b, c} bl izdkj ifjHkkf"kr gSa fd
f –1{a} = 1, f –1{b} = 2, f –1{c} = 3, g –1{lsc} = a, g –1{xsan} = b vkSj g –1{fcYyh} = c.
;g lR;kfir djuk ljy gS fd f –1 o f = I{1, 2, 3}, f o f –1 = I{a, b, c}, g –1og = I{a, b, c} vkSj
g o g–1 = ID, tgk¡ D = {lsc, xsan, fcYyh}A vc, gof : {1, 2, 3} → {lsc, xsan, fcYyh}
gof (1) = lsc, gof (2) = xsan, gof (3) = fcYyh }kjk iznÙk gSA
ge (gof)–1 : {lsc] xsan] fcYyh} → {1, 2, 3} dks (gof)–1 (lsc) = 1, (gof)–1 (xsan) = 2
rFkk (g o f)–1 (fcYyh) = 3 }kjk ifjHkkf"kr dj ldrs gSaA ;g ljyrk ls izekf.kr fd;k tk ldrk
gS fd (g o f)–1 o (g o f) = I{1, 2, 3} rFkk (g o f) o (g o f)–1 = ID gksxkA
bl izdkj izekf.kr gksrk gS fd f, g rFkk gof O;qRØe.kh; gSaA
vc f og–1 (lsc) = f –1(g–1(lsc)) = f –1(a) = 1 = (gof)–1 (lsc)
–1

f –1og–1 (xsan) = f –1(g–1(xsan)) = f –1(b) = 2 = (gof)–1 (xsan) rFkk


f –1og–1 (fcYyh) = f –1(g–1(fcYyh)) = f –1(c) = 3 = (gof)–1 (fcYyh)
vr% (gof)–1 = f –1og –1
mi;qZDr ifj.kke O;kid fLFkfr esa Hkh lR; gksrk gSA
izes; 2 eku yhft, fd f : X → Y rFkk g : Y → Z nks O;qRØe.kh; iQyu gSa] rks gof Hkh
O;qRØe.kh; gksxk rFkk (gof)–1 = f –1og–1
miifÙk gof dks O;qRØe.kh; rFkk (gof)–1 = f –1og–1, dks fl¼ djus osQ fy, ;g izekf.kr djuk
i;kZIr gS fd ( f –1og–1)o(gof) = IX rFkk (gof)o( f –1og–1) = IZ gSA

2018-19
20 xf.kr

vc (f –1og–1 ) o (gof) = ((f –1og–1) og) of, izes; 1 }kjk


= (f –1o(g–1og)) of, izes; 1 }kjk
= (f –1 o IY) of, g–1 dh ifjHkk"kk }kjk
= IX
blh izdkj] ;g izekf.kr fd;k tk ldrk gS fd] (gof ) (f –1 o g –1) = IZ
mnkgj.k 28 eku yhft, fd S = {1, 2, 3}gSA fu/kZfjr dhft, fd D;k uhps ifjHkkf"kr iQyu
f : S → S osQ izfrykse iQyu gaSA f –1, Kkr dhft, ;fn bldk vfLrRo gSA
(a) f = {(1, 1), (2, 2), (3, 3)}
(b) f = {(1, 2), (2, 1), (3, 1)}
(c) f = {(1, 3), (3, 2), (2, 1)}

gy
(a) ;g ljyrk ls ns[kk tk ldrk gS fd f ,oSQdh vkPNknh gS] blfy, f O;qRØe.kh; gS rFkk
f dk izfrykse f –1 = {(1, 1), (2, 2), (3, 3)} = f }kjk izkIr gksrk gSA
(b) D;ksafd f (2) = f (3) = 1, vr,o f ,oSQdh ugha gS] vr% f O;qRØe.kh; ugha gSA
(c) ;g ljyrk iwoZd ns[kk tk ldrk gS fd f ,oSQdh rFkk vkPNknd gS] vr,o f O;qRØe.kh;
gS rFkk f –1 = {(3, 1), (2, 3), (1, 2)}gSA

iz'ukoyh 1-3
1. eku yhft, fd f : {1, 3, 4} → {1, 2, 5} rFkk g : {1, 2, 5} → {1, 3},
f = {(1, 2), (3, 5), (4, 1)} rFkk g = {(1, 3), (2, 3), (5, 1)} }kjk iznÙk gSaA gof Kkr
dhft,A
2. eku yhft, fd f, g rFkk h, R ls R rd fn, iQyu gSaA fl¼ dhft, fd
(f + g) o h = foh + goh
(f . g) o h = (foh) . (goh)
3. gof rFkk fog Kkr dhft,] ;fn
(i) f (x) = | x | rFkk g(x) = | 5x – 2 |
1

(ii) f (x) = 8x rFkk g(x) = x 3


3

2018-19
laca/ ,oa iQyu 21

(4 x + 3) 2 2
4. ;fn f (x) = , x ≠ , rks fl¼ dhft, fd lHkh x ≠ osQ fy, fof (x) = x gSA
(6 x − 4) 3 3
f dk izfrykse iQyu D;k gS?
5. dkj.k lfgr crykb, fd D;k fuEufyf[kr iQyuksa osQ izfrykse gSa%
(i) f : {1, 2, 3, 4} → {10} tgk¡
f = {(1, 10), (2, 10), (3, 10), (4, 10)}
(ii) g : {5, 6, 7, 8} → {1, 2, 3, 4} tgk¡
g = {(5, 4), (6, 3), (7, 4), (8, 2)}
(iii) h : {2, 3, 4, 5} → {7, 9, 11, 13} tgk¡
h = {(2, 7), (3, 9), (4, 11), (5, 13)}
x
6. fl¼ dhft, fd f : [–1, 1] → R, f (x) = , }kjk iznÙk iQyu ,oSQdh gSA iQyu
( x + 2)
f : [–1, 1] → ( f dk ifjlj)] dk izfrykse iQyu Kkr dhft,A

x
(laosQr y ∈ ifjlj f, osQ fy,] [–1, 1] osQ fdlh x osQ varxZr y = f (x) = , vFkkZr~
x+2
2y
x= )
(1 − y )
7. f (x) = 4x + 3 }kjk iznÙk iQyu f : R → R ij fopkj dhft,A fl¼ dhft, fd f
O;qRØe.kh; gSA f dk izfrykse iQyu Kkr dhft,A
8. f (x) = x2 + 4 }kjk iznÙk iQyu f : R+ → [4, ∞) ij fopkj dhft,A fl¼ dhft, fd f
O;qRØe.kh; gS rFkk f dk izfrykse f –1 , f –1(y) = y − 4 , }kjk izkIr gksrk gS] tgk¡ R+
lHkh ½.ksrj okLrfod la[;kvksa dk leqPp; gSA
9. f (x) = 9x2 + 6x – 5 }kjk iznÙk iQyu f : R+ → [– 5, ∞) ij fopkj dhft,A fl¼ dhft,
 ( y + 6 ) −1 
fd f O;qRØe.kh; gS rFkk f –1(y) =   gSA
 3 
10. eku yhft, fd f : X → Y ,d O;qRØe.kh; iQyu gSA fl¼ dhft, fd f dk izfrykse
iQyu vf}rh; (unique) gSA (laosQr% dYiuk dhft, fd f osQ nks izfrykse iQyu g1
rFkk g2 gSaA rc lHkh y ∈ Y osQ fy, fog1(y) = 1Y(y) = fog2(y) gSA vc f osQ ,oSQdh xq.k
dk iz;ksx dhft,)

2018-19
22 xf.kr

11. f : {1, 2, 3} → {a, b, c}, f (1) = a, f (2) = b rFkk f (3) = c. }kjk iznÙk iQyu f ij fopkj
dhft,A f –1 Kkr dhft, vkSj fl¼ dhft, fd (f –1)–1 = f gSA
12. eku yhft, fd f : X → Y ,d O;qRØe.kh; iQyu gSa fl¼ dhft, fd f –1 dk izfrykse
f, gS vFkkZr~ (f –1)–1 = f gSA
1
13. ;fn f : R → R, f (x) = (3 − x3 ) 3 , }kjk iznÙk gS] rks fof (x) cjkcj gSA
1
(A) x 3 (B) x 3 (C) x (D) (3 – x3)

4x  4
14. eku yhft, fd f (x) = }kjk ifjHkkf"kr ,d iQyu f : R – −  → R gSA f dk
3x + 4  3

izfrykse] vFkkZr~ izfrfp=k (Map) g : ifjlj f → R – −  , fuEufyf[kr esa ls fdlosQ


4
 3
}kjk izkIr gksxk%
3y 4y
(A) g ( y) = (B) g ( y) =
3 − 4y 4 − 3y

4y 3y
(C) g ( y) = (D) g ( y) =
3 − 4y 4 − 3y

1.5 f}&vk/kjh lafØ;k,¡ (Binary Operations)


vius LowQy osQ fnuksa esa gh vki pkj ewy lafØ;kvksa] uker% ;ksx] varj] xq.kk rFkk Hkkx ls ifjfpr
gks pqosQ gSaA bu lafØ;kvksa dh eq[; fo'ks"krk ;g gS fd nks nh xbZ la[;kvksa a rFkk b, ls ge ,d
a
la[;k a + b ;k a – b ;k ab ;k , b ≠ 0 dks lac¼ (Associate) dj nsrs gSaA ;g ckr uksV
b
dhft, fd] ,d le; esa] osQoy nks la[;k,¡ gh tksM+h ;k xq.kk dh tk ldrh gSaA tc gesa rhu
la[;kvksa dks tksM+us dh vko';drk gksrh gS] rks ge igys nks la[;kvksa dks tksM+rs gSa vkSj izkIr
;ksxiQy dks fiQj rhljh la[;k esa tksM+ nsrs gSaA vr% ;ksx] xq.kk] varj rFkk Hkkx f}vk/kjh lafØ;k
osQ mnkgj.k gSa] D;ksafd ^f}vk/kjh* dk vFkZ gS ^nks vk/kj okyh*A ;fn ge ,d O;kid ifjHkk"kk
pkgrs gSa] ftless ;g pkjksa lafØ;k,¡ Hkh vk tkrh gSa] rks gesa la[;kvksa osQ leqPp; osQ LFkku ij ,d
LosPN leqPp; X ysuk pkfg, vkSj rc O;kid :i ls f}vk/kjh lafØ;k] oqQN vU; ugha vfirq]
X osQ nks vo;oksa a rFkk b dks X osQ gh fdlh vo;o ls lac¼ djuk gSA blls fuEufyf[kr O;kid
ifjHkk"kk izkIr gksrh gS%

2018-19
laca/ ,oa iQyu 23

ifjHkk"kk 10 fdlh leqPp; A esa ,d f}vk/kjh lafØ;k ∗, ,d iQyu ∗ : A × A → A gSA ge


∗ (a, b) dks a ∗ b }kjk fu:fir djrs gSaA
mnkgj.k 29 fl¼ dhft, fd R esa ;ksx] varj vkSj xq.kk f}vk/kjh lafØ;k,¡ gSa] ¯drq Hkkx R esa
f}vk/kjh lafØ;k ugha gSA lkFk gh fl¼ dhft, fd Hkkx ½.ksrj okLrfod la[;kvksa osQ leqPp;
R esa f}vk/kjh lafØ;k gSA
gy + : R × R → R , (a, b) → a + b }kjk ifjHkkf"kr gS
– : R × R → R, (a, b) → a – b }kjk ifjHkkf"kr gS
× : R × R → R, (a, b) → ab }kjk ifjHkkf"kr gS
D;ksafd ‘+’, ‘–’ vkSj ‘×’ iQyu gSa] vr% ;s R esa f}vk/kjh lafØ;k,¡ gSaA
a a
ijarq ÷ : R × R → R, (a, b) → , ,d iQyu ugha gS] D;ksafd b = 0 osQ fy,
b b
ifjHkkf"kr ugha gSA
a
rFkkfi ÷ : R∗ × R∗ → R∗, (a, b) → }kjk ifjHkkf"kr ,d iQyu gS vkSj blfy,
b
;g R∗ esa ,d f}vk/kjh lafØ;k gSA
mnkgj.k 30 fl¼ dhft, fd varj (O;odyu) rFkk Hkkx N esa f}vk/kjh lafØ;k ugha gSA
gy – : N × N → N, (a, b) → a – b, }kjk iznÙk ,d f}vk/kjh lafØ;k ugha gS] D;ksafd ‘–’
a
osQ varxZr (3] 5) dk izfrfcac 3 – 5 = – 2 ∉ N. blh izdkj] ÷ N × N → N, (a, b) →
b
3
}kjk iznÙk ,d f}vk/kjh lafØ;k ugha gS] D;ksfa d ^÷* osQ varxZr (3 ¸ 5) dk izfrfcac 3 ÷ 5= ∉ N.
5
mnkgj.k 31 fl¼ dhft, fd ∗ : R × R → R, (a, b) → a + 4b2 }kjk iznÙk ,d f}vk/kjh
lafØ;k gSA
gy pw¡fd ∗ izR;sd ;qXe (a, b) dks R osQ ,d vf}rh; vo;o a + 4b2 rd ys tkrk gS] vr%
∗ R esa ,d f}vk/kjh lafØ;k gSA
mnkgj.k 32 eku yhft, fd P, fdlh iznÙk leqPp; X osQ leLr mi leqPp;ksa dk] leqPp; gSA
fl¼ dhft, fd ∪ : P × P → P, (A, B) → A ∪ B }kjk iznÙk rFkk ∩ : P × P → P,
(A, B) → A ∩ B }kjk ifjHkkf"kr iQyu] P esa f}vk/kjh lafØ;k,¡ gSaA
gy D;ksafd lfEeyu lafØ;k (Union Operation) ∪, P × P osQ izR;sd ;qXe (A, B) dks P osQ
,d vf}rh; vo;o A ∪ B rd ys tkrh gS] blfy, ∪, leqPp; P esa ,d f}vk/kjh lafØ;k

2018-19
24 xf.kr

gSA blh izdkj loZfu"B (Intersection) lafØ;k ∩ , P × P osQ izR;sd ;qXe (A, B) dks P osQ ,d
vf}rh; vo;o A ∩ B rd ys tkrh gS] vr,o ∩, leqPp; P esa ,d f}vk/kjh lafØ;k gSA
mnkgj.k 33 fl¼ dhft, fd (a, b) → vf/dre {a, b} }kjk ifjHkkf"kr ∨ : R × R → R rFkk
(a, b) → fuEure {a, b} }kjk ifjHkkf"kr ∧ : R × R → R f}vk/kjh lafØ;k,¡ gSaA
gy D;ksafd ∨ , R × R osQ izR;sd ;qXe (a, b) dks leqPp; R osQ ,d vf}rh; vo;o] uker%
a rFkk b esa ls vf/dre] ij ys tkrk gS] vr,o ∨ ,d f}vk/kjh lafØ;k gSa blh izdkj osQ roZQ
}kjk ;g dgk tk ldrk gS fd ∧ Hkh ,d f}vk/kjh lafØ;k gSA
fVIi.kh ∨ (4, 7) = 7, ∨ (4, – 7) = 4, ∧ (4, 7) = 4 rFkk ∧ (4, – 7) = – 7 gSA
tc fdlh leqPp; A esa vo;oksa dh la[;k de gksrh gS] rks ge leqPp; A esa ,d
f}vk/kjh lafØ;k ∗ dks ,d lkj.kh }kjk O;Dr dj ldrs gSa] ftls lafØ;k ∗ dh lafØ;k lkj.kh
dgrs gSaA mnkgj.kkFkZ A = {1, 2, 3} ij fopkj dhft,A rc mnkgj.k 33 esa ifjHkkf"kr A esa lafØ;k
∨ fuEufyf[kr lkj.kh (lkj.kh 1-1) }kjk O;Dr dh tk ldrh gSA ;gk¡ lafØ;k lkj.kh esa ∨ (1,
3) = 3, ∨ (2, 3) = 3, ∨ (1, 2) = 2.
lkj.kh 1.1
∨ 1 2 3
1 1 2 3
2 2 2 3
3 3 3 3
;gk¡ lafØ;k lkj.kh esa 3 iafDr;k¡ rFkk 3 LraHk gSa] ftlesa (i, j)oha izfof"V leqPp; A osQ
iosa rFkk josa vo;oksa esa ls vf/dre gksrk gSA bldk O;kidhdj.k fdlh Hkh lkekU; lafØ;k
* : A × A → A osQ fy, fd;k tk ldrk gSA ;fn A = {a1, a2, ..., an}gS rks lafØ;k lkj.kh esa
n iafDr;k¡ rFkk n LrEHk gksaxs rFkk (i, j)oha izfof"V ai ∗ aj gksxhA foykser% n iafDr;ksa RkFkk n LraHkksa
okys iznÙk fdlh lafØ;k lkj.kh] ftldh izR;sd izfof"V A = {a1, a2, ..., an}, dk ,d vo;o gS]
osQ fy, ge ,d f}vk/kjh lafØ;k ∗ : A × A → A ifjHkkf"kr dj ldrs gSa] bl izdkj fd
ai ∗ aj = lafØ;k lkj.kh dh ioha iafDr rFkk josa LrEHk dh izfof"V;k¡ gSaA
ge uksV djrs gSa fd 3 rFkk 4 dks fdlh Hkh Øe (order) esa tksM+sa] ifj.kke (;ksxiQy) leku
jgrk gS] vFkkZr~ 3 + 4 = 4 + 3, ijarq 3 rFkk 4 dks ?kVkus esa fofHkUu Øe fofHkUu ifj.kke nsrs gSa]
vFkkZr~ 3 – 4 ≠ 4 – 3. blh izdkj 3 rFkk 4 xq.kk djus esa Øe egRoiw.kZ ugha gS] ijarq 3 rFkk 4
osQ Hkkx esa fofHkUu Øe fofHkUu ifj.kke nsrs gSaA vr% 3 rFkk 4 dk ;ksx rFkk xq.kk vFkZiw.kZ gS ¯drq
3 Rkk 4 dk varj rFkk Hkkx vFkZghu gSA varj rFkk Hkkx osQ fy, gesa fy[kuk iM+rk gS fd ^3 esa

2018-19
laca/ ,oa iQyu 25

ls 4 ?kVkb,* ;k ^4 esa ls 3 ?kVkb,* vFkok ^3 dks 4 ls Hkkx dhft,* ;k ^4 dks 3 ls Hkkx dhft,*A
blls fuEufyf[kr ifjHkk"kk izkIr gksrh gS%
ifjHkk"kk 11 leqPp; X esa ,d f}vk/kjh lafØ;k ∗ Øefofues; (Commutative) dgykrh gS]
;fn izR;sd a, b ∈ X osQ fy, a ∗ b = b ∗ a gksA
mnkgj.k 34 fl¼ dhft, fd + : R × R → R rFkk × : R × R → R Øefofues; f}vk/kjh
lafØ;k,¡ gS] ijarq – : R × R → R rFkk ÷ : R∗ × R∗ → R∗ Øefofues; ugha gSaA
gy D;ksafd a + b = b + a rFkk a × b = b × a, ∀ a, b ∈ R, vr,o ‘+’ rFkk ‘×’ Øefofues;
f}vk/kjh lafØ;k,¡ gSaA rFkkfi ‘–’ Øefofues; ugha gS] D;ksafd 3 – 4 ≠ 4 – 3.
blh izdkj 3 ÷ 4 ≠ 4 ÷ 3, ftlls Li"V gksrk gS fd ‘÷’ Øefofues; ugha gSA
mnkgj.k 35 fl¼ dhft, fd a ∗ b = a + 2b }kjk ifjHkkf"kr ∗ : R × R → R Øefofues;
ugha gSA
gy D;ksafd 3 ∗ 4 = 3 + 8 = 11 vkSj 4 ∗ 3 = 4 + 6 = 10, vr% lafØ;k ∗ Øefofues; ugha gSA
;fn ge leqPp; X osQ rhu vo;oksa dks X esa ifjHkkf"kr fdlh f}vk/kjh lafØ;k osQ }kjk
lac¼ djuk pkgrs gSa rks ,d LokHkkfod leL;k mBrh gSA O;atd a ∗ b ∗ c dk vFkZ
(a ∗ b) ∗ c vFkok a ∗ (b ∗ c) gks ldrk gS vkSj ;g nksuksa O;tad] vko';d ugha gS] fd leku
gksaA mnkgj.kkFkZ (8 – 5) – 2 ≠ 8 – (5 – 2). blfy,] rhu la[;kvksa 8] 5 vkSj 3 dk f}vk/kjh lafØ;k
^O;odyu* osQ }kjk laca/ vFkZghu gS tc rd fd dks"Bd (Bracket) dk iz;ksx ugha fd;k tk,A
ijarq ;ksx dh lafØ;k esa] 8 + 5 + 2 dk eku leku gksrk gS] pkgs ge bls ( 8 + 5) + 2 vFkok
8 + (5 + 2) izdkj ls fy[ksaA vr% rhu ;k rhu ls vf/d la[;kvksa dk ;ksx dh lafØ;k }kjk
laca/] fcuk dks"Bdksa osQ iz;ksx fd, Hkh] vFkZiw.kZ gSA blls fuEufyf[kr ifjHkk"kk izkIr gksrh gS%
ifjHkk"kk 12 ,d f}vk/kjh lafØ;k ∗ : A × A → A lkgp;Z (Associative) dgykrh gS] ;fn
(a ∗ b) ∗ c = a ∗ (b ∗ c), ∀ a, b, c, ∈ A.
mnkgj.k 36 fl¼ dhft, fd R esa ;ksx rFkk xq.kk lkgp;Z f}vk/kjh lafØ;k,¡ gSaA ijarq O;odyu
rFkk Hkkx R esa lkgp;Z ugha gSA
gy ;ksx rFkk xq.kk lkgp;Z gSa] D;ksafd (a + b) + c = a + (b + c) rFkk (a×b) × c = a × (b × c),
∀ a, b, c ∈ R gSA rFkkfi varj rFkk Hkkx lkgp;Z ugha gSa] D;ksafd (8 – 5) – 3 ≠ 8 – (5 – 3) rFkk
(8 ÷ 5) ÷ 3 ≠ 8 ÷ (5 ÷ 3).
mnkgj.k 37 fl¼ dhft, fd a ∗ b → a + 2b }kjk iznÙk ∗ : R × R → R lkgp;Z ugha gSA
gy lafØ;k ∗ lkgp;Z ugha gS] D;ksafd
(8 ∗ 5) ∗ 3 = (8 + 10) ∗ 3 = (8 + 10) + 6 = 24,
tcfd 8 ∗ (5 ∗ 3) = 8 ∗ (5 + 6) = 8 ∗ 11 = 8 + 22 = 30.

2018-19
26 xf.kr

fVIi.kh fdlh f}vk/kjh lafØ;k dk lkgp;Z xq.k/eZ bl vFkZ esa vR;ar egRoiw.kZ gS fd ge O;atd
a1 ∗ a2 ∗ ... ∗ an fy[k ldrs gSa] D;ksafd bl xq.k/eZ osQ dkj.k ;g lafnX/ ugha jg tkrk gSA ijarq
bl xq.k/eZ osQ vHkko esa] O;atd a1 ∗ a2 ∗ ... ∗ an lafnX/ (Ambiguous) jgrk gS] tc rd fd
dks"Bd dk iz;ksx u fd;k tk,A Lej.k dhft, fd iwoZorhZ d{kkvksa esa] tc dHkh varj ;k Hkkx dh
lafØ;k,¡ vFkok ,d ls vf/d lafØ;k,¡ laiUu dh xb± Fkha] rc dks"Bdksa dk iz;ksx fd;k x;k FkkA
R esa f}vk/kjh lafØ;k ^$* ls lacaf/r la[;k 'kwU; (zero) dh ,d jkspd fo'ks"krk ;g gS fd
a + 0 = a = 0 + a, ∀ a ∈ R, vFkkZr~, fdlh Hkh la[;k esa 'kwU; dks tksM+us ij og la[;k vifjofrZr
jgrh gSA ijarq xq.kk dh fLFkfr esa ;g Hkwfedk (Role) la[;k 1 }kjk vnk dh tkrh gS] D;ksafd
a × 1 = a = 1 × a, ∀ a ∈ R gSA blls fuEufyf[kr ifjHkk"kk izkIr gksrh gSA
ifjHkk"kk 13 fdlh iznÙk f}vk/kjh lafØ;k ∗ : A × A → A, osQ fy,] ,d vo;o e ∈ A, ;fn
bldk vfLrRo gS] rRled (Identity) dgykrk gS] ;fn a ∗ e = a = e ∗ a, ∀ a ∈ A gksA
mnkgj.k 38 fl¼ dhft, fd R esa 'kwU; (0) ;ksx dk rRled gS rFkk 1 xq.kk dk rRled gSA ijarq
lafØ;kvksa – : R × R → R vkSj ÷ : R∗ × R∗ → R∗ osQ fy, dksbZ rRled vo;o ugha gSA
gy a + 0 = 0 + a = a vkSj a × 1 = a = 1 × a, ∀ a ∈ R dk rkRi;Z gS fd 0 rFkk 1 Øe'k%
‘+’ rFkk ‘×’, osQ rRled vo;o gSaA lkFk gh R esa ,slk dksbZ vo;o e ugha gS fd a – e =
e – a, ∀ a ∈ R gksA blh izdkj gesa R∗ esa dksbZ ,slk vo;o e ugha fey ldrk gS fd
a ÷ e = e ÷ a, ∀ a ∈ R∗ gksA vr% ‘–’ rFkk ‘÷’ osQ rRled vo;o ugha gksrs gSaA

fVIi.kh R esa 'kwU; (0) /u lafØ;k dk rRled gS] ¯drq ;g N esa /u lafØ;k dk rRled ugha
gS] D;ksafd 0 ∉ N okLro esa N esa /u lafØ;k dk dksbZ rRled ugha gksrk gSA
ge iqu% ns[krs gSa fd /u lafØ;k + : R × R → R osQ fy,] fdlh iznÙk a ∈ R ls
lacaf/r R esa – a dk vfLrRo bl izdkj gS fd a + (– a) = 0 (‘+’ dk rRled) = (– a) + a.
1
blh izdkj R esa xq.kk lafØ;k osQ fy,] fdlh iznÙk a ∈ R, a ≠ 0 ls lacaf/r ge R esa dks
1 1 a
bl izdkj pqu ldrs gSa fd a × = 1(‘×’ dk rRled) = × a gksA blls fuEufyf[kr ifjHkk"kk
a a
izkIr gksrh gSA
ifjHkk"kk 14 A esa rRled vo;o e okys ,d iznÙk f}vk/kjh lafØ;k ∗ : A × A → A osQ fy,
fdlh vo;o a ∈ A dks lafØ;k ∗ osQ lanHkZ esa O;qRØe.kh; dgrs gSa] ;fn A esa ,d ,sls vo;o
b dk vfLrRo gS fd a ∗ b = e = b ∗ a gks rks b dks a dk izfrykse (Inverse) dgrs gSa] ftls
izrhd a–1 }kjk fu:fir djrs gSaA

2018-19
laca/ ,oa iQyu 27

mnkgj.k 39 fl¼ dhft, fd R esa /u lafØ;k ‘+’ osQ fy, – a dk izfrykse a gS vkSj R esa
1
xq.kk lafØ;k ‘×’ osQ fy, a ≠ 0 dk izfrykse gSA
a
gy D;ksafd a + (– a) = a – a = 0 rFkk (– a) + a = 0, blfy, – a /u lafØ;k osQ fy, a
1 1 1
dk izfrykse gSA blh izdkj] a ≠ 0, osQ fy, a × = 1 = × a, ftldk rkRi;Z ;g gS fd
a a a
xq.kk lafØ;k osQ fy, a dk izfrykse gSA
mnkgj.k 40 fl¼ dhft, fd N esa /u lafØ;k '+' osQ fy, a ∈ N dk izfrykse – a ugha gS
1
vkSj N esa xq.kk lafØ;k ‘×’ osQ fy, a ∈ N, a ≠ 1 dk izfrykse ugha gSA
a
gy D;ksafd – a ∉ N, blfy, N esa /u lafØ;k osQ fy, a dk izfrykse – a ugha gks ldrk gS
;|fi – a, izfrca/ a + (– a) = 0 = (– a) + a dks larq"V djrk gSA blh izdkj] N esa a ≠ 1 osQ
1
fy, ∉ N, ftldk vFkZ ;g gS fd 1 osQ vfrfjDr N osQ fdlh Hkh vo;o dk izfrykse N
a
esa xq.kk lafØ;k osQ fy, ugha gksrk gSA
mnkgj.k 34] 36] 38 rFkk 39 ls Li"V gksrk gS fd R esa /u lafØ;k Øefofue; rFkk lkgp;Z
f}vk/kjh lafØ;k gS] ftlesa 0 rRled vo;o rFkk a ∈ R, ∀ a dk izfrykse vo;o – a gksrk
gSA
iz'ukoyh 1-4
1. fu/kZfjr dhft, fd D;k fuEufyf[kr izdkj ls ifjHkkf"kr izR;sd lafØ;k ∗ ls ,d
f}vk/kjh lafØ;k izkIr gksrh gS ;k ughaA ml n'kk esa tc ∗ ,d f}vk/kjh lafØ;k ugha gS]
vkSfpR; Hkh crykb,A
(i) Z+ esa, a ∗ b = a – b }kjk ifjHkkf"kr lafØ;k ∗
(ii) Z+ esa, a ∗ b = ab }kjk ifjHkkf"kr lafØ;k ∗
(iii) R esa] lafØ;k ∗] a ∗ b = ab2 }kjk ifjHkkf"kr
(iv) Z+ esa, lafØ;k ∗] a ∗ b = | a – b | }kjk ifjHkkf"kr
(v) Z+ esa, lafØ;k ∗, a ∗ b = a }kjk ifjHkkf"kr
2. fuEufyf[kr ifjHkkf"kr izR;sd f}vk/kjh lafØ;k ∗ osQ fy, fu/kZfjr dhft, fd D;k ∗
f}vk/kjh Øefofue; gS rFkk D;k ∗ lkgp;Z gSA

2018-19
28 xf.kr

(i) Z es,a a ∗ b = a – b }kjk ifjHkkf"kr


(ii) Q esa, a ∗ b = ab + 1 }kjk ifjHkkf"kr

ab
(iii) Q esa, a ∗ b = }kjk ifjHkkf"kr
2
(iv) Z+ esa, a ∗ b = 2ab }kjk ifjHkkf"kr
(v) Z+ esa, a ∗ b = ab }kjk ifjHkkf"kr

a
(vi) R – {– 1} esa, a ∗ b = }kjk ifjHkkf"kr
b +1
3. leqPp; {1, 2, 3, 4, 5} esa a ∧ b = fuEure {a, b} }kjk ifjHkkf"kr f}vk/kjh lafØ;k ij
fopkj dhft,A lafØ;k ∧ osQ fy, lafØ;k lkj.kh fyf[k,A
4. leqPp; {1, 2, 3, 4, 5} esa] fuEufyf[kr lafØ;k lkj.kh (lkj.kh 1-2) }kjk ifjHkkf"kr]
f}vk/kjh lafØ;k ∗ ij fopkj dhft, rFkk
(i) (2 ∗ 3) ∗ 4 rFkk 2 ∗ (3 ∗ 4) dk ifjdyu dhft,A
(ii) D;k ∗ Øefofues; gS\
(iii) (2 ∗ 3) ∗ (4 ∗ 5) dk ifjdyu dhft,A
(laosQr% fuEu lkj.kh dk iz;ksx dhft,A)
lkj.kh 1-2
* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

5. eku yhft, fd leqPp; {1, 2, 3, 4, 5} esa ,d f}vk/kjh lafØ;k ∗′, a ∗′ b = a rFkk b


dk HCF }kjk ifjHkkf"kr gSA D;k lafØ;k ∗′ miZ;qDr iz'u 4 esa ifjHkkf"kr lafØ;k ∗ osQ
leku gS\ vius mÙkj dk vkSfpR; Hkh crykb,A
6. eku yhft, fd N esa ,d f}vk/kjh lafØ;k ∗] a ∗ b = a rFkk b dk LCM }kjk ifjHkkf"kr
gSA fuEufyf[kr Kkr dhft,%
(i) 5 ∗ 7, 20 ∗ 16 (ii) D;k lafØ; ∗ Øefofues; gS ?

2018-19
laca/ ,oa iQyu 29

(iii) D;k ∗ lkgp;Z gS? (iv) N esa ∗ dk rRled vo;o Kkr dhft,
(v) N osQ dkSu ls vo;o ∗ lafØ;k osQ fy, O;qRØe.kh; gSa\
7. D;k leqPp; {1, 2, 3, 4, 5} esa a ∗ b = a rFkk b dk LCM }kjk ifjHkkf"kr ∗ ,d
f}vk/kjh lafØ;k gS\ vius mÙkj dk vkSfpR; Hkh crykb,A
8. eku yhft, fd N esa a ∗ b = a rFkk b dk HCF }kjk ifjHkkf"kr ,d f}vk/kjh lafØ;k
gSA D;k ∗ Øefofues; gS\ D;k ∗ lkgp;Z gS\ D;k N esa bl f}vk/kjh lafØ;k osQ rRled
dk vfLrRo gS\
9. eku yhft, fd ifjes; la[;kvksa osQ leqPp; Q esa fuEufyf[kr izdkj ls ifjHkkf"kr ∗ ,d
f}vk/kjh lafØ;k gS%
(i) a ∗ b = a – b (ii) a ∗ b = a2 + b2
(iii) a ∗ b = a + ab (iv) a ∗ b = (a – b)2
ab
(v) a ∗ b = (vi) a ∗ b = ab2
4
Kkr dhft, fd buesa ls dkSu lh lafØ;k,¡ Øefofues; gSa vkSj dkSulh lkgp;Z gSaA
10. iz'u 9 esa nh xbZ lafØ;kvksa esa fdlh dk rRled gS] og crykb,A
11. eku yhft, fd A = N × N gS rFkk A esa (a, b) ∗ (c, d) = (a + c, b + d) }kjk ifjHkkf"kr
,d f}vk/kjh lafØ;k gSA fl¼ dhft, fd ∗ Øefofue; rFkk lkgp;Z gSA A esa ∗ dk
rRled vo;o] ;fn dksbZ gS] rks Kkr dhft,A
12. crykb, fd D;k fuEufyf[kr dFku lR; gSa ;k vlR; gSaA vkSfpR; Hkh crykb,A
(i) leqPp; N esa fdlh Hkh LosPN f}vk/kjh lafØ;k ∗ osQ fy, a ∗ a = a, ∀ a ∈ N
(ii) ;fn N esa ∗ ,d Øefofues; f}vk/kjh lafØ;k gS] rks a ∗ (b ∗ c) = (c ∗ b) ∗ a
13. a ∗ b = a3 + b3 izdkj ls ifjHkkf"kr N esa ,d f}vk/kjh lafØ;k ∗ ij fopkj dhft,A vc
fuEufyf[kr esa ls lgh mÙkj dk p;u dhft,
(A) ∗ lkgp;Z rFkk Øefofues; nksuksa gS
(B) ∗ Øefofues; gS ¯drq lkgp;Z ugha gS
(C) ∗ lkgp;Z gS ¯drq Øefofues; ugha gS
(D) ∗ u rks Øefofues; gS vkSj u lkgp;Z gS

2018-19
30 xf.kr

fofo/ mnkgj.k
mnkgj.k 41 ;fn R1 rFkk R2 leqPp; A esa rqY;rk laca/ gSa] rks fl¼ dhft, fd R1 ∩ R2 Hkh ,d
rqY;rk laca/ gSA
gy D;ksafd R1 rFkk R2 rqY;rk laca/ gS blfy, (a, a) ∈ R1, rFkk (a, a) ∈ R2, ∀ a ∈ A bldk
rkRi;Z gS fd (a, a) ∈ R1 ∩ R2, ∀ a, ftlls fl¼ gksrk gS fd R1 ∩ R2 LorqY; gSA iqu%
(a, b) ∈ R1 ∩ R2 ⇒ (a, b) ∈ R1 rFkk (a, b) ∈ R2 ⇒ (b, a) ∈ R1 rFkk (b, a) ∈ R2 ⇒
(b, a) ∈ R1 ∩ R2, vr% R1 ∩ R2 lefer gSA blh izdkj (a, b) ∈ R1 ∩ R2 rFkk (b, c) ∈ R1 ∩ R2
⇒ (a, c) ∈ R1 rFkk (a, c) ∈ R2 ⇒ (a, c) ∈ R1 ∩ R2- blls fl¼ gksrk gS fd R1 ∩ R2 laØked
gSA vr% R1 ∩ R2 ,d rqY;rk laca/ gSA
mnkgj.k 42 eku yhft, fd leqPp; A esa /u iw.kk±dksa osQ Øfer ;qXeksa (ordered pairs)dk
,d laca/ R, (x, y) R (u, v), ;fn vkSj osQoy ;fn] xv = yu }kjk ifjHkkf"kr gSA fl¼ dhft,
fd R ,d rqY;rk laca/ gSA
gy Li"Vr;k (x, y) R (x, y), ∀ (x, y) ∈ A, D;ksafd xy = yx gSA blls Li"V gksrk gS fd R
LorqY; gSA iqu% (x, y) R (u, v) ⇒ xv = yu ⇒ uy = vx vkSj blfy, (u, v) R (x, y)gSA blls
Li"V gksrk gS fd R lefer gSA blh izdkj (x, y) R (u, v) rFkk (u, v) R (a, b) ⇒ xv = yu
a a b a
rFkk ub = va ⇒ xv = yu ⇒ xv = yu ⇒ xb = ya vkSj blfy, (x, y) R (a, b)gSA
u u v u
vr,o R laØked gSA vr% R ,d rqY;rk laca/ gSA
mnkgj.k 43 eku yhft, fd X = {1, 2, 3, 4, 5, 6, 7, 8, 9}gSA eku yhft, fd X esa
R1 = {(x, y) : x – y la[;k 3 ls HkkT; gS} }kjk iznÙk ,d laca/ R1 gS rFkk R2 = {(x, y): {x, y}
⊂ {1, 4, 7} ;k {x, y} ⊂ {2, 5, 8} ;k {(x, y} ⊂ {3, 6, 9} }kjk iznÙk X esa ,d vU; laca/ R2
gSA fl¼ dhft, fd R1 = R2gSA
gy uksV dhft, fd {1, 4, 7}, {2, 5, 8} rFkk {3, 6, 9} leqPp;ksa esa ls izR;sd dk vfHky{k.k
(characterstic) ;g gS fd buosQ fdlh Hkh nks vo;oksa dk varj 3 dk ,d xq.kt gSA blfy,
(x, y) ∈ R1 ⇒ x – y la[;k 3 dk xq.kt gS ⇒ {x, y} ⊂ {1, 4, 7} ;k {x, y} ⊂ {2, 5, 8}
;k {x, y} ⊂ {3, 6, 9} ⇒ (x, y) ∈ R2] vr% R1 ⊂ R2- blh izdkj {x, y} ∈ R2 ⇒ {x, y} ⊂
{1, 4, 7} ;k {x, y} ⊂ {2, 5, 8} ;k {x, y} ⊂ {3, 6, 9} ⇒ x – y la[;k 3 ls HkkT; gS ⇒ {x, y}
∈ R1- blls Li"V gksrk gS fd R2 ⊂ R1- vr% R1 = R2 gSA
mnkgj.k 44 eku yhft, fd f : X → Y ,d iQyu gSA X esa R = {(a, b): f (a) = f (b)} }kjk
iznÙk ,d laca/ R ifjHkkf"kr dhft,A tk¡fp, fd D;k R ,d rqY;rk laca/ gSA

2018-19
laca/ ,oa iQyu 31

gy izR;sd a ∈ X osQ fy, (a, a) ∈ R, D;ksafd f (a) = f (a), ftlls Li"V gksrk gS fd R LorqY;
gSA blh izdkj] (a, b) ∈ R ⇒ f (a) = f (b) ⇒ f (b) = f (a) ⇒ (b, a) ∈ R- blfy, R lefer
gSA iqu% (a, b) ∈ R rFkk (b, c) ∈ R ⇒ f (a) = f (b) rFkk f (b) = f (c) ⇒ f (a) = f (c) ⇒
(a, c) ∈ R, ftldk rkRi;Z gS fd R laØked gSA vr% R ,d rqY;rk laca/ gSA
mnkgj.k 45 fu/kZfjr dhft, fd leqPp; R esa iznÙk fuEufyf[kr f}vk/kjh lafØ;kvksa esa ls dkSu
lh lkgp;Z gSa vkSj dkSu lh Øefofues; gSaA
(a + b )
(a) a ∗ b = 1, ∀ a, b ∈ R (b) a ∗ b = ∀ a, b ∈ R
2
gy
(a) Li"Vr;k ifjHkk"kk }kjk a ∗ b = b ∗ a = 1, ∀ a, b ∈ R- lkFk gh (a ∗ b) ∗ c =
(1 ∗ c) =1 rFkk a ∗ (b ∗ c) = a ∗ (1) = 1, ∀ a, b, c ∈ R vr% R lkgp;Z rFkk
Øefofues; nksuksa gSA
a +b b+a
(b) a ∗ b = = = b ∗ a, ∀ a, b ∈ R, ftlls Li"V gksrk gS fd ∗ Øefofues;
2 2
gSA iqu%
a+b
(a ∗ b) ∗ c =   ∗ c.
 2 

a+b
  + c a + b + 2c
 2  =
= .
2 4

b+c
¯drq a ∗ (b ∗ c) = a ∗  
 2 
b+c
a+
= 2 = 2a + b + c ≠ a + b + 2c (lkekU;r%)
2 4 4
vr% ∗ lkgp;Z ugha gSA
mnkgj.k 46 leqPp; A = {1, 2, 3} ls Lo;a rd lHkh ,oSQdh iQyu dh la[;k Kkr dhft,A
gy {1, 2, 3} ls Lo;a rd ,oSQdh iQyu osQoy rhu izrhdksa 1, 2, 3 dk Øep; gSA vr%
{1, 2, 3} ls Lo;a rd osQ izfrfp=kksa (Maps) dh oqQy la[;k rhu izrhdksa 1] 2 ] 3 osQ Øep;ksa
dh oqQy la[;k osQ cjkcj gksxh] tks fd 3! = 6 gSA

2018-19
32 xf.kr

mnkgj.k 47 eku yhft, fd A = {1, 2, 3} gSA rc fl¼ dhft, fd ,sls laca/ksa dh la[;k pkj
gS] ftuesa (1] 2) rFkk (2] 3) gSa vkSj tks LorqY; rFkk laØked rks gSa ¯drq lefer ugha gSaA
gy {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}, (1, 2) rFkk (2, 3) vo;oksa okyk og lcls NksVk
laca/ R1 gS] tks LorqY; rFkk laØked gS ¯drq lefer ugha gSA vc ;fn R1 esa ;qXe (2] 1) c<+k
nsa] rks izkIr laca/ R2 vc Hkh LorqY; rFkk laØked gS ijarq lefer ugha gSA blh izdkj, ge R1
esa (3, 2) c<+k dj R3 izkIr dj ldrs gSa] ftuesa vHkh"V xq.k/eZ gSaA rFkkfi ge R1 esa fdUgha nks ;qXeksa
(2, 1), (3, 2) ;k ,d ;qXe (3, 1) dks ugha c<+k ldrs gSa] D;ksafd ,slk djus ij ge] laØkedrk
cuk, j[kus osQ fy,] 'ks"k ;qXe dks ysus osQ fy, ckè; gks tk,¡xs vkSj bl izfØ;k }kjk izkIr laca/
lefer Hkh gks tk,xk] tks vHkh"V ugha gSA vr% vHkh"V laca/ksa dh oqQy la[;k rhu gSA
mnkgj.k 48 fl¼ dhft, fd leqPp; {1, 2, 3} esa (1, 2) rFkk (2, 1) dks vUrfoZ"V djus okys
rqY;rk laca/ksa dh la[;k 2 gSA
gy (1, 2) rFkk (2, 1) dks varfoZ"V djus okyk lcls NksVk rqY;rk laca/ R1, {(1, 1), (2, 2),
(3, 3), (1, 2), (2, 1)} gSA vc osQoy 4 ;qXe] uker% (2, 3), (3, 2), (1, 3) rFkk (3, 1) 'ks"k cprs gSaA
;fn ge buesa ls fdlh ,d dks] tSls (2] 3) dks R1 esa varfoZ"V djrs gSa] rks lefer osQ fy,
gesa (3] 2) dks Hkh ysuk iM+sxk] lkFk gh laØedrk gsrq ge (1] 3) rFkk (3] 1) dks ysus osQ
fy, ckè; gksaxsA vr% R1 ls cM+k rqY;rk laca/ osQoy lkoZf=kd laca/ gSA blls Li"V gksrk gS fd
(1] 2) rFkk (2] 1) dks varfoZ"V djus okys rqY;rk laca/ksa dh oqQy la[;k nks gSA
mnkgj.k 49 fl¼ dhft, fd {1, 2} esa ,slh f}vk/kjh lafØ;kvksa dh la[;k osQoy ,d gS] ftldk
rRled 1 gSa rFkk ftlosQ varxZr 2 dk izfrykse 2 gSA
gy {1, 2} esa dksbZ f}vk/kjh lafØ;k ∗, {1, 2} × {1, 2} ls {1, 2} esa ,d iQyu gS] vFkkZr~
{(1, 1), (1, 2), (2, 1), (2, 2)} ls {1, 2} rd ,d iQyuA D;ksafd vHkh"V f}vk/kjh lafØ;k ∗ osQ
fy, rRled vo;o 1 gS] blfy,, ∗ (1, 1) = 1, ∗ (1, 2) = 2, ∗ (2, 1) = 2 vkSj ;qXe (2, 2)
osQ fy, gh osQoy fodYi 'ks"k jg tkrk gSA D;ksafd 2 dk izfrykse 2 gS] blfy, ∗ (2, 2) vko';d
:i ls 1 osQ cjkcj gSA vr% vHkh"V f}vk/kjh lafØ;kvksa dh la[;k osQoy ,d gSA
mnkgj.k 50 rRled iQyu IN : N → N ij fopkj dhft,] tks IN (x) = x, ∀ x ∈ N }kjk
ifjHkkf"kr gSA fl¼ dhft, fd] ;|fi IN vkPNknd gS ¯drq fuEufyf[kr izdkj ls ifjHkkf"kr iQyu
IN + IN : N → N vkPNknd ugha gS
(IN + IN) (x) = IN (x) + IN (x) = x + x = 2x
gy Li"Vr;k IN vkPNknd gS ¯drq IN + IN vkPNknd ugha gSA D;ksafd ge lgizkar N esa
,d vo;o 3 ys ldrs gSa ftlosQ fy, izkar N esa fdlh ,sls x dk vfLrRo ugha gS fd
(IN + IN) (x) = 2x = 3 gksA

2018-19
laca/ ,oa iQyu 33

mnkgj.k 51 f (x) = sin x }kjk iznÙk iQyu f : 0, π  → R rFkk g(x) = cos x }kjk iznÙk iQyu
 2
π
g :  0,  → R ij fopkj dhft,A fl¼ dhft, fd f rFkk g ,oSQdh gS] ijarq f + g ,oSQdh ugha
 2
gSA

gy D;ksafd 0, π  , osQ nks fHkUu&fHkUu vo;oksa x1 rFkk x2 osQ fy, sin x1 ≠ sin x2 rFkk
 2
cos x1 ≠ cos x2 blfy, f rFkk g nksuksa gh vko';d :i ls ,oSQdh gSaA ijarq (f + g) (0) =

 π π π
sin 0 + cos 0 = 1 rFkk (f + g)   = sin + cos = 1 gSA vr% f + g ,oSQdh ugha gSA
2 2 2

vè;k; 1 ij fofo/ iz'ukoyh


1. eku yhft, fd f : R → R , f (x) = 10x + 7 }kjk ifjHkkf"kr iQyu gSA ,d ,slk iQyu
g : R → R Kkr dhft, ftlosQ fy, g o f = f o g = 1R gksA
2. eku yhft, fd f : W → W, f (n) = n – 1, ;fn n fo"ke gS rFkk f (n) = n + 1, ;fn n
le gS] }kjk ifjHkkf"kr gSA fl¼ dhft, fd f O;qRØe.kh; gSA f dk izfrykse Kkr dhft,A
;gk¡ W leLr iw.kk±dksa dk leqPp; gSA
3. ;fn f : R → R tgk¡ f(x) = x2 – 3x + 2 }kjk ifjHkkf"kr gS rks f (f (x)) Kkr dhft,A

x
4. fl¼ dhft, fd f : R → {x ∈ R : – 1 < x < 1} tgk¡ f ( x ) = , x ∈ R }kjk
1+ | x |
ifjHkkf"kr iQyu ,oSQdh rFkk vkPNknd gSA
5. fl¼ dhft, fd f (x) = x3 }kjk iznÙk iQyu f : R → R ,oSQd (Injective) gSA
6. nks iQyuksa f : N → Z rFkk g : Z → Z osQ mnkgj.k nhft, tks bl izdkj gksa fd] g o f
,oSQd gS ijarq g ,oSQd ugha gSA
(laosQru: f (x) = x rFkk g (x) = | x | ij fopkj dhft,A)
7. nks iQyuksa f : N → N rFkk g : N → N osQ mnkgj.k nhft,] tks bl izdkj gksa fd]
g o f vkPNknd gS ¯drq f vkPNknu ugha gSA

x −1 , x > 1
(laosQr: f (x) = x + 1 rFkk g ( x) =  ij fopkj dhft,A
 1 , x =1

2018-19
34 xf.kr

8. ,d vfjDr leqPp; X fn;k gqvk gSA P(X) tks fd X osQ leLr mileqPp;ksa dk leqPp;
gS] ij fopkj dhft,A fuEufyf[kr rjg ls P(X) esa ,d laca/ R ifjHkkf"kr dhft,%
P(X) esa mileqPp;ksa A, B osQ fy,] ARB, ;fn vkSj osQoy ;fn A ⊂ B gSA D;k R, P(X)
esa ,d rqY;rk laca/ gS? vius mÙkj dk vkSfpR; Hkh fyf[k,A
9. fdlh iznÙk vfjDr leqPp; X osQ fy, ,d f}vk/kjh lafØ;k ∗ : P(X) × P(X) → P(X)
ij fopkj dhft,] tks A ∗ B = A ∩ B, ∀ A, B ∈ P(X) }kjk ifjHkkf"kr gS] tgk¡ P(X)
leqPp; X dk ?kkr leqPp; (Power set) gSA fl¼ dhft, fd bl lafØ;k dk rRled
vo;o X gS rFkk lafØ;k ∗ osQ fy, P(X) esa osQoy X O;qRØe.kh; vo;o gSA
10. leqPp; {1, 2, 3, ... , n} ls Lo;a rd osQ leLr vkPNknd iQyuksa dh la[;k Kkr dhft,A
11. eku yhft, fd S = {a, b, c} rFkk T = {1, 2, 3} gSA S ls T rd osQ fuEufyf[kr iQyuksa
F osQ fy, F–1 Kkr dhft,] ;fn mldk vfLrRo gS%
(i) F = {(a, 3), (b, 2), (c, 1)} (ii) F = {(a, 2), (b, 1), (c, 1)}
12. a ∗b = |a – b| rFkk a o b = a, ∀ a, b ∈ R }kjk ifjHkkf"kr f}vk/kjh la f Ø;kvks a
∗ : R × R → R rFkk o : R × R → R ij fopkj dhft,A fl¼ dhft, fd ∗ Øefofues;
gS ijarq lkgp;Z ugha gS] o lkgp;Z gS ijarq Øefofues; ugha gSA iqu% fl¼ dhft, fd lHkh
a, b, c ∈ R osQ fy, a ∗ (b o c) = (a ∗ b) o (a ∗ c) gSA [;fn ,slk gksrk gS] rks ge dgrs
gSa fd lafØ;k ∗ lafØ;k o ij forfjr (Distributes) gksrh gSA] D;k o lafØ;k ∗ ij forfjr
gksrh gS? vius mÙkj dk vkSfpR; Hkh crykb,A
13. fdlh iznÙk vfjDr leqPp; X osQ fy, eku yhft, fd ∗ : P(X) × P(X) → P(X), tgk¡
A * B = (A – B) ∪ (B – A), ∀ A, B ∈ P(X) }kjk ifjHkkf"kr gSA fl¼ dhft, fd fjDr
leqPp; φ] lafØ;k ∗ dk rRled gS rFkk P(X) osQ leLr vo;o A O;qRØe.kh; gS]a bl
izdkj fd A–1 = A. (laosQr : (A – φ) ∪ (φ – A) = A. rFkk (A – A) ∪ (A – A) =
A ∗ A = φ).
14. fuEufyf[kr izdkj ls leqPp; {0, 1, 2, 3, 4, 5} esa ,d f}vk/kjh lafØ;k ∗ ifjHkkf"kr dhft,

a + b, ;fn a + b < 6
a ∗b =
a + b − 6, ;fn a + b ≥ 6
fl¼ dhft, fd 'kwU; (0) bl lafØ;k dk rRled gS rFkk leqPp; dk izR;sd vo;o
a ≠ 0 O;qRØe.kh; gS] bl izdkj fd 6 – a, a dk izfrykse gSA

2018-19
laca/ ,oa iQyu 35

15. eku yhft, fd A = {– 1, 0, 1, 2}, B = {– 4, – 2, 0, 2} vkSj f, g : A → B, Øe'k%


1
f (x) = x2 – x, x ∈ A rFkk g ( x) = 2 x −
− 1, x ∈ A }kjk ifjHkkf"kr iQyu gSaA D;k
2
f rFkk g leku gSa? vius mÙkj dk vkSfpR; Hkh crykb,A (laosQ r : uksV dhft, fd nks
iQyu f : A→ B rFkk g : A → B leku dgykrs gSa ;fn f (a) = g(a) ∀ a ∈ A gksA
16. ;fn A = {1, 2, 3} gks rks ,sls laca/ ftuesa vo;o (1] 2) rFkk (1] 3) gksa vkSj tks LorqY;
rFkk lefer gSa ¯drq laØked ugha gS] dh la[;k gS
(A) 1 (B) 2 (C) 3 (D) 4
17. ;fn A = {1, 2, 3} gks rks vo;o (1, 2) okys rqY;rk laca/ksa dh la[;k gSA
(A) 1 (B) 2 (C) 3 (D) 4
18. eku yhft, fd f : R → R gS rc fuEufyf[kr izdkj ls ifjHkkf"kr fpg~u iQyu (Signum
Function) gSA

 1, x > 0

f ( x ) =  0, x = 0
−1, x < 0

rFkk g : R → R] g (x) = [x], }kjk iznÙk egÙke iw.kkZad iQyu gS] tgk¡ [x]] x ls de ;k
x osQ cjkcj iw.kkZad gS] rks D;k fog rFkk gof , varjky [0, 1] esa laikrh (coincide) gSa?
19. leqPp; {a, b} esa f}vk/kjh lafØ;kvksa dh la[;k gS
(A) 10 (B) 16 (C) 20 (D) 8

lkjka'k
bl vè;k; esa] geus fofo/ izdkj osQ laca/ksa] iQyuksa rFkk f}vk/kjh lafØ;kvksa dk vè;;u fd;k
gSA bl vè;k; dh eq[; fo"k;&oLrq fuEufyf[kr gS%
® X esa] R = φ ⊂ X × X }kjk iznÙk laca/ R] fjDr laca/ gksrk gSA
® X esa] R = X × X }kjk iznÙk laca/ R] lkoZf=kd laca/ gSA
® X esa] ,slk laca/ fd ∀ a ∈ X] (a, a) ∈ R, LorqY; laca/ gSA
® X esa] bl izdkj dk laca/ R, tks izfrca/ (a, b) ∈ R dk rkRi;Z gS fd (b, a) ∈ R
dks larq"V djrk gS lefer laca/ gSA
® X esa] izfrca/ R, (a, b) ∈ R rFkk (b, c) ∈ R ⇒ (a, c) ∈ R ∀ a, b, c ∈ X dks larq"V
djus okyk laca/ R laØked laca/ gSA

2018-19
36 xf.kr

® X esa] laca/ R, tks LorqY;] lefer rFkk laØked gS] rqY;rk laca/ gSA
® X esa] fdlh rqY;rk laca/ R osQ fy, a ∈ X osQ laxr rqY;rk oxZ [a], X dk og
mileqPp; gS ftlosQ lHkh vo;o a ls lacaf/r gSaA
® ,d iQyu f : X → Y ,oSQdh (vFkok ,oSQd) iQyu gS] ;fn
f (x1) = f (x2) ⇒ x1 = x2, ∀ x1, x2 ∈ X
® ,d iQyu f : X → Y vkPNknd (vFkok vkPNknh) iQyu gS] ;fn fdlh iznÙk
y ∈ Y, ∃ x ∈ X, bl izdkj fd f (x) = y
® ,d iQyu f : X → Y ,oSQdh rFkk vkPNknd (vFkok ,oSQdh vkPNknh) iQyu
gS] ;fn f ,oSQdh rFkk vPNknd nksuksa gSA
® iQyu f : A → B rFkk g : B → C dk la;kstu] iQyu gof : A → C gS] tks gof (x)
= g(f (x)), ∀ x ∈ A }kjk iznÙk gSA

® ,d iQyu f : X → Y O;qRØe.kh; gS] ;fn ∃ g : Y → X, bl izdkj fd gof = 1X rFkk


fog = 1Y.

® ,d iQyu f : X → Y O;qRØe.kh; gS] ;fn vkSj osQoy ;fn f ,oSQdh rFkk vkPNknd gSA
® fdlh iznÙk ifjfer leqPp; X osQ fy, iQyu f : X → X ,oSQdh (rnkuqlkj
vkPNknd) gksrk gS] ;fn vkSj osQoy ;fn f vkPnNknd (rnkuqlkj ,oSQdh) gSA ;g
fdlh ifjfer leqPp; dk vfHkyk{kf.kd xq.k/eZ (Characterstic Property) gSA ;g
vifjfer leqPp; osQ fy, lR; ugha gSA
® A esa ,d f}vk/kjh lafØ;k ∗, A × A ls A rd ,d iQyu ∗ gSA
® ,d vo;o e ∈ X, f}vk/kjh lafØ;k ∗ : X × X → X, dk rRled vo;o gS] ;fn
a ∗ e = a = e ∗ a, ∀ a ∈ X

® dksbZ vo;o e ∈ X f}vk/kjh lafØ;k ∗ : X × X → X, osQ fy, O;qRØe.kh;


gksrk gS] ;fn ,d ,sls b ∈ X dk vfLrRo gS fd a ∗ b = e = b ∗ a gS tgk¡
e f}vk/kjh lafØ;k ∗ dk rRled gSA vo;o b, a dk izfrykse dgykrk gS] ftls
a–1 ls fu:fir djrs gSaA

® X dk ,d lafØ;k ∗, Øefofue; gS ;fn a ∗ b = b ∗ a, ∀ a, b ∈ X

® X esa] ,d lafØ;k ∗, lkgp;Z gS ;fn (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀ a, b, c ∈ X

2018-19
laca/ ,oa iQyu 37

,sfrgkfld i`"BHkwfe
iQyu dh ladYiuk] R. Descartes (lu~ 1596-1650 bZ-) ls izkjaHk gks dj ,d yacs
varjky esa fodflr gqbZ gSA Descartes us lu~ 1637 bZ- esa viuh ikaMqfyfi “Geometrie”
esa 'kCn ^iQyu* dk iz;ksx] T;kferh; oØksa] tSls vfrijoy; (Hyperbola)] ifjoy;
(Parabola) rFkk nh?kZoÙ` k (Ellipse), dk vè;;u djrs le;] ,d pj jkf'k x osQ /u iw.kk±d
?kkr xn osQ vFkZ esa fd;k FkkA James Gregory (lu~ 1636-1675 bZ-) us viuh o`Qfr “ Vera
Circuliet Hyperbolae Quadratura” (lu~ 1667 bZ-) esa] iQyu dks ,d ,slh jkf'k ekuk Fkk]
tks fdlh vU; jkf'k ij chth; vFkok vU; lafØ;kvksa dks mÙkjksÙkj iz;ksx djus ls izkIr gksrh
gSA ckn esa G. W. Leibnitz (1646-1716 bZ-) usa 1673 bZ- esa fyf[kr viuh ikaMqfyfi
“Methodus tangentium inversa, seu de functionibus” esa 'kCn ^iQyu* dks fdlh ,slh
jkf'k osQ vFkZ esa iz;ksx fd;k] tks fdlh oØ osQ ,d fcanq ls nwljs fcanq rd bl izdkj ifjofrZr
gksrh jgrh gS] tSls oØ ij fcanq osQ funsZ'kkad] oØ dh izo.krk] oØ dh Li'khZ rFkk vfHkyac
ifjofrZr gksrs gSaA rFkkfi viuh o`Qfr “Historia” (1714 bZ-) esa Leibnitz us iQyu dks ,d pj
ij vk/kfjr jkf'k osQ :i esa iz;ksx fd;k FkkA okD;ka'k ‘x dk iQyu’ iz;ksx esa ykus okys os
loZizFke O;fDr FksA John Bernoulli (1667-1748 bZ-) us loZizFke 1718 bZ- esa laosQru
(Notation) φx dks okD;ka'k ‘x dk iQyu’ dks izdV djus osQ fy, fd;k FkkA ijarq iQyu
dks fu:fir djus osQ fy, izrhdksa] tSls f, F, φ, ψ ... dk O;kid iz;ksx Leonhard Euler
(1707-1783 bZ-) }kjk 1734 bZ- esa viuh ikaMfq yfi “Analysis Infinitorium” osQ izFke [k.M
esa fd;k x;k FkkA ckn esa Joeph Louis Lagrange (1736-1813 bZ-) us 1793 bZ- esa viuh
ikaMfq yfi “Theorie des functions analytiques” izdkf'kr dh] ftlesa mUgksua s fo'ys"k.kkRed
(Analytic) iQyu osQ ckjs esa ifjppkZ dh Fkh rFkk laosQru f (x), F(x), φ(x) vkfn dk iz;ksx
x osQ fHkUu&fHkUu iQyuksa osQ fy, fd;k FkkA rnksijkar Lejeunne Dirichlet (1805-1859 bZ-) us
iQyu dh ifjHkk"kk nhA ftldk iz;ksx ml le; rd gksrk jgk tc rd orZeku dky esa iQyu
dh leqPp; lS¼kafrd ifjHkk"kk dk izpyu ugha gqvk] tks Georg Cantor (1845-1918 bZ)
}kjk fodflr leqPp; fl¼kar osQ ckn gqvkA orZeku dky esa izpfyr iQyu dh leqPp;
lS¼kafrd ifjHkk"kk Dirichlet }kjk iznÙk iQyu dh ifjHkk"kk dk ek=k vewrhZdj.k
(Abstraction) gSA

—v—

2018-19
38 xf.kr

vè;k; 2
izfrykse f=kdks.kferh; iQyu
(Inverse Trigonometric Functions)

vMathematics, in general, is fundamentally the science of


self-evident things— FELIX KLEIN v

2.1 Hkwfedk (Introduction)


vè;k; 1 esa] ge i<+ pqosQ gSa fd fdlh iQyu f dk izrhd
f –1 }kjk fu:fir izfrykse (Inverse) iQyu dk vfLrRo osQoy
rHkh gS ;fn f ,oSQdh rFkk vkPNknd gksA cgqr ls iQyu ,sls gSa
tks ,oSQdh] vkPNknd ;k nksuksa gh ugha gSa] blfy, ge muosQ
izfrykseksa dh ckr ugha dj ldrs gSaA d{kk XI esa] ge i<+ pqosQ gSa
fd f=kdks.kferh; iQyu vius LokHkkfod (lkekU;) izkar vkSj
ifjlj esa ,oSQdh rFkk vkPNknd ugha gksrs gSa vkSj blfy, muosQ
izfrykseksa dk vfLrRo ugha gksrk gSA bl vè;k; esa ge f=kdks.kferh;
iQyuksa osQ izkra ksa rFkk ifjljksa ij yxus okys mu izfrca/ksa (Restrictions)
dk vè;;u djsaxs] ftuls muosQ izfrykseksa dk vfLrRo lqfuf'pr
gksrk gS vkSj vkys[kksa }kjk izfrykseksa dk voyksdu djsaxsA blosQ Arya Bhatta
(476-550 A. D.)
vfrfjDr bu izfrykseksa osQ oqQN izkjafHkd xq.k/eZ (Properties) ij
Hkh fopkj djsaxsA
izfrykse f=kdks.kferh; iQyu] dyu (Calculus) esa ,d egRoiw.kZ Hkwfedk fuHkkrs gSa] D;ksafd
mudh lgk;rk ls vusd lekdy (Integrals) ifjHkkf"kr gksrs gSaA izfrykse f=kdks.kferh; iQyuksa dh
ladYiuk dk iz;ksx foKku rFkk vfHk;kaf=kdh (Engineering) esa Hkh gksrk gSA
2.2 vk/kjHkwr ladYiuk,¡ (Basic Concepts)
d{kk XI, es]a ge f=kdks.kferh; iQyuksa dk vè;;u dj pqoQs gS]a tks fuEufyf[kr izdkj ls ifjHkkf"kr gSa
sine iQyu] vFkkZr~] sin : R → [– 1, 1]
cosine iQyu] vFkkZr~] cos : R → [– 1, 1]

2018-19
izfrykse f=kdks.kferh; iQyu 39

π
tangent iQyu] vFkkZr~] tan : R – { x : x = (2n + 1) , n ∈ Z} → R
2
cotangent iQyu] vFkkZr~] cot : R – { x : x = nπ, n ∈ Z} → R
π
secant iQyu] vFkkZr~, sec : R – { x : x = (2n + 1) , n ∈ Z} → R – (– 1, 1)
2
cosecant iQyu] vFkkZr~] cosec : R – { x : x = nπ, n ∈ Z} → R – (– 1, 1)
ge vè;k; 1 esa ;g Hkh lh[k pqosQ gSa fd ;fn f : X→Y bl izdkj gS fd f (x) = y ,d
,oSQdh rFkk vkPNknd iQyu gks rks ge ,d vf}rh; iQyu g : Y→X bl izdkj ifjHkkf"kr dj
ldrs gSa fd g (y) = x, tgk¡ x ∈ X rFkk y = f (x), y ∈ Y gSA ;gk¡ g dk izkar = f dk ifjlj
vkSj g dk ifjlj = f dk izkarA iQyu g dks iQyu f dk izfrykse dgrs gSa vkSj bls f –1 }kjk
fu:fir djrs gSaA lkFk gh g Hkh ,oSQdh rFkk vkPNknd gksrk gS vkSj g dk izfrykse iQyu f gksrk
gSa vr% g –1 = (f –1)–1 = f blosQ lkFk gh
–1 –1
(f o f ) (x) = f (f (x)) = f –1(y) = x
vkSj (f o f –1) (y) = f (f –1(y)) = f (x) = y
D;ksafd sine iQyu dk izkar okLrfod la[;kvksa dk leqPp; gS rFkk bldk ifjlj lao`r varjky
−π π
[–1, 1] gSA ;fn ge blosQ izkar dks  ,  esa lhfer (izfrcaf/r) dj nsa] rks ;g ifjlj
 2 2
[– 1, 1] okyk] ,d ,oSQdh rFkk vkPNknd iQyu gks tkrk gSA okLro esa] sine iQyu] varjkyksa

 −3π − π   − π π   π 3π 
 2 , 2  ,  2 , 2  ,  2 , 2  bR;kfn esa] ls fdlh esa Hkh lhfer gksus ls] ifjlj [–1, 1]
okyk] ,d ,oSQdh rFkk vkPNknd iQyu gks tkrk gSA vr% ge buesa ls izR;sd varjky esa] sine
iQyu osQ izfrykse iQyu dks sin–1 (arc sine function) }kjk fu:fir djrs gSaA vr% sin–1 ,d
π 3π
iQyu gS] ftldk izkar [– 1, 1] gS] vkSj ftldk ifjlj  −3π , −π  ,  −π , π  ;k  , 
 2 2   2 2 2 2 
bR;kfn esa ls dksbZ Hkh varjky gks ldrk gSA bl izdkj osQ izR;sd varjky osQ laxr gesa iQyu
 −π π 
sin–1 dh ,d 'kk[kk (Branch) izkIr gksrh gSA og 'kk[kk] ftldk ifjlj  ,  gS] eq[; 'kk[kk
 2 2
(eq[; eku 'kk[kk) dgykrh gS] tc fd ifjlj osQ :i esa vU; varjkyksa ls sin–1 dh fHkUu&fHkUu
'kk[kk,¡ feyrh gSaA tc ge iQyu sin–1 dk mYys[k djrs gSa] rc ge bls izkar [–1, 1] rFkk ifjlj
 −π π   −π π 
 2 , 2  okyk iQyu le>rs gSaA bls ge sin : [–1, 1] →  2 , 2  fy[krs gSaA
–1

2018-19
40 xf.kr

izfrykse iQyu dh ifjHkk"kk }kjk] ;g fu"d"kZ fudyrk gS fd sin (sin–1 x) = x , ;fn


π π
– 1 ≤ x ≤1 rFkk sin–1 (sin x) = x ;fn − ≤ x ≤ gSA nwljs 'kCnksa esa] ;fn y = sin–1 x gks rks
2 2
sin y = x gksrk gSA
fVIi.kh
(i) gesa vè;k; 1 ls Kkr gS fd] ;fn y = f (x) ,d O;qRØe.kh; iQyu gS] rks x = f –1 (y) gksrk
gSA vr% ewy iQyu sin osQ vkys[k esa x rFkk y v{kksa dk ijLij fofue; djosQ iQyu
sin–1 dk vkys[k izkIr fd;k tk ldrk gSA vFkkZr~] ;fn (a, b), sin iQyu osQ vkys[k dk
,d fcanq gS] rks (b, a), sin iQyu osQ izfrykse iQyu dk laxr fcanq gksrk gSA vr% iQyu

vko`Qfr 2-1 (i)

vko`Qfr 2-1 (ii) vko`Qfr 2-1 (iii)

2018-19
izfrykse f=kdks.kferh; iQyu 41

y = sin–1 x dk vkys[k] iQyu y = sin x osQ vkys[k esa x rFkk y v{kksa osQ ijLij fofue;
djosQ izkIr fd;k tk ldrk gSA iQyu y = sin x rFkk iQyu y = sin–1 x osQ vkys[kksa dks
vko`Qfr 2.1 (i), (ii), esa n'kkZ;k x;k gSA iQyu y = sin–1 x osQ vkys[k esa xgjk fpfÉr Hkkx
eq[; 'kk[kk dks fu:fir djrk gSA
(ii) ;g fn[kyk;k tk ldrk gS fd izfrykse iQyu dk vkys[k] js[kk y = x osQ ifjr% (Along)]
laxr ewy iQyu osQ vkys[k dks niZ.k izfrfcac (Mirror Image)] vFkkZr~ ijkorZu
(Reflection) osQ :i esa izkIr fd;k tk ldrk gSA bl ckr dh dYiuk] y = sin x rFkk
y = sin–1 x osQ mUgha v{kksa (Same axes) ij] izLrqr vkys[kksa ls dh tk ldrh gS
(vko`Qfr 2.1 (iii))A
sine iQyu osQ leku cosine iQyu Hkh ,d ,slk iQyu gS ftldk izkar okLrfod la[;kvksa
dk leqPp; gS vkSj ftldk ifjlj leqPp; [–1, 1] gSA ;fn ge cosine iQyu osQ izkar dks varjky
[0, π] esa lhfer dj nsa rks ;g ifjlj [–1, 1] okyk ,d ,oSQdh rFkk vkPNknd iQyu gks tkrk
gSA oLrqr%] cosine iQyu] varjkyksa [– π, 0], [0,π], [π, 2π] bR;kfn esa ls fdlh esa Hkh lhfer
gksus ls] ifjlj [–1, 1] okyk ,d ,oSQdh vkPNknh (Bijective) iQyu gks tkrk gSA vr% ge bu
esa ls izR;sd varjky esa cosine iQyu osQ izfrykse dks ifjHkkf"kr dj ldrs gSaA ge cosine iQyu
osQ izfrykse iQyu dks cos–1 (arc cosine function) }kjk fu:fir djrs
gSaA vr% cos–1 ,d iQyu gS ftldk izkar [–1, 1] gS vkSj ifjlj [–π, 0],
[0, π], [π, 2π] bR;kfn esa ls dksbZ Hkh varjky gks ldrk gSA bl izdkj
osQ izR;sd varjky osQ laxr gesa iQyu cos–1 dh ,d 'kk[kk izkIr gksrh
gSA og 'kk[kk] ftldk ifjlj [0, π] gS] eq[; 'kk[kk (eq[; eku 'kk[kk)
dgykrh gS vkSj ge fy[krs gSa fd
cos–1 : [–1, 1] → [0, π]
y = cos–1 x }kjk iznÙk iQyu dk vkys[k mlh izdkj [khapk tk ldrk
gS tSlk fd y = sin–1 x osQ vkyss[k osQ ckjs esa o.kZu fd;k tk pqdk gSA
y = cos x rFkk y = cos–1 x osQ vkys[kksa dks vko`Qfr;ksa 2.2 (i) rFkk (ii)
esa fn[kyk;k x;k gSA

vko`Qfr 2-2 (i) vko`Qfr 2-2 (ii)

2018-19
42 xf.kr

vkb, vc ge cosec–1x rFkk sec–1x ij fopkj djsaA


1
D;ksafd cosec x = , blfy, cosec iQyu dk izkar leqPp; {x : x ∈ R vkSj x ≠ nπ,
sin x
n ∈ Z} gS rFkk ifjlj leqPp; {y : y ∈ R, y ≥ 1 vFkok y ≤ –1}, vFkkZr~] leqPp;
R – (–1, 1) gSA bldk vFkZ gS fd y = cosec x, –1 < y < 1 dks NksM+ dj vU; lHkh okLrfod
ekuksa dks xzg.k djrk gS rFkk ;g π osQ iw.kk±d (Integral) xq.ktksa osQ fy, ifjHkkf"kr ugha gSA ;fn
 π π
ge cosec iQyu osQ izkar dks varjky  − 2 , 2  – {0}, esa lhfer dj nsa] rks ;g ,d ,oSQdh rFkk
 
vkPNknd iQyu gksrk gS] ftldk ifjlj leqPp; R – (– 1, 1). gksrk gSA oLrqr% cosec iQyu]
 −3π −π   −π π   π 3π 
varjkyksa  2 , 2  − {−π} ,  2 , 2  – {0},  2 , 2  − {π} bR;kfn esa ls fdlh esa Hkh
     
lhfer gksus ls ,oSQdh vkPNknh gksrk gS vkSj bldk ifjlj leqPp; R – (–1, 1) gksrk gSA bl izdkj
cosec–1 ,d ,sls iQyu osQ :i esa ifjHkkf"kr gks ldrk gS ftldk izkar R – (–1, 1) gS vkSj ifjlj
−π π
  −3π −π   π 3π 
varjkyksa  2 , 2  − {0} ,  2 , 2  − {−π} ,  ,  − {π} bR;kfn esa ls dksbZ Hkh ,d gks
   2 2 
−π π
ldrk gSA ifjlj  ,  − {0} osQ laxr iQyu dks cosec–1 dh eq[; 'kk[kk dgrs gSaA bl izdkj
 2 2
eq[; 'kk[kk fuEufyf[kr rjg ls O;Dr gksrh gS%

vko`Qfr 2-3 (i) vko`Qfr 2-3 (ii)

2018-19
izfrykse f=kdks.kferh; iQyu 43

 −π π 
cosec–1 : R – (–1, 1) →  ,  − {0}
 2 2
y = cosec x rFkk y = cosec–1 x osQ vkys[kksa dks vko`Qfr 2-3 (i), (ii) esa fn[kyk;k x;k gSA

1 π
blh rjg] sec x = , y = sec x dk izkar leqPp; R – {x : x = (2n + 1) , n ∈ Z}
cos x 2
gS rFkk ifjlj leq P p; R – (–1, 1) gS A bldk vFkZ gS fd sec (secant) iQyu
–1 < y < 1 dks NksM+dj vU; lHkh okLrfod ekuksa dks xzg.k (Assumes) djrk gS vkSj ;g

π
osQ fo"ke xq.ktksa osQ fy, ifjHkkf"kr ugha gSA ;fn ge secant iQyu osQ izkar dks varjky
2
π
[0, π] – { }, esa lhfer dj nsa rks ;g ,d ,oSQdh rFkk vkPNknd iQyu gksrk gS ftldk ifjlj
2
−π π
leqPp; R – (–1, 1) gksrk gSA okLro esa secant iQyu varjkyksa [–π, 0] – { }, [0, π] –   ,
2 2 

[π, 2π] – { } bR;kfn esa ls fdlh esa Hkh lhfer gksus ls ,oSQdh vkPNknh gksrk gS vkSj bldk
2
ifjlj R– (–1, 1) gksrk gSA vr% sec–1 ,d ,sls iQyu osQ :i esa ifjHkkf"kr gks ldrk gS
−π π
ftldk izkar (–1, 1) gks vkSj ftldk ifjlj varjkyksa [– π, 0] – { }, [0, π] – { },
2 2

[π, 2π] – { } bR;kfn esa ls dksbZ Hkh gks ldrk gSA buesa ls izR;sd varjky osQ laxr gesa iQyu
2
π
sec–1 dh fHkUu&fHkUu 'kk[kk,¡ izkIr gksrh gSaA og 'kk[kk ftldk ifjlj [0, π] – { } gksrk gS]
2
iQyu sec dh eq[; 'kk[kk dgykrh gSA bldks ge fuEufyf[kr izdkj ls O;Dr djrs gSa%
–1

π
sec–1 : R – (–1,1) → [0, π] – { }
2
y = sec x rFkk y = sec–1 x osQ vkys[kksa dks vko`Qfr;ksa 2.4 (i), (ii) esa fn[kyk;k x;k gSA var
esa] vc ge tan–1 rFkk cot–1 ij fopkj djsaxsA
ges a Kkr gS fd] tan iQyu (tangent iQyu ) dk iz k a r leq P p; {x : x ∈ R rFkk
π π
x ≠ (2n +1) , n ∈ Z} gS rFkk ifjlj R gSA bldk vFkZ gS fd tan iQyu osQ fo"ke xq.ktksa
2 2

2018-19
44 xf.kr

vko`Qfr 2-4 (i) vko`Qfr 2-4 (ii)

−π π
osQ fy, ifjHkkf"kr ugha gSA ;fn ge tangent iQyu osQ izkar dks varjky  ,  esa lhfer dj
 2 2
nsa] rks ;g ,d ,oSQdh rFkk vkPNknd iQyu gks tkrk gS ftldk ifjlj leqPp; R gksrk gSA okLro
 −3π −π   −π π   π 3 π 
esa] tangent iQyu] varjkyksa  ,  ,  , ,  ,  bR;kfn esa ls fdlh esa Hkh
 2 2   2 2 2 2 
lhfer gksus ls ,oSQdh vkPNknh gksrk gS vkSj bldk ifjlj leqPp; R gksrk gSA vr,o tan–1 ,d
−3π −π 

,sls iQyu osQ :i esa ifjHkkf"kr gks ldrk gS] ftldk iazkr R gks vkSj ifjlj varjkyksa  2 , 2
,
 

 −π π   π 3π 
 ,  ,  ,  bR;kfn esa ls dksbZ Hkh gks ldrk gSA bu varjkyksa }kjk iQyu tan–1 dh
 2 2 2 2 
 −π π

fHkUu&fHkUu 'kk[kk,¡ feyrh gSaA og 'kk[kk] ftldk ifjlj  2 , 2  gksrk gS] iQyu tan–1 dh
 
eq[; 'kk[kk dgykrh gSA bl izdkj
 −π π 
tan–1 : R →  , 
 2 2

2018-19
izfrykse f=kdks.kferh; iQyu 45

vko`Qfr 2-5 (i) vko`Qfr 2-5 (ii)


y = tan x rFkk y = tan–1x osQ vkys[kksa dks vko`Qfr;ksa 2.5 (i), (ii) esa fn[kyk;k x;k gSA
gesa Kkr gS fd cot iQyu (cotangent iQyu) dk izkar leqPp; {x : x ∈ R rFkk x ≠ nπ,
n ∈ Z} gS rFkk ifjlj leqPp; R gSA bldk vFkZ gS fd cotangent iQyu] π osQ iw.kk±dh; xq.ktksa

vko`Qfr 2-6 (i) vko`Qfr 2-6 (ii)

2018-19
46 xf.kr

osQ fy, ifjHkkf"kr ugha gSA ;fn ge cotangent iQyu osQ izkar dks varjky (0, π) esa lhfer dj
nsa rks ;g ifjlj R okyk ,d ,oSQdh vkPNknh iQyu gksrk gSA oLrqr% cotangent iQyu varjkyksa
(–π, 0), (0, π), (π, 2π) bR;kfn esa ls fdlh esa Hkh lhfer gksus ls ,oSQdh vkPNknh gksrk gS vkSj
bldk ifjlj leqPp; R gksrk gSA okLro esa cot –1 ,d ,sls iQyu osQ :i esa ifjHkkf"kr gks ldrk
gS] ftldk izkar R gks vkSj ifjlj] varjkyksa (–π, 0), (0, π), (π, 2π) bR;kfn esa ls dksbZ Hkh gksA bu
varjkyksa ls iQyu cot –1 dh fHkUu&fHkUu 'kk[kk,¡ izkIr gksrh gSaA og 'kk[kk] ftldk ifjlj (0, π)
gksrk gS] iQyu cot –1 dh eq[; 'kk[kk dgykrh gSA bl izdkj
cot–1 : R → (0, π)
y = cot x rFkk y = cot–1x osQ vkys[kksa dks vko`Qfr;ksa 2.6 (i), (ii) esa iznf'kZr fd;k x;k gSA
fuEufyf[kr lkj.kh esa izfrykse f=kdks.kferh; iQyuksa (eq[; ekuh; 'kk[kkvksa) dks muosQ izkarksa
rFkk ifjljksa osQ lkFk izLrqr fd;k x;k gSA

 π π
sin–1 →  − 2 , 2 
:
[–1, 1]

cos –1 : [–1, 1] → [0, π]

 π π
cosec–1 : R – (–1,1) →  − 2 , 2  – {0}

π
sec –1 : R – (–1, 1) → [0, π] – { }
2
 −π π 
tan–1 : R →  , 
 2 2
cot–1 : R → (0, π)

AfVIi.kh
1
1. sin–1x ls (sin x)–1 dh Hkzkafr ugha gksuh pkfg,A okLro esa (sin x)–1 = vkSj ;g rF;
sin x
vU; f=kdks.kferh; iQyuksa osQ fy, Hkh lR; gksrk gSA
2. tc dHkh izfrykse f=kdks.kferh; iQyuksa dh fdlh 'kk[kk fo'ks"k dk mYys[k u gks] rks gekjk
rkRi;Z ml iQyu dh eq[; 'kk[kk ls gksrk gSA
3. fdlh izfrykse f=kdks.kferh; iQyu dk og eku] tks mldh eq[; 'kk[kk esa fLFkr gksrk gS]
izfrykse f=kdks.kferh; iQyu dk eq[; eku (Principal value) dgykrk gSA

2018-19
izfrykse f=kdks.kferh; iQyu 47

vc ge oqQN mnkgj.kksa ij fopkj djsaxs%


 1 
mnkgj.k 1 sin–1  2  dk eq[; eku Kkr dhft,A
 

 1  1
gy eku yhft, fd sin–1   = y. vr% sin y = .
 2 2

 –π π
 π 1
gesa Kkr gS fd sin–1 dh eq[; 'kk[kk dk ifjlj  2 , 2  gksrk gS vkSj sin   = gSA
4 2

 1  π
blfy, sin–1   dk eq[; eku gSA
 2 4

 −1 
mnkgj.k 2 cot–1   dk eq[; eku Kkr dhft,A
 3

 −1 
gy eku yhft, fd cot–1   = y . vr,o
 3

−1  π  π  2π 
cot y = = − cot   = cot  π −  = cot   gSA
3 3  3  3 

 2π  −1
gesa Kkr gS fd cot–1 dh eq[; 'kk[kk dk ifjlj (0, π) gksrk gS vkSj cot  = gSA vr%
 3  3

 −1  2π
cot–1   dk eq[; eku gSA
 3 3

iz'ukoyh 2-1
fuEufyf[kr osQ eq[; ekuksa dks Kkr dhft,%

 1  3
1. sin–1  −  2. cos–1  2  3. cosec–1 (2)
 2  

 1
4. tan–1 (− 3) 5. cos–1  −  6. tan–1 (–1)
 2

2018-19
48 xf.kr

 2   1 
7. sec–1   8. cot–1 ( 3) 9. cos–1  − 
 3  2
10. cosec–1 ( − 2 )
fuEufyf[kr osQ eku Kkr dhft,%
 1  1  1  1
11. tan–1(1) + cos–1  −  + sin–1  −  12. cos–1   + 2 sin–1  
 2  2  2  2
13. ;fn sin–1 x = y, rks
π π
(A) 0 ≤ y ≤ π (B) − ≤ y≤
2 2
π π
(C) 0 < y < π (D) − < y<
2 2
14. tan–1 3 − sec −1 ( − 2 ) dk eku cjkcj gS

π π 2π
(A) π (B) − (C) (D)
3 3 3
2.3 izfrykse f=kdks.kferh; iQyuksa osQ xq.k/eZ (Properties of Inverse Trigonometric
Functions)
bl vuqPNsn esa ge izfrykse f=kdks.kferh; iQyuksa osQ oqQN xq.k/eks± dks fl¼ djsaxsA ;gk¡ ;g mYys[k
dj nsuk pkfg, fd ;s ifj.kke] laxr izfrykse f=kdks.kferh; iQyuksa dh eq[; 'kk[kkvksa osQ varxZr
gh oS/ (Valid) gS] tgk¡ dgha os ifjHkkf"kr gSaA oqQN ifj.kke] izfrykse f=kdks.kferh; iQyuksa osQ izkarksa
osQ lHkh ekuksa osQ fy, oS/ ugha Hkh gks ldrs gSaA oLrqr% ;s mu oqQN ekuksa osQ fy, gh oS/ gksaxs]
ftuosQ fy, izfrykse f=kdks.kferh; iQyu ifjHkkf"kr gksrs gSaA ge izkar osQ bu ekuksa osQ foLr`r fooj.k
(Details) ij fopkj ugha djsaxs D;ksafd ,slh ifjppkZ (Discussion) bl ikB~; iqLrd osQ {ks=k ls
ijs gSA
Lej.k dhft, fd] ;fn y = sin–1x gks rks x = sin y rFkk ;fn x = sin y gks rks y = sin–1x
gksrk gSA ;g bl ckr osQ lerqY; (Equivalent) gS fd
 π π
sin (sin–1 x) = x, x ∈ [– 1, 1] rFkk sin–1 (sin x) = x, x ∈  − , 
 2 2
vU; ik¡p izfrykse f=kdks.kferh; iQyuksa osQ fy, Hkh ;gh lR; gksrk gSA vc ge izfrykse
f=kdks.kferh; iQyuksa osQ oqQN xq.k/eks± dks fl¼ djsaxsA

2018-19
izfrykse f=kdks.kferh; iQyu 49

1
1. (i) sin–1 = cosec–1 x, x ≥ 1 ;k x≤–1
x
1
(ii) cos–1 = sec–1x, x ≥ 1 ;k x ≤ – 1
x

1
(iii) tan–1 = cot–1 x, x > 0
x
igys ifj.kke dks fl¼ djus osQ fy, ge cosec–1 x = y eku ysrs gSa] vFkkZr~
x = cosec y
1
vr,o = sin y
x
1
vr% sin–1 =y
x
1
;k sin–1 = cosec–1 x
x
blh izdkj ge 'ks"k nks Hkkxksa dks fl¼ dj ldrs gSaA
2. (i) sin–1 (–x) = – sin–1 x, x ∈ [– 1, 1]
(ii) tan–1 (–x) = – tan–1 x, x ∈ R
(iii) cosec–1 (–x) = – cosec–1 x, | x | ≥ 1
eku yhft, fd sin–1 (–x) = y, vFkkZr~ –x = sin y blfy, x = – sin y, vFkkZr~
x = sin (–y).
vr% sin–1 x = – y = – sin–1 (–x)
bl izdkj sin–1 (–x) = – sin–1x
blh izdkj ge 'ks"k nks Hkkxksa dks fl¼ dj ldrs gSaA
3. (i) cos–1 (–x) = π – cos–1 x, x ∈ [– 1, 1]
(ii) sec–1 (–x) = π – sec–1 x, | x | ≥ 1
(iii) cot–1 (–x) = π – cot–1 x, x ∈ R
eku yhft, fd cos–1 (–x) = y vFkkZr~ – x = cos y blfy, x = – cos y = cos (π – y)
vr,o cos–1 x = π – y = π – cos–1 (–x)
vr% cos–1 (–x) = π – cos–1 x
blh izdkj ge vU; Hkkxksa dks Hkh fl¼ dj ldrs gSaA

2018-19
50 xf.kr

π
4. (i) sin–1 x + cos–1 x = , x ∈ [– 1, 1]
2
π
(ii) tan–1 x + cot–1 x = ,x∈R
2
π
(iii) cosec–1 x + sec–1 x = , |x| ≥ 1
2
π 
eku yhft, fd sin–1 x = y, rks x = sin y = cos  2 − y 
 
π π
blfy, cos–1 x = −y = − sin –1 x
2 2
π
vr% sin–1 x + cos–1 x =
2
blh izdkj ge vU; Hkkxksa dks Hkh fl¼ dj ldrs gSaA
x+ y
5. (i) tan–1x + tan–1 y = tan–1 , xy < 1
1 – xy
x– y
(ii) tan–1x – tan–1 y = tan–1 , xy > – 1
1 + xy

 x+ y 
(iii) tan–1x + tan–1 y = π + tan–1   , x y > 1, x > 0, y > 0
 1 – xy 
eku yhft, fd tan–1 x = θ rFkk tan–1 y = φ rks x = tan θ rFkk y = tan φ
tan θ + tan φ x+ y
vc tan(θ + φ) = =
1 − tan θ tan φ 1 − xy

x+ y
vr% θ + φ = tan–1 1− xy

x+ y
vr% tan–1 x + tan–1 y = tan–1
1− xy
mi;qZDr ifj.kke esa ;fn y dks – y }kjk izfrLFkkfir (Replace) djsa rks gesa nwljk ifj.kke izkIr
gksrk gS vkSj y dks x }kjk izfrLFkkfir djus ls rhljk ifj.kke izkIr gksrk gSA

2018-19
izfrykse f=kdks.kferh; iQyu 51

2x
6. (i) 2tan–1 x = sin–1 , |x| ≤ 1
1 + x2

1 – x2
(ii) 2tan–1 x = cos–1 ,x≥ 0
1 + x2

2x
(iii) 2tan–1 x = tan–1 ,–1< x<1
1 – x2
eku yhft, fd tan–1 x = y, rks x = tan y
2x 2 tan y
vc sin–1 2 = sin
–1
1 + tan 2 y
1+ x
= sin–1 (sin 2 y) = 2 y = 2 tan–1 x

1 − x2 1− tan 2 y
blh izdkj cos –1
= cos –1
1 + tan 2 y
= cos–1 (cos 2y) = 2y = 2tan–1 x
1 + x2
vc ge oqQN mnkgj.kksa ij fopkj djsaxsA
mnkgj.k 3 n'kkZb, fd
1 1
(i) sin–1 ( 2 x 1 − x 2 ) = 2 sin–1 x, − ≤ x≤
2 2

1
(ii) sin–1 ( 2 x 1 − x 2 ) = 2 cos–1 x, ≤ x ≤1
2
gy
(i) eku yhft, fd x = sin θ rks sin–1 x = θ bl izdkj

(
sin–1 ( 2 x 1 − x 2 ) = sin–1 2sin θ 1 − sin 2 θ )
= sin–1 (2sinθ cosθ) = sin–1 (sin2θ) = 2θ
= 2 sin–1 x
(ii) eku yhft, fd x = cos θ rks mi;qZDr fof/ osQ iz;ksx }kjk gesa
sin–1 ( 2 x 1 − x 2 ) = 2 cos–1 x izkIr gksrk gSA
1 2 3
mnkgj.k 4 fl¼ dhft, fd tan–1 + tan –1 = tan –1
2 11 4

2018-19
52 xf.kr

gy xq.k/eZ 5 (i), }kjk


1 2
+
1 –1 2 –1 2 11 15 −1 3
ck;k¡ i{k = tan + tan = tan −1 = nk;k¡ i{k
–1
= tan = tan
2 11 1 2 20 4
1− ×
2 11

cos x −3π π
mnkgj.k 5 tan −1 , − < x < dks ljyre :i esa O;Dr dhft,A
1 − sin x 2 2
gy ge fy[k ldrs gSa fd

 x x 
 cos2 − sin 2 
 cos x  2 2
tan −1   = tan 
–1

 1 − sin x  x x x
 cos2 + sin 2 − 2sin cos
x

 2 2 2 2 

 x x  x x 
  cos 2 + sin 2  cos 2 − sin 2  
–1   
= tan 
  x x2 
  cos − sin  
 2 2

 x x  x
 cos + sin   1 + tan 
–1 2 2 = tan –1 2
= tan 
x x  x
 cos − sin  1 − tan 
 2 2  2

–1   π x  π x
= tan  tan  +   = +
  4 2  4 2
fodYir%

 π     π − 2x  
 sin  − x    sin   
 cos x   2   = tan –1   2  
tan –1   = tan –1

 1 − sin x  1 − cos  π − x   1 − cos  π − 2 x  
     
2   2  

2018-19
izfrykse f=kdks.kferh; iQyu 53

  π − 2x   π − 2x  
 2sin  4  cos  4  
   
= tan 
–1

  π − 2x  
2sin 2  
  4  

–1   π − 2 x   = tan –1 tan π − π − 2 x
= tan  cot  
  4  2 4

–1   π x  π x
= tan  tan  +   = +
  4 2  4 2

 
1
mnkgj.k 6 cot –1   , x > 1 dks ljyre :i esa fyf[k,A
 x −1 
2

gy eku yhft, fd x = sec θ, then x 2 − 1 = sec 2 θ − 1 = tan θ

1
blfy, cot –1 = cot–1 (cot θ) = θ = sec–1 x tks vHkh"V ljyre :i gSA
x −1
2

–1 2x  3 x − x3  1
mnkgj.k 7 fl¼ dhft, fd tan x + tan –1
= tan–1  2 , | x|<
1 − x2  1 − 3 x  3

gy eku yhft, fd x = tan θ. rks θ = tan–1 x gSA vc

3x − x3 3 tan θ − tan 3 θ
nk;k¡ i{k = tan –1 = tan –1
1 − 3x2 1 − 3 tan 2 θ

= tan–1 (tan3θ) = 3θ = 3tan–1 x = tan–1 x + 2 tan–1 x


2x
= tan–1 x + tan–1 = ck;k¡ i{k (D;ksa?)
1 − x2
mnkgj.k 8 cos (sec–1 x + cosec–1 x), | x | ≥ 1 dk eku Kkr dhft,A
 π
gy ;gk¡ ij cos (sec–1 x + cosec–1 x) = cos   = 0
2

2018-19
54 xf.kr

iz'ukoyh 2-2

fuEufyf[kr dks fl¼ dhft,%


 1 1
1. 3sin–1 x = sin–1 (3x – 4x3), x ∈  – , 
 2 2

1 
2. 3cos–1 x = cos–1 (4x3 – 3x), x ∈  , 1
2 

2 7 1
3. tan –1 + tan −1 = tan −1
11 24 2
1 1 31
4. 2 tan −1 + tan −1 = tan −1
2 7 17
fuEufyf[kr iQyuksa dks ljyre :i esa fyf[k,%

1 + x2 − 1 1
5. tan −1 ,x≠0 6. tan −1 , |x| > 1
x x2 − 1

 1 − cos x   cos x − sin x  −π 3π


7. tan −1   , 0 < x < π 8. tan −1  , 4 <x < 4
 1 + cos x   cos x + sin x 

x
9. tan −1 , |x| < a
a2 − x2

 3a 2 x − x 3  −a a
10. tan −1  3  , a > 0; < x<
 a − 3ax 
2 3 3

fuEufyf[kr esa ls izR;sd dk eku Kkr dhft,%

µ1   µ1 1  
11. tan  2 cos  2 sin 
2  
12. cot (tan–1a + cot–1a)

1 2x –1 1 − y 
2

13. tan  sin –1 + cos  , | x | < 1, y > 0 rFkk xy < 1


2 1 + x2 1+ y2 

2018-19
izfrykse f=kdks.kferh; iQyu 55

 µ1 1 
14. ;fn sin  sin + cosµ1 x = 1, rks x dk eku Kkr dhft,A
5 

x −1 x +1 π
15. ;fn tan
–1
+ tan –1 = , rks x dk eku Kkr dhft,A
x−2 x+2 4
iz'u la[;k 16 ls 18 esa fn, izR;sd O;atd dk eku Kkr dhft,%
–1  2π   3π 
16. sin  sin  17. tan –1  tan 
 3   4 

 3 3
18. tan  sin –1 + cot –1 
 5 2

−1  7π 
19. cos  cos  dk eku cjkcj gS
6
7π 5π π π
(A) (B) (C) (D)
6 6 3 6
π 1 
20. sin  − sin −1 ( − )  dk eku gS
3 2 
1 1 1
(A) gS (B) gS (C) gS (D) 1
2 3 4
21. tan −1 3 − cot −1 ( − 3) dk eku
π
(A) πgS (B) − gS (C) 0 gS (D) 2 3
2

fofo/ mnkgj.k

mnkgj.k 9 sin −1 (sin ) dk eku Kkr dhft,A
5
3π 3π
gy gesa Kkr gS fd sin −1 (sin x) = x gksrk gSA blfy, sin −1 (sin )=
5 5
3π  π π 
fdarq ∉ − , , tks sin–1 x dh eq[; 'kk[kk gSA
5  2 2 

2018-19
56 xf.kr

3π 3π 2π 2π  π π 
rFkkfi sin ( ) = sin( π − ) = sin rFkk ∈ − ,
5 5 5 5  2 2 
3π −1 2π 2π
vr% sin −1 (sin ) = sin (sin ) =
5 5 5
3 8 84
mnkgj.k 10 n'kkZb, fd sin −1 − sin −1 = cos −1
5 17 85
3
gy eku yhft, fd sin −1 = x vkSj sin −1 8 = y
5 17
3 8
blfy, sin x = rFkk sin y =
5 17
9 4
vc cos x = 1 − sin 2 x = 1 − = (D;ksa?)
25 5

64 15
vkSj cos y = 1 − sin 2 y = 1 − =
289 17
bl izdkj cos (x – y) = cos x cos y + sin x sin y
4 15 3 8 84
= × + × =
5 17 5 17 85

−1  84 
blfy, x – y = cos  
85

3 8 −1 84
vr% sin −1 − sin −1 = cos
5 17 85
12 4 63
mnkgj.k 11 n'kkZb, fd sin −1 + cos −1 + tan −1 =π
13 5 16
12 4 63
gy eku yhft, fd sin −1 = x, cos −1 = y, tan −1 =z
13 5 16
12 4 63
bl izdkj sin x = , cos y = , tan z =
13 5 16
5 3 12 3
blfy, cos x = , sin y = , tan x = vkSj tan y =
13 5 5 4

2018-19
izfrykse f=kdks.kferh; iQyu 57

12 3
+
tan x + tan y = 5 4 = − 63
vc tan( x + y ) =
1 − tan x tan y 1 − 12 × 3 16
5 4

vr% tan( x + y ) = − tan z


vFkkZr~ tan (x + y) = tan (–z) ;k tan (x + y) = tan (π – z)
blfy, x + y = – z or x + y = π – z
D;ksafd x, y rFkk z /ukRed gSa] blfy, x + y ≠ – z (D;ksa?)

12 4 63
vr% x + y + z = π ;k sin
–1
+ cos –1 + tan –1 =π
13 5 16

 a cos x − b sin x  a
mnkgj.k 12 tan –1   dks ljy dhft,] ;fn b tan x > –1
 b cos x + a sin x 
gy ;gk¡
 a cos x − b sin x   a 
  − tan x 
–1  a cos x − b sin x  b
–1 cos x –1  b
tan   = tan  b cos x + a sin x  = tan  a 
 b cos x + a sin x    1 + tan x 
 b cos x   b 

a a
= tan
–1
− tan –1 (tan x) = tan –1 − x
b b
π
mnkgj.k 13 tan–1 2x + tan–1 3x = dks ljy dhft,A
4
π
gy ;gk¡ fn;k x;k gS fd tan–1 2x + tan–1 3x =
4

 2 x + 3x  π
;k tan –1   =
 1 − 2 x × 3x  4

 5x  π
;k tan –1  2  =
 1 − 6x  4

2018-19
58 xf.kr

5x π
blfy, 2 = tan =1
1 − 6x 4
;k 6x2 + 5x – 1 = 0 vFkkZr~ (6x – 1) (x + 1) = 0
1
ftlls izkIr gksrk gS fd] x= ;k x = – 1
6
D;ksafd x = – 1, iznÙk lehdj.k dks larq"V ugha djrk gS] D;ksafd x = – 1 ls lehdj.k dk
1
ck;k¡ i{k ½.k gks tkrk gSA vr% iznÙk lehdj.k dk gy osQoy x = gSA
6

vè;k; 2 ij fofo/ iz'ukoyh


fuEufyf[kr osQ eku Kkr dhft,%
–1  13π   7π 
1. cos  cos  2. tan –1  tan 
 6   6 
fl¼ dhft,
3 24 8 3 77
3. 2sin –1 = tan –1 4. sin
–1
+ sin –1 = tan –1
5 7 17 5 36

–1 4 12 33 12 3 56
5. cos + cos –1 = cos –1 6. cos
–1
+ sin –1 = sin –1
5 13 65 13 5 65
63 5 3
7. tan –1 = sin –1 + cos –1
16 13 5
1 1 1 1 π
8. tan –1 + tan −1 + tan −1 + tan −1 =
5 7 3 8 4
fl¼ dhft,%
1 1− x
tan µ1 x = cosµ1 
9.
2  1 + x  , x ∈ [0, 1]

µ1
 1 + sin x + 1 − sin x  x  π
10. cot   = 2 , x ∈  0, 
 1 + sin x − 1 − sin x   4

 1+ x − 1− x  π 1 1
11. tan µ1  µ1
 = 4 − 2 cos x , − ≤ x ≤ 1 [laoQs r: x = cos 2θ jf[k,]
 1+ x + 1− x  2

2018-19
izfrykse f=kdks.kferh; iQyu 59

9π 9 1 9 2 2
12. − sin −1 = sin −1
8 4 3 4 3

fuEufyf[kr lehdj.kksa dks ljy dhft,%


1− x 1
13. 2tan–1 (cos x) = tan–1 (2 cosec x) 14. tan –1 = tan –1 x,( x > 0)
1+ x 2
15. sin (tan–1 x), | x | < 1 cjkcj gksrk gS%
x 1 1 x
(A) (B) (C) (D)
1 − x2 1 − x2 1 + x2 1 + x2
π
16. ;fn sin–1 (1 – x) – 2 sin–1 x = , rks x dk eku cjkcj gS%
2
1 1 1
(A) 0, (B) 1, (C) 0 (D)
2 2 2
x x− y
17. tan −1   − tan −1 dk eku gS%
y x+ y

π π π −3π
(A) gSA (B) gSA (C) gSA (D)
2 3 4 4

lkjka'k
® izfrykse f=kdks.kferh; iQyuksa (eq[; 'kk[kk) osQ izkar rFkk ifjlj fuEufyf[kr lkj.kh esa
of.kZr gSa%
iQyu izkra ifjlj
(eq[; 'kk[kk)
 −π π 
y = sin–1 x [–1, 1]  2 , 2 
y = cos–1 x [–1, 1] [0, π]
 −π π 
y = cosec–1 x R – (–1,1)  2 , 2  – {0}

π
y = sec–1 x R – (–1, 1) [0, π] – { }
2

2018-19
60 xf.kr

 π π
y = tan–1 x R − , 
 2 2
y = cot–1 x R (0, π)
1
® sin–1x ls (sin x)–1 dh HkzkfUr ugha gksuh pkfg,A okLro esa (sin x)–1 = vkSj blh
sin x
izdkj ;g rF; vU; f=kdks.kferh; iQyuksa osQ fy, lR; gksrk gSA
® fdlh izfrykse f=kdks.kferh; iQyu dk og eku] tks mldh eq[; 'kk[kk esa fLFkr gksrk
gS] izfrykse f=kdks.kferh; iQyu dk eq[; eku (Principal Value) dgykrk gSA
mi;qDr izkarksa osQ fy,
® y = sin–1 x ⇒ x = sin y ® x = sin y ⇒ y = sin–1 x
® sin (sin–1 x) = x ® sin–1 (sin x) = x
1
® sin–1 = cosec–1 x ® cos–1 (–x) = π – cos–1 x
x
1
® cos–1 = sec–1x ® cot–1 (–x) = π – cot–1 x
x
1
® tan–1 = cot–1 x ® sec–1 (–x) = π – sec–1 x
x

® sin–1 (–x) = – sin–1 x ® tan–1 (–x) = – tan–1 x

π
® tan–1 x + cot–1 x = ® cosec–1 (–x) = – cosec–1 x
2
π π
® sin–1 x + cos–1 x = ® cosec–1 x + sec–1 x =
2 2
x+ y 2x
® tan–1x + tan–1y = tan–1 , xy < 1 ® 2tan–1x = tan–1 |x | < 1
1 − xy 1 − x2
x+ y
® tan–1x + tan–1y = π + tan–1 , xy > 1, x > 0, y > 0
1 − xy
x− y
® tan–1x – tan–1y = tan–1 , xy > –1
1 + xy
2x 1 − x2
® 2tan–1 x = sin–1 = cos–1
,0≤x≤1
1 + x2 1 + x2

2018-19
izfrykse f=kdks.kferh; iQyu 61

,sfrgkfld i`"BHkwfe
,slk fo'okl fd;k tkrk gS fd f=kdks.kferh dk vè;;u loZizFke Hkkjr esa vkjaHk gqvk
FkkA vk;ZHkV ð (476 bZ-)] czãxqIr (598 bZ-) HkkLdj izFke (600 bZ-) rFkk HkkLdj f}rh;
(1114 bZ-)us izeq[k ifj.kkeksa dks izkIr fd;k FkkA ;g laiw.kZ Kku Hkkjr ls eè;iwoZ vkSj iqu%
ogk¡ ls ;wjksi x;kA ;wukfu;ksa us Hkh f=kdks.kfefr dk vè;;u vkjaHk fd;k ijarq mudh dk;Z
fof/ bruh vuqi;qDr Fkh] fd Hkkjrh; fof/ osQ Kkr gks tkus ij ;g laiw.kZ fo'o }kjk viukbZ
xbZA
Hkkjr esa vk/qfud f=kdks.kferh; iQyu tSls fdlh dks.k dh T;k (sine) vkSj iQyu
osQ ifjp; dk iwoZ fooj.k fl¼kar (laLo`Qr Hkk"kk esa fy[kk x;k T;ksfr"kh; dk;Z) esa fn;k
x;k gS ftldk ;ksxnku xf.kr osQ bfrgkl esa izeq[k gSA
HkkLdj izFke (600 bZ-) us 90° ls vf/d] dks.kksa osQ sine osQ eku osQ y, lw=k fn;k
FkkA lksygoha 'krkCnh dk ey;kye Hkk"kk esa sin (A + B) osQ izlkj dh ,d miifÙk gSA 18°,
36°, 54°, 72°, vkfn osQ sine rFkk cosine osQ fo'kq¼ eku HkkLdj f}rh; }kjk fn, x, gSaA
sin–1 x, cos–1 x, vkfn dks pki sin x, pki cos x, vkfn osQ LFkku ij iz;ksx djus dk
lq>ko T;ksfr"kfon Sir John F.W. Hersehel (1813 bZ-) }kjk fn, x, FksA Å¡pkbZ vkSj nwjh
lacaf/r iz'uksa osQ lkFk Thales (600 bZ- iwoZ) dk uke vifjgk;Z :i ls tqM+k gqvk gSA mUgsa
feJ osQ egku fijkfeM dh Å¡pkbZ osQ ekiu dk Js; izkIr gSA blosQ fy, mUgksaus ,d Kkr
Å¡pkbZ osQ lgk;d naM rFkk fijkfeM dh ijNkb;ksa dks ukidj muosQ vuqikrksa dh rqyuk dk
iz;ksx fd;k FkkA ;s vuqikr gSa
H h
= = tan (lw;Z dk mUurka'k)
S s
Thales dks leqnzh tgk”k dh nwjh dh x.kuk djus dk Hkh Js; fn;k tkrk gSA blosQ
fy, mUgksaus le:i f=kHkqtksa osQ vuqikr dk iz;ksx fd;k FkkA Å¡pkbZ vkSj nwjh lac/h iz'uksa dk
gy le:i f=kHkqtksa dh lgk;rk ls izkphu Hkkjrh; dk;ks± esa feyrs gSaA

—v—

2018-19
62 xf.kr

vè;k; 3
vkO;wg (Matrices)

vThe essence of mathematics lies in its freedom — CANTOR v

3.1 Hkwfedk (Introduction)


xf.kr dh fofo/ 'kk[kkvksa esa vkO;wg osQ Kku dh vko';drk iM+rh gSA vkO;wg] xf.kr osQ
lokZf/d 'kfDr'kkyh lk/uksa esa ls ,d gSA vU; lh/h&lknh fof/;ksa dh rqyuk esa ;g xf.krh;
lk/u gekjs dk;Z dks dkiQh gn rd ljy dj nsrk gSA jSf[kd lehdj.kksa osQ fudk; dks gy djus
osQ fy, laf{kIr rFkk ljy fof/;k¡ izkIr djus osQ iz;kl osQ ifj.kkeLo:i vkO;wg dh ladYiuk
dk fodkl gqvkA vkO;wgksa dks osQoy jSf[kd lehdj.kksa osQ fudk; osQ xq.kkadksa dks izdV djus osQ
fy, gh ugha iz;ksx fd;k tkrk gS] vfirq vkO;wgksa dh mi;ksfxrk bl iz;ksx ls dgha vf/d gSA vkO;wg
laosQru rFkk lafØ;kvksa dk iz;ksx O;fDrxr oaQI;wVj osQ fy, bysDVªkfud LizsM'khV izksxzkeksa
(Electronic Spreadsheet Programmes) esa fd;k tkrk gS] ftldk iz;ksx] Øe'k% okf.kT; rFkk
foKku osQ fofHkUu {ks=kksa esa gksrk gS] tSls] ctV (Budgeting)] foØ; cfgosZ'ku (Sales
Projection)] ykxr vkdyu (Cost Estimation)] fdlh iz;ksx osQ ifj.kkeksa dk fo'ys"k.k bR;kfnA
blosQ vfrfjDr vusd HkkSfrd lafØ;k,¡ tSls vko/Zu (Magnification)] ?kw.kZu (Rotation) rFkk
fdlh lery }kjk ijkorZu (Reflection) dks vkO;wgksa }kjk xf.krh; <ax ls fu:fir fd;k tk ldrk
gSA vkO;wgksa dk iz;ksx xw<+ysf[kdh (Cryptography) esa Hkh gksrk gSA bl xf.krh;
lk/u dk iz;ksx u osQoy foKku dh gh oqQN 'kk[kkvksa rd lhfer gS] vfirq bldk iz;ksx
vuqoaf'kdh] vFkZ'kkL=k] vk/qfud euksfoKku rFkk vkS|kSfxd izca/u esa Hkh fd;k tkrk gSA
bl vè;k; esa vkO;wg rFkk vkO;wg chtxf.kr (Matrix algebra) osQ vk/kjHkwr fl¼karksa ls
voxr gksuk] gesa #fpdj yxsxkA
3.2 vkO;wg (Matrix)
eku yhft, fd ge ;g lwpuk O;Dr djuk pkgrs gSa fd jk/k osQ ikl 15 iqfLrdk,¡ gSaA bls ge
[15] :i esa] bl le> osQ lkFk O;Dr dj ldrs gSa] fd [ ] osQ vanj fyf[kr la[;k jk/k osQ ikl
iqfLrdkvksa dh la[;k gSA vc ;fn gesa ;g O;Dr djuk gS fd jk/k osQ ikl 15 iqfLrdk,¡ rFkk 6
dyesa gSa] rks bls ge [15 6] izdkj ls] bl le> osQ lkFk O;Dr dj ldrs gSa fd [ ] osQ vanj
dh izFke izfof"V jk/k osQ ikl dh iqfLrdkvksa dh la[;k] tcfd f}rh; izfof"V jk/k osQ ikl dyeksa

2018-19
vkO;wg 63

dh la[;k n'kkZrh gSA vc eku yhft, fd ge jk/k rFkk mlosQ nks fe=kksa iQksSft;k rFkk fleju osQ
ikl dh iqfLrdkvksa rFkk dyeksa dh fuEufyf[kr lwpuk dks O;Dr djuk pkgrs gSa%
jk/k osQ ikl 15 iqfLrdk,¡ rFkk 6 dye gSa]
iQkSft;k osQ ikl 10 iqfLrdk,¡ rFkk 2 dye gSa]
fleju osQ ikl 13 iqfLrdk,¡ rFkk 5 dye gSa]
vc bls ge lkjf.kd :i esa fuEufyf[kr izdkj ls O;ofLFkr dj ldrs gSa%
iqfLrdk dye
jk/k 15 6
iQkSft;k 10 2
fleju 13 5
bls fuEufyf[kr <ax ls O;Dr dj ldrs gSa%

vFkok
jk/k iQkSft;k fleju
iqfLrdk 15 10 13
dye 6 2 5
ftls fuEufyf[kr <ax ls O;Dr dj ldrs gSa%

igyh izdkj dh O;oLFkk esa izFke LraHk dh izfof"V;k¡ Øe'k% jk/k] iQkSft;k rFkk fleju osQ
ikl iqfLrdkvksa dh la[;k izdV djrh gSa vkSj f}rh; LraHk dh izfof"V;k¡ Øe'k% jk/k] iQkSft;k rFkk

2018-19
64 xf.kr

fleju osQ ikl dyeksa dh la[;k izdV djrh gSaA blh izdkj] nwljh izdkj dh O;oLFkk esa izFke
iaafDr dh izfof"V;k¡ Øe'k% jk/k] iQkSft;k rFkk fleju osQ ikl iqfLrdkvksa dh la[;k izdV djrh
gSaA f}rh; iafDr dh izfof"V;k¡ Øe'k% jk/k] iQkSft;k rFkk fleju osQ ikl dyeksa dh la[;k izdV
djrh gSaA mi;qZDr izdkj dh O;oLFkk ;k izn'kZu dks vkO;wg dgrs gSaA vkSipkfjd :i ls ge vkO;wg
dks fuEufyf[kr izdkj ls ifjHkkf"kr djrs gSa%
ifjHkk"kk 1 vkO;wg la[;kvksa ;k iQyuksa dk ,d vk;rkdkj Øe&foU;kl gSA bu la[;kvksa ;k iQyuksa
dks vkO;wg osQ vo;o vFkok izfof"V;k¡ dgrs gSaA
vkO;wg dks ge vaxzsth o.kZekyk osQ cM+s (Capital) v{kjksa }kjk O;Dr djrs gSaA vkO;wgksa osQ oqQN
mnkgj.k fuEufyf[kr gSa%

 1
– 2 5  2 + i 3 − 2 
    1 + x x3 3 
A= 0 5  , B =  3.5 –1 2  , C =  
   cos x sin x + 2 tan x 
3  5
 6 
 3 5 
 7 

mi;qZDr mnkgj.kksa esa {kSfrt js[kk,¡ vkO;wg dh iafDr;k¡ (Rows) vksj ÅèoZ js[kk,¡ vkO;wg osQ
LraHk (Columns) dgykrs gSaA bl izdkj A esa 3 iafDr;k¡ rFkk 2 LraHk gSa vkSj B esa 3 iafDr;k¡ rFkk
3 LraHk tcfd C esa 2 iafDr;k¡ rFkk 3 LraHk gSaA
3.2.1 vkO;wg dh dksfV (Order of a matrix)
m iafDr;ksa rFkk n LraHkksa okys fdlh vkO;wg dks m × n dksfV (order) dk vkO;wg vFkok osQoy
m × n vkO;wg dgrs gSa A vr,o vkO;wgksa osQ mi;ZqDr mnkgj.kksa osQ lanHkZ esa A, ,d 3 × 2 vkO;wg]
B ,d 3 × 3 vkO;wg rFkk C, ,d 2 × 3 vkO;wg gSaA ge ns[krs gSa fd A esa 3 × 2 = 6 vo;o gS
vkSj B rFkk C esa Øe'k% 9 rFkk 6 vo;o gSaA
lkekU;r%] fdlh m × n vkO;wg dk fuEufyf[kr vk;krkdkj Øe&foU;kl gksrk gS%

vFkok A = [aij]m × n, 1≤ i ≤ m, 1≤ j ≤ n tgk¡ i, j ∈ N

2018-19
vkO;wg 65

bl izdkj ioha iafDr osQ vo;o ai1, ai2, ai3,..., ain gSa] tcfd josa LraHk osQ vo;o a1j, a2j,
a3j,..., amj gSaA
lkekU;r% aij, ioha iafDr vkSj josa LraHk esa vkus okyk vo;o gksrk gSA ge bls A dk (i, j)ok¡
vo;o Hkh dg ldrs gSaA fdlh m × n vkO;wg esa vo;oksa dh la[;k mn gksrh gSA

AfVIi.kh bl vè;k; esa]


1. ge fdlh m × n dksfV osQ vkO;wg dks izdV djus osQ fy,] laoQs r A = [aij]m × n dk iz;ksx
djsxa As
2. ge osQoy ,sls vkO;wgksa ij fopkj djsaxs] ftuosQ vo;o okLrfod la[;k,¡ gSa vFkok
okLrfod ekuksa dks xzg.k djus okys iQyu gSaA
ge ,d lery osQ fdlh fcanq (x, y) dks ,d vkO;wg (LraHk vFkok iafDr) }kjk izdV dj
 x 0
ldrs gSa] tSls   (vFkok [x, y])ls] mnkgj.kkFkZ] fcanq P(0, 1), vkO;wg fu:i.k esa P =   ;k
 y 1 
[0 1] }kjk izdV fd;k tk ldrk gSA

è;ku nhft, fd bl izdkj ge fdlh can jSf[kd vko`Qfr osQ 'kh"kks± dks ,d vkO;wg osQ :i
esa fy[k ldrs gSaA mnkgj.k osQ fy, ,d prqHkZt ABCD ij fopkj dhft,] ftlosQ 'kh"kZ Øe'k%
A (1, 0), B (3, 2), C (1, 3), rFkk D (–1, 2) gSaA
vc] prqHkZqt ABCD vkO;wg :i esa fuEufyf[kr izdkj ls fu:fir fd;k tk ldrk gS%

A B C D A 1 0
1 3 1 −1 B 3 2 
X= ;k Y= 
0 2 3 2 2 × 4 C 1 3
 
D −1 2  4× 2

vr% vkO;wgksa dk iz;ksx fdlh lery esa fLFkr T;kferh; vko`Qfr;ksa osQ 'kh"kks± dks fu:fir djus
osQ fy, fd;k tk ldrk gSA
vkb, vc ge oqQN mnkgj.kksa ij fopkj djsaA
mnkgj.k 1 rhu iSQfDVª;ksa I, II rFkk III esa iq#"k rFkk efgyk dfeZ;ksa ls lacaf/r fuEufyf[kr lwpuk
ij fopkj dhft,%

2018-19
66 xf.kr

iq#"k dehZ efgyk dehZ


I 30 25
II 25 31
III 27 26
mi;qZDr lwpuk dks ,d 3 × 2 vkO;wg esa fu:fir dhft,A rhljh iafDr vkSj nwljs LraHk okyh
izfof"V D;k izdV djrh gS\
gy iznÙk lwpuk dks 3 × 2 vkO;wg osQ :i esa fuEufyf[kr izdkj ls fu:fir fd;k tk ldrk gS%
30 25
A =  25 31
27 26 
rhljh iafDr vkSj nwljs LraHk dh izfof"V iSQDVªh&III dkj[kkus esa efgyk dk;ZdrkZvksa dh la[;k
izdV djrh gSA
mnkgj.k 2 ;fn fdlh vkO;wg esa 8 vo;o gSa] rks bldh laHko dksfV;k¡ D;k gks ldrh gSa\
gy gesa Kkr gS fd] ;fn fdlh vkO;wg dh dksfV m × n gS rks blesa mn vo;o gksrs gSaA vr,o
8 vo;oksa okys fdlh vkO;wg osQ lHkh laHko dksfV;k¡ Kkr djus osQ fy, ge izko`Qr la[;kvksa osQ
mu lHkh Øfer ;qXeksa dks Kkr djsaxs ftudk xq.kuiQy 8 gSA
vr% lHkh laHko Øfer ;qXe (1, 8), (8, 1), (4, 2), (2, 4) gSaA
vr,o laHko dksfV;k¡ 1 × 8, 8 ×1, 4 × 2, 2 × 4 gSaA
1
mnkgj.k 3 ,d ,sls 3 × 2 vkO;wg dh jpuk dhft,] ftlosQ vo;o aij = | i − 3 j | }kjk
2
iznÙk gSaA
 a11 a12 
gy ,d 3 × 2 vkO;wg] lkekU;r% bl izdkj gksrk gS% A =  a21 a22 
 a31 a32 

1
vc] aij = | i − 3 j | , i = 1, 2, 3 rFkk j = 1, 2
2
blfy,
1 1 5
a11 = |1 − 3.1| = 1 a12 = |1 − 3.2 | =
2 2 2

2018-19
vkO;wg 67

1 1 1
a21 = | 2 − 3.1| = a22 = | 2 − 3.2 | = 2
2 2 2
1 1 3
a31 = | 3 − 3.1| = 0 a32 = | 3 − 3.2 | =
2 2 2

1 5
 2
1 
vr% vHkh"V vkO;wg A =  2  gSA
2 3
0 
 2

3.3 vkO;wgksa osQ izdkj (Types of Matrices)


bl vuqPNsn esa ge fofHkUu izdkj osQ vkO;wgksa dh ifjppkZ djsaxsA
(i) LraHk vkO;wg (Column matrix)
,d vkO;wg] LraHk vkO;wg dgykrk gS] ;fn mlesa osQoy ,d LraHk gksrk gSA mnkgj.k osQ

 0 
 
 3
fy, A =  −1  , 4 × 1 dksfV dk ,d LraHk vkO;wg gSA O;kid :i ls] A= [aij] m × 1 ,d
 
1/ 2 

m × 1 dksfV dk LraHk vkO;wg gSA


(ii) iafDr vkO;wg (Row matrix)
,d vkO;wg] iafDr vkO;wg dgykrk gS] ;fn mlesa osQoy ,d iafDr gksrh gSA

mnkgj.k osQ fy, B = − 1 


5 2 3 , 1×4 dksfV dk ,d iafDr vkO;wg gSA O;kid
 2 1× 4
:i ls] B = [bij] 1 × n ,d 1 × n dksfV dk iafDr vkO;wg gSA

(iii) oxZ vkO;wg (Square matrix)


,d vkO;wg ftlesa iafDr;ksa dh la[;k LraHkksa dh la[;k osQ leku gksrh gS] ,d oxZ vkO;wg
dgykrk gSA vr% ,d m × n vkO;wg] oxZ vkO;wg dgykrk gS] ;fn m = n vkSj mls dksfV

2018-19
68 xf.kr

 3 −1 0
3 
‘n’ dk oxZ vkO;wg dgrs gSaA mnkgj.k osQ fy, A =  3 2 1  ,d 3 dksfV dk oxZ
2 
4 −1
 3

vkO;wg gSA O;kid :i ls A = [aij] m × m ,d m dksfV dk oxZ vkO;wg gSA

AfVIi.kh ;fn A = [aij] ,d n dksfV dk oxZ vkO;wg gS] rks vo;oksa (izfof"V;k¡)
a11, a22, ..., ann dks vkO;wg A osQ fod.kZ osQ vo;o dgrs gSaA

1 −3 1 
vr% ;fn A =  2 4 −1 gS rks A osQ fod.kZ osQ vo;o 1] 4] 6 gSaA
 3 5 6 

(iv) fod.kZ vkO;wg (Diagonal matrix)


,d oxZ vkO;wg B = [bij] m × m fod.kZ vkO;wg dgykrk gS] ;fn fod.kZ osQ vfrfjDr blosQ
vU; lHkh vo;o 'kwU; gksrs gSa vFkkZr~] ,d vkO;wg B = [bij] m × m fod.kZ vkO;wg dgykrk
gS] ;fn bij = 0, tc i ≠ j gksA
 −1.1 0 0 
 −1 0  
mnkgj.kkFkZ A = [4], B =  , C= 0 2 0  , Øe'k% dksfV 1] 2 rFkk 3 osQ
 0 2   0 0 3
fod.kZ vkO;wg gSaA
(v) vfn'k vkO;wg (Scalar matrix)
,d fod.kZ vkO;wg] vfn'k vkO;wg dgykrk gS] ;fn blosQ fod.kZ osQ vo;o leku gksrs
gSa] vFkkZr~] ,d oxZ vkO;wg B = [bij] n × n vfn'k vkO;wg dgykrk gS] ;fn
bij = 0, tc i ≠ j
bij = k, tc i = j, tgk¡ k dksbZ vpj gSA
mnkgj.kkFkZ]
 3 0 0
 −1 0   
A = [3], B= , C= 0 3 0  Øe'k%
 0 −1  
0 0 3

dksfV 1] 2 rFkk 3 osQ vfn'k vkO;wg gSaA

2018-19
vkO;wg 69

(vi) rRled vkO;wg (Identity matrix)


,d oxZ vkO;wg] ftlosQ fod.kZ osQ lHkh vo;o 1 gksrs gSa rFkk 'ks"k vU; lHkh vo;o 'kwU;
gksrs gSa] rRled vkO;wg dgykrk gSA nwljs 'kCnksa esa] oxZ vkO;wg A = [aij] n × n ,d rRled
1 ;fn i = j
vkO;wg gS] ;fn aij = 
0 ;fn i ≠ j
ge] n dksfV osQ rRled vkO;wg dks In }kjk fu:fir djrs gSaA tc lanHkZ ls dksfV Li"V gksrh
gS] rc bls ge osQoy I ls izdV djrs gSaA
1 0 0 
1 0  0 1 0 
mnkgj.k osQ fy, [1], 0 1  ,   Øe'k% dksfV 1, 2 rFkk 3 osQ rRled vkO;wg gSaA
  0 0 1 
 

è;ku nhft, fd ;fn k = 1 gks rks, ,d vfn'k vkO;wg] rRled vkO;wg gksrk gS] ijarq izR;sd
rRled vkO;wg Li"Vr;k ,d vfn'k vkO;wg gksrk gSA
(vii) 'kwU; vkO;wg (Zero matrix)
,d vkO;wg] 'kwU; vkO;wg vFkok fjDr vkO;wg dgykrk gS] ;fn blosQ lHkh vo;o 'kwU;
gksrs gSaA
0 0
 
0 0 0
mnkgj.kkFkZ] [0],   ,  , [0, 0] lHkh 'kwU; vkO;wg gSaA ge 'kwU; vkO;wg dks
0 0 0 0 0
O }kjk fu:fir djrs gSaA budh dksfV;k¡] lanHkZ }kjk Li"V gksrh gSaA
3.3.1 vkO;wgksa dh lekurk (Equality of matrices)
ifjHkk"kk 2 nks vkO;wg A = [aij] rFkk B = [bij] leku dgykrs gSa] ;fn
(i) os leku dksfV;ksa osQ gksrs gksa] rFkk

(ii) A dk izR;sd vo;o] B osQ laxr vo;o osQ leku gks] vFkkZr~ i rFkk j osQ lHkh ekuksa osQ
fy, aij = bij gksa
 2 3  2 3  3 2  2 3
mnkgj.k osQ fy,]   rFkk  0 1 leku vkO;wg gSa ¯drq  0 1  rFkk  0 1
leku
 0 1     
vkO;wg ugha gSaA izrhdkRed :i esa] ;fn nks vkO;wg A rFkk B leku gSa] rks ge bls
A = B fy[krs gSaA

2018-19
70 xf.kr

 x y   −1.5 0 
;fn  z a  =  2 
6  , rks x = – 1.5, y = 0, z = 2, a = 6 , b = 3, c = 2
b c  3 2 

 x + 3 z + 4 2 y − 7  0 6 3y − 2 
 −6 a −1  
0  = − 6 −3 2c + 2
mnkgj.k 4 ;fn 
b − 3 − 21 0   2b + 4 − 21 0 
gks rks a, b, c, x, y rFkk z osQ eku Kkr dhft,A
gy pw¡fd iznÙk vkO;wg leku gSa] blfy, buosQ laxr vo;o Hkh leku gksaxsA laxr vo;oksa dh
rqyuk djus ij gesa fuEufyf[kr ifj.kke izkIr gksrk gS%
x + 3 = 0, z + 4 = 6, 2y – 7 = 3y – 2
a – 1 = – 3, 0 =2c + 2 b – 3 = 2b + 4,
bUgsa ljy djus ij gesa izkIr gksrk gS fd
a = – 2, b = – 7, c = – 1, x = – 3, y = –5, z = 2

 2a + b a − 2b  4 −3
mnkgj.k 5 ;fn 5c − d 4c + 3d  = 11 24  gks rks a, b, c, rFkk d osQ eku Kkr dhft,A
   

gy nks vkO;wgksa dh lekurk dh ifjHkk"kk }kjk] laxr vo;oksa dks leku j[kus ij gesa izkIr gksrk
gS fd
2a + b = 4 5c – d = 11
a – 2b = – 3 4c + 3d = 24
bu lehdj.kksa dks ljy djus ij a = 1, b = 2, c = 3 rFkk d = 4 izkIr gksrk gSA

iz'ukoyh 3-1

2 5 19 −7 
 5 
1. vkO;wg A =  35 −2 12  , osQ fy, Kkr dhft,%
 2 
 
 3 1 −5 17 
(i) vkO;wg dh dksfV (ii) vo;oksa dh la[;k
(iii) vo;o a13, a21, a33, a24, a23

2018-19
vkO;wg 71

2. ;fn fdlh vkO;wg esa 24 vo;o gSa rks bldh laHko dksfV;k¡ D;k gSa\ ;fn blesa 13 vo;o
gksa rks dksfV;k¡ D;k gksaxh\
3. ;fn fdlh vkO;wg esa 18 vo;o gSa rks bldh laHko dksfV;k¡ D;k gSa\ ;fn blesa 5 vo;o
gksa rks D;k gksxk\
4. ,d 2 × 2 vkO;wg A = [aij] dh jpuk dhft, ftlosQ vo;o fuEufyf[kr izdkj ls iznÙk gSa
(i + j ) 2 i (i + 2 j ) 2
(i) aij = (ii) aij = (iii) aij =
2 j 2
5. ,d 3 × 4 vkO;wg dh jpuk dhft, ftlosQ vo;o fuEufyf[kr izdkj ls izkIr gksrs gSa%
1
(i) aij = | −3i + j | (ii) aij = 2i − j
2
6. fuEufyf[kr lehdj.kksa ls x, y rFkk z osQ eku Kkr dhft,%

 x + y + z  9 
 4 3  y z  x + y 2  6 2   x + z  = 5
(i)  =  (ii)  =
xy  5 8 
(iii)    
 x 5  1 5 5 + z
 y + z  7 

 a − b 2 a + c   −1 5 
7. lehdj.k  =  ls a, b, c rFkk d osQ eku Kkr dhft,A
 2a − b 3c + d   0 13
8. A = [aij]m × n\ ,d oxZ vkO;wg gS ;fn
(A) m < n (B) m > n (C) m = n (D) buesa ls dksbZ ugha
9. x rFkk y osQ iznÙk fdu ekuksa osQ fy, vkO;wgksa osQ fuEufyf[kr ;qXe leku gSa\
3x + 7 5  0 y − 2 
 y + 1 2 − 3 x  , 8 4 
  
−1
(A) x = , y=7 (B) Kkr djuk laHko ugha gS
3
−2 −1 −2
(C) y = 7 , x= (D) x = , y= .
3 3 3
10. 3 × 3 dksfV osQ ,sls vkO;wgksa dh oqQy fdruh la[;k gksxh ftudh izR;sd izfof"V 0 ;k 1 gS?
(A) 27 (B) 18 (C) 81 (D) 512
3.4 vkO;wgksa ij lafØ;k,¡ (Operations on Matrices)
bl vuqPNsn esa ge vkO;wgksa ij oqQN lafØ;kvksa dks izLrqr djsaxs tSls vkO;wgksa dk ;ksx] fdlh vkO;wg
dk ,d vfn'k ls xq.kk] vkO;wgksa dk O;odyu rFkk xq.kk%

2018-19
72 xf.kr

3.4.1 vkO;wgksa dk ;ksx (Addition of matrices)


eku yhft, fd iQkfrek dh LFkku A rFkk LFkku B ij nks iSQfDVª;k¡ gSaA izR;sd iSQDVªh esa yM+dksa
rFkk yM+fd;ksa osQ fy,] [ksy osQ twrs] rhu fHkUu&fHkUu ewY; oxks±] Øe'k% 1] 2 rFkk 3 osQ curs
gSaA izR;sd iSQDVªh esa cuus okys twrksa dh la[;k uhps fn, vkO;wgksa }kjk fu:fir gSa%

eku yhft, fd iQkfrek izR;sd ewY; oxZ esa cuus okys [ksy osQ twrksa dh oqQy la[;k tkuuk
pkgrh gSaA vc oqQy mRiknu bl izdkj gS%
ewY; oxZ 1 : yM+dksa osQ fy, (80 + 90), yM+fd;ksa osQ fy, (60 + 50)
ewY; oxZ 2 : yM+dksa osQ fy, (75 + 70), yM+fd;ksa osQ fy, (65 + 55)
ewY; oxZ 3 : yM+dksa osQ fy, (90 + 75), yM+fd;ksa osQ fy, (85 + 75)
80 + 90 60 + 50
vkO;wg osQ :i esa bls bl izdkj izdV dj ldrs gSa 75 + 70 65 + 55
90 + 75 85 + 75 

;g u;k vkO;wg] mi;qDZ r nks vkO;wgksa dk ;ksxiQy gSA ge ns[krs gSa fd nks vkO;wgksa dk ;ksxiQy,
iznÙk vkO;wgksa osQ laxr vo;oksa dks tksM+us ls izkIr gksus okyk vkO;wg gksrk gSA blosQ vfrfjDr] ;ksx
osQ fy, nksuksa vkO;wgksa dks leku dksfV dk gksuk pkfg,A

a a a  b b b 
bl izdkj] ;fn A =  11 12 13  ,d 2 × 3 vkO;wg gS rFkk B =  11 12 13  ,d
 a21 a22 a23  b21 b22 b23 

 a11 + b11 a12 + b12 a13 + b13 


vU; 2 × 3 vkO;wg gS] rks ge A + B =   }kjk ifjHkkf"kr djrs gSAa
 a21 + b21 a22 + b22 a23 + b23 
O;kid :i ls] eku yhft, fd A = [aij] rFkk B = [bij] nks leku dksfV] m × n okys vkO;wg
gSa rks A rFkk B nksuksa vkO;wgksa dk ;ksxiQy] vkO;wg C = [cij]m × n, }kjk ifjHkkf"kr gksrk gS] tgk¡
cij = aij + bij, i rFkk j osQ lHkh laHko ekuksa dks O;Dr djrk gSA

2018-19
vkO;wg 73

2 5 1
 3 1 − 1  
mnkgj.k 6 A =   rFkk B =  1  gS rks A + B Kkr dhft,A
 2 3 0  −2 3
 2 

gy D;ksafd A rFkk B leku dksfV 2 × 3 okys vkO;wg gSa] blfy, A rFkk B dk ;ksx ifjHkkf"kr
gS] vkSj

2 + 3 1 + 5 1 − 1  2 + 3 1 + 5 0 
A+B =   
1 = 

1  }kjk izkIr gksrk gSA
2 − 2 3+3 0+ 0 6
 2  2 

AfVIi.kh
1. ge bl ckr ij cy nsrs gSa fd ;fn A rFkk B leku dksfV okys vkO;wg ugha gSa rks

2 3 1 2 3
A + B ifjHkkf"kr ugha gSA mnkgj.kkFkZ A =   , B=  , rks A + B ifjHkkf"kr
1 0 1 0 1 
ugha gSA
2. ge ns[krs gSa fd vkO;wgksa dk ;ksx] leku dksfV okys vkO;wgksa osQ leqPp; esa f}vk/kjh
lafØ;k dk ,d mnkgj.k gSA

3.4.2 ,d vkO;wg dk ,d vfn'k ls xq.ku (Multiplication of a matrix by a scalar)


vc eku yhft, fd i+Qkfrek us A ij fLFkr iSQDVªh esa lHkh ewY; oxZ osQ mRiknu dks nks xquk dj
fn;k gS (lanHkZ 3-4-1)

A ij fLFkr iSQDVªh esa mRiknu dh la[;k uhps fn, vkO;wg esa fn[kykbZ xbZ gSA

A ij fLFkr iSQDVªhs esa mRikfnr u;h (cnyh gqbZ) la[;k fuEufyf[kr izdkj gS%

2018-19
74 xf.kr

yM+ osQ yM+ fd;k¡


1  2 × 80 2 × 60
2  2 × 75 2 × 65
 
3  2 × 90 2 × 85 

160 120 
bls vkO;wg :i esa , 150 130  izdkj ls fu:fir dj ldrs gSaA ge ns[krs gSa fd ;g
180 170 
u;k vkO;wg igys vkO;wg osQ izR;sd vo;o dks 2 ls xq.kk djus ij izkIr gksrk gSA
O;kid :i esa ge] fdlh vkO;wg osQ ,d vfn'k ls xq.ku dks] fuEufyf[kr izdkj ls ifjHkkf"kr
djrs gSaA ;fn A = [aij] m × n ,d vkO;wg gS rFkk k ,d vfn'k gS rks kA ,d ,slk vkO;wg gS ftls
A osQ izR;sd vo;o dks vfn'k k ls xq.kk djosQ izkIr fd;k tkrk gSA
nwljs 'kCnksa esa] kA = k [aij] m × n = [k (aij)] m × n, vFkkZr~ kA dk (i, j)ok¡ vo;o] i rFkk j
osQ gj laHko eku osQ fy,] kaij gksrk gSA

 3 1 1.5
 
mnkgj.k osQ fy,] ;fn A =  5 7 −3  gS rks
2 0 5
 

 3 1 1.5  9 3 4.5
   
3A = 3  5 7 −3  = 3 5 21 −9 
2 0 5  6 0 15 
  
vkO;wg dk ½.k vkO;wg (Negative of a matrix) fdlh vkO;wg A dk ½.k vkO;wg –A
ls fu:fir gksrk gSA ge –A dks – A = (– 1) A }kjk ifjHkkf"kr djrs gSaA
 3 1
mnkgj.kkFkZ] eku yhft, fd A =   , rks – A fuEufyf[kr izdkj ls izkIr gksrk gS
 −5 x 

 3 1   −3 −1
– A = (– 1) A = (−1)  = 
 −5 x   5 − x 
vkO;wgksa dk varj (Difference of matrices) ;fn A = [aij], rFkk B = [bij] leku dksfV
m × n okys nks vkO;wg gSa rks budk varj A – B] ,d vkO;wg D = [dij] tgk¡ i rFkk j osQ leLr

2018-19
vkO;wg 75

ekuksa osQ fy, dij = aij – bij gS, }kjk ifjHkkf"kr gksrk gSA nwljs 'kCnksa esa] D = A – B = A + (–1) B,
vFkkZr~ vkO;wg A rFkk vkO;wg – B dk ;ksxiQyA
1 2 3  3 −1 3 
mnkgj.k 7 ;fn A =  2 3 1 rFkk B =  −1 0 2 gSa rks 2A – B Kkr dhft,A
   
gy ge ikrs gSa
1 2 3  3 −1 3 
2A – B = 2  − 
 2 3 1  −1 0 2

 2 4 6  −3 1 −3
=  + 
 4 6 2   1 0 −2 

 2 − 3 4 + 1 6 − 3   −1 5 3
=  = 
 4 + 1 6 + 0 2 − 2  5 6 0 

3.4.3 vkO;wgksa osQ ;ksx osQ xq.k/eZ (Properties of matrix addition)


vkO;wgksa osQ ;ksx dh lafØ;k fuEufyf[kr xq.k/eks± (fu;eksa) dks larq"V djrh gS%
(i) Øe&fofues; fu;e (Commutative Law) ;fn A = [aij], B = [bij] leku dksfV
m × n, okys vkO;wg gSa] rks A + B = B + A gksxkA
vc A + B = [aij] + [bij] = [aij + bij]
= [bij + aij] (la[;kvksa dk ;ksx Øe&fofues; gSA)
= ([bij] + [aij]) = B + A
(ii) lkgp;Z fu;e (Associative Law) leku dksfV m × n okys fdUgha Hkh rhu vkO;wgksa
A = [aij], B = [bij], C = [cij] osQ fy, (A + B) + C = A + (B + C)
vc (A + B) + C = ([aij] + [bij]) + [cij]
= [aij + bij] + [cij] = [(aij + bij) + cij]
= [aij + (bij + cij)] (D;ksa ?)
= [aij] + [(bij + cij)] = [aij] + ([bij] + [cij]) = A + (B + C)
(iii) ;ksx osQ rRled dk vfLrRo (Existence of additive identity) eku yhft, fd
A = [aij] ,d m × n vkO;wg gS vkSj O ,d m × n 'kwU; vkO;wg gS] rks A+O = O+A= A
gksrk gSA nwljs 'kCnksa esa] vkO;wgksa osQ ;ksx lafØ;k dk rRled 'kwU; vkO;wg O gSA
(iv) ;ksx osQ izfrykse dk vfLrRo (The existence of additive inverse) eku yhft,
fd A = [aij]m × n ,d vkO;wg gS] rks ,d vU; vkO;wg – A = [– aij]m × n bl izdkj dk gS

2018-19
76 xf.kr

fd A + (– A) = (– A) + A= O] vr,o vkO;wg – A, vkO;wg A dk ;ksx osQ varxZr


izfrykse vkO;wg vFkok ½.k vkO;wg gSA
3.4.4 ,d vkO;wg osQ vfn'k xq.ku osQ xq.k/eZ (Properties of scalar multiplication of
a matrix)
;fn A = [aij] rFkk B = [bij] leku dksfV m × n, okys nks vkO;wg gSa vkSj k rFkk l vfn'k gSa] rks
(i) k(A +B) = k A + kB, (ii) (k + l)A = k A + l A
vc] A = [aij]m × n, B = [bij]m × n, vkSj k rFkk l vfn'k gSa] rks
(i) k (A + B) = k ([aij] + [bij])
= k [aij + bij] = [k (aij + bij)] = [(k aij) + (k bij)]
= [k aij] + [k bij] = k [aij] + k [bij] = kA + kB
(ii) ( k + l) A = (k + l) [aij]
= [(k + l) aij] = [k aij] + [l aij] = k [aij] + l [aij] = k A + l A.

8 0   2 −2
mnkgj.k 8 ;fn A =  4 −2 , B =  4 2  rFkk 2A + 3X = 5B fn;k gks rks vkO;wg X
 
 3 6   −5 1 
Kkr dhft,A
gy fn;k gS 2A + 3X = 5B
;k 2A + 3X – 2A = 5B – 2A
;k 2A – 2A + 3X = 5B – 2A (vkO;wg ;ksx Øe&fofues; gS)
;k O + 3X = 5B – 2A (– 2A, vkO;wg 2A dk ;ksx izfrykse gS)
;k 3X = 5B – 2A (O, ;ksx dk rRled gS)

1
;k X= (5B – 2A)
3
  2 −2  8 0     10 −10   −16 0  
1      1    −8 4  
;k X =  5  4 2  − 2  4 −2   =   20 10  +  
3 3
  −5 1 

 3 6     −25 5   −6 −12  

2018-19
vkO;wg 77

 −10 
 −2 3 
 10 − 16 −10 + 0  − 6 −10   
1  1   4 14 
=  20 − 8 10 + 4  = 3 12 14  = 
3 3 
 −25 − 6 5 − 12   −31 −7   
 −31 −7 
 3 3 

5 2 3 6 
mnkgj.k 9 X rFkk Y, Kkr dhft,] ;fn X + Y = 0 9  rFkk X − Y =   gSA
   0 −1

5 2 3 6 
gy ;gk¡ ij (X + Y) + (X – Y) =  + 
 0 9   0 −1

8 8 8 8 
;k (X + X) + (Y – Y) =   ⇒ 2X =  
0 8 0 8 

1 8 8 4 4 
;k X= 0 8 = 0 4 
2    

5 2   3 6 
lkFk gh (X + Y) – (X – Y) =  − 
 0 9   0 −1

5 − 3 2 − 6  2 − 4
;k (X – X) + (Y + Y) =   ⇒ 2Y =  
 0 9 + 1  0 10 

1  2 − 4   1 −2 
;k Y= =
2  0 10   0 5 

mnkgj.k 10 fuEufyf[kr lehdj.k ls x rFkk y osQ ekuksa dks Kkr dhft,%


x 5   3 − 4  7 6 
2 +
y − 3 1 2  15 14 
=
7

gy fn;k gS
x 5   3 − 4  7 6  2x 10   3 − 4   7 6 
2 + ⇒ 
7
  =  
y − 3 1 2  15 14  + =
2  15 14
14 2 y − 6 1

2018-19
78 xf.kr

2x + 3 10 − 4  7 6 2x + 3 6  7 6
;k  14 + 1 2 y − 6 + 2  =  ⇒  =
  
15 14   15 2 y − 4  15 14 
;k 2x + 3 = 7 rFkk 2y – 4 = 14 (D;ksa?)
;k 2x = 7 – 3 rFkk 2y = 18
4 18
;k x= rFkk y=
2 2
vFkkZr~ x=2 rFkk y=9

mnkgj.k 11 nks fdlku jkefd'ku vkSj xqjpju flag osQoy rhu izdkj osQ pkoy tSls cklerh]
ijey rFkk umjk dh [ksrh djrs gSaA nksuksa fdlkuksa }kjk] flracj rFkk vDrwcj ekg esa] bl izdkj osQ
pkoy dh fcØh (#i;ksa esa) dks] fuEufyf[kr A r Fkk B vkO;wgksa esa O;Dr fd;k x;k gS%

(i) izR;sd fdlku dh izR;sd izdkj osQ pkoy dh flracj rFkk vDrwcj dh lfEefyr fcØh
Kkr dhft,A
(ii) flracj dh vis{kk vDrwcj esa gqbZ fcØh esa deh Kkr dhft,A

(iii) ;fn nksuksa fdlkuksa dks oqQy fcØh ij 2% ykHk feyrk gS] rks vDrwcj esa izR;sd izdkj osQ
pkoy dh fcØh ij izR;sd fdlku dks feyus okyk ykHk Kkr dhft,A
gy
(i) izR;sd fdlku dh izR;sd izdkj osQ pkoy dh flracj rFkk vDrwcj esa izR;sd izdkj osQ
pkoy dh fcØh uhps nh xbZ gS%

2018-19
vkO;wg 79

(ii) flracj dh vis{kk vDrwcj esa gqbZ fcØh esa deh uhps nh xbZ gS]

2
(iii) B dk 2% = × B = 0. 02 × B
100

= 0.02

vr% vDrwcj ekg esa] jkefd'ku] izR;sd izdkj osQ pkoy dh fcØh ij Øe'k% `100]
`200] rFkk `120 ykHk izkIr djrk gS vkSj xqjpju flag] izR;sd izdkj osQ pkoy dh fcØh ij
Øe'k% `400] `200 rFkk `200 ykHk vftZr djrk gSA
3.4.5 vkO;wgksa dk xq.ku (Multiplication of matrices)
eku yhft, fd ehjk vkSj unhe nks fe=k gSaA ehjk 2 dye rFkk 5 dgkuh dh iqLrosaQ [kjhnuk pkgrh
gSa] tc fd unhe dks 8 dye rFkk 10 dgkuh dh iqLrdksa dh vko';drk gSA os nksuksa ,d nqdku
ij (dher) Kkr djus osQ fy, tkrs gSa] tks fuEufyf[kr izdkj gS%
dye & izR;sd `5] dgkuh dh iqLrd & izR;sd `50 gSA
mu nksuksa esa ls izR;sd dks fdruh /ujkf'k [kpZ djuh iM+sxh\ Li"Vr;k] ehjk dks
`(5 × 2 + 50 × 5) vFkkZr]~ `260 dh vko';drk gS] tcfd unhe dks `(8 × 5 + 50 × 10) vFkkZr~
`540 dh vko;drk gSA ge mi;qDZ r lwpuk dks vkO;wg fu:i.k esa fuEufyf[kr izdkj ls izdV dj
ldrs gS%

2018-19
80 xf.kr

vko';drk izfr ux nke (#i;ksa esa) vko';d /ujkf'k (#i;ksa esas)


2 5  5  5 × 2 + 5 × 50   260 
 8 10   50  8 × 5 + 10 × 50 =  540 
       
eku yhft, fd muosQ }kjk fdlh vU; nqdku ij Kkr djus ij Hkko fuEufyf[kr izdkj gSa%
dye & izR;sd ` 4] dgkuh dh iqLrd & izR;sd `40
vc] ehjk rFkk unhe }kjk [kjhnkjh djus osQ fy, vko';d /ujkf'k Øe'k% `(4 × 2 + 40 × 5)
= ` 208 rFkk `(8 × 4 + 10 × 40) = `432 gSA
iqu% mi;qZDr lwpuk dks fuEufyf[kr <ax ls fu:fir dj ldrs gSa%
vko';drk izfr ux nke (#i;ksa esa) vko';d /ujkf'k (#i;ksa esas)
2 5  4  4 × 2 + 40 × 5   208
 8 10   40   8 × 4 + 10 × 4 0 =  432 
       
vc] mi;qZDr nksuksa n'kkvksa esa izkIr lwpukvksa dks ,d lkFk vkO;wg fu:i.k }kjk fuEufyf[kr
izdkj ls izdV dj ldrs gSa%
vko';drk izfr ux nke (#i;ksa esa) vko';d /ujkf'k (#i;ksa esas)
2 5  5 4  5 × 2 + 5 × 50 4 × 2 + 40 × 5 
 8 10  50 40  8 × 5 + 10 × 5 0 8 × 4 + 10 × 4 0
     

 260 208
=  
 540 432 
mi;qZDr fooj.k vkO;wgksa osQ xq.ku dk ,d mnkgj.k gSA ge ns[krs gSa fd vkO;wgksa A rFkk B osQ
xq.ku osQ fy,] A esa LraHkksa dh la[;k B esa iafDr;ksa dh la[;k osQ cjkcj gksuh pkfg,A blosQ vfrfjDr
xq.kuiQy vkO;wg (Product matrix) osQ vo;oksa dks izkIr djus osQ fy,] ge A dh iafDr;ksa rFkk
B osQ LraHkksa dks ysdj] vo;oksa osQ Øekuqlkj (Element–wise) xq.ku djrs gSa vkSj rnksijkar bu
xq.kuiQyksa dk ;ksxiQy Kkr djrs gSaA vkSipkfjd :i ls] ge vkO;wgksa osQ xq.ku dks fuEufyf[kr rjg
ls ifjHkkf"kr djrs gSa%
nks vkO;wgksa A rFkk B dk xq.kuiQy ifjHkkf"kr gksrk gS] ;fn A esa LraHkksa dh la[;k] B esa iafDr;ksa
dh la[;k osQ leku gksrh gSA eku yhft, fd A = [aij] ,d m × n dksfV dk vkO;wg gS vkSj
B = [bjk] ,d n × p dksfV dk vkO;wg gSA rc vkO;wgksa A rFkk B dk xq.kuiQy ,d m × p dksfV
dk vkO;wg C gksrk gSA vkO;wg C dk (i, k)ok¡ vo;o cik izkIr djus osQ fy, ge A dh i oha iafDr
vkSj B osQ kosa LraHk dks ysrs gS vkSj fiQj muosQ vo;oksa dk Øekuqlkj xq.ku djrs gSaA rnksijkUr bu
lHkh xq.kuiQyksa dk ;ksxiQy Kkr dj ysrs gSaA nwljs 'kCnksa esa ;fn]

2018-19
vkO;wg 81

A = [aij]m × n, B = [bjk]n × p gS rks A dh i oha iafDr [ai1 ai2 ... ain] rFkk B dk kok¡ LraHk

 b1k 
b  n
 .2 k 
 .  gS,a rc cik = ai1 b1k + ai2 b2k + ai3 b3k + ... + ain bnk = ∑ aij b jk
j =1
 . 
b 
 nk 

vkO;wg C = [cik]m × p, A rFkk B dk xq.kuiQy gSA


 2 7
1 −1 2
mnkgj.k osQ fy,] ;fn C =   rFkk D =
 −1 1  gS rks
 
0 3 4   5 − 4

2 7
 1 −1 2  
xq.kuiQy CD ifjHkkf"kr gS rFkk CD = 0 3 4  −1 1  ,d 2 × 2 vkO;wg gS ftldh
 5 −4
izR;sd izfof"V C dh fdlh iafDr dh izfof"V;ksa dh D osQ fdlh LraHk dh laxr izfof"V;ksa osQ
xq.kuiQyksa osQ ;ksxiQy osQ cjkcj gksrh gSA bl mnkgj.k esa ;g pkjksa ifjdyu fuEufyf[kr gSa]

13 −2 
vr% CD =  
17 −13

2018-19
82 xf.kr

6 9  2 6 0
mngkj.k 12 ;fn A =  2 3 rFkk B = 7 9 8  gS rks AB Kkr dhft,A
   

gy vkO;wg A esa 2 LraHk gSa tks vkO;wg B dh iafDr;ksa osQ leku gSaA vr,o AB ifjHkkf"kr gSA vc
 6( 2) + 9(7) 6(6) + 9(9) 6(0) + 9(8) 
AB =  
 2(2) + 3(7) 2(6) + 3(9) 2(0) + 3(8) 

12 + 63 36 + 81 0 + 72   75 117 72 
=   =  
 4 + 21 12 + 27 0 + 24  25 39 24 

A fVIi.kh ;fn AB ifjHkkf"kr gS rks ;g vko';d ugha gS fd BA Hkh ifjHkkf"kr gksA mi;qDZ r
mnkgj.k esa AB ifjHkkf"kr gS ijarq BA ifjHkkf"kr ugha gS D;ksafd B esa 3 LraHk gSa tcfd A esa osQoy
2 iafDr;k¡ (3 iafDr;k¡ ugha) gSaA ;fn A rFkk B Øe'k% m × n rFkk k × l dksfV;ksa osQ vkO;wg
gSa rks AB rFkk BA nksuksa gh ifjHkkf"kr gSa ;fn vkSj osQoy ;fn n = k rFkk l = m gksA fo'ks"k
:i ls] ;fn A vkSj B nksuksa gh leku dksfV osQ oxZ vkO;wg gSa] rks AB rFkk BA nksuksa ifjHkkf"kr
gksrs gSaA
vkO;wgksa osQ xq.ku dh vØe&fofues;rk (Non-Commutativity of multiplication of matrices)
vc ge ,d mnkgj.k osQ }kjk ns[ksaxs fd] ;fn AB rFkk BA ifjHkkf"kr Hkh gksa] rks ;g vko';d
ugha gS fd AB = BA gksA
2 3
 1 −2 3 
mnkgj.k 13 ;fn A =   vkSj B =  4 5 , rks AB rFkk BA Kkr dhft,A n'kkZb, fd
− 
 4 2 5   2 1
AB ≠ BA
gy D;ksafd fd A ,d 2 × 3 vkO;wg gS vkSj B ,d 3 × 2 vkO;wg gS] blfy, AB rFkk BA nksuksa
gh ifjHkkf"kr gSa rFkk Øe'k% 2 × 2 rFkk 3 × 3, dksfV;ksa osQ vkO;wg gSaA uksV dhft, fd
2 3
 1 −2 3 4  2−8+6 3 − 10 + 3   0 − 4 
5 =  =
−8 + 8 + 10 −12 + 10 + 5 10 3 
AB = 
− 4 2 5   

 2 1

 2 3  2 − 12 − 4 + 6 6 + 15  −10 2 21
   1 −2 3     
vkSj BA =  4 5   = 4 − 20 −8 + 10 12 + 25 = −16 2 37 

 2 1 
4 2 5  
 2 −4 −4+ 2 6 + 5   −2 −2 11 
Li"Vr;k AB ≠ BA.

2018-19
vkO;wg 83

mi;qZDr mnkgj.k esa AB rFkk BA fHkUu&fHkUu dksfV;ksa osQ vkO;wg gSa vkSj blfy, AB ≠ BA
gSA ijarq dksbZ ,slk lksp ldrk gS fd ;fn AB rFkk BA nksuksa leku dksfV osQ gksrs rks laHkor% os
leku gkasxsA ¯drq ,slk Hkh ugha gSA ;gk¡ ge ,d mnkgj.k ;g fn[kykus osQ fy, ns jgs gSa fd ;fn
AB rFkk BA leku dksfV osQ gksa rks Hkh ;g vko';d ugha gS fd os leku gksaA
1 0 0 1 
gS rks AB =   0 1
mnkgj.k 14 ;fn A =   rFkk B =   
0 −1 1 0   −1 0 
0 −1
vkSj BA =   gSA Li"Vr;k AB ≠ BA gSA
1 0
vr% vkO;wg xq.ku Øe&fofues; ugha gksrk gSA

AfVIi.kh bldk rkRi;Z ;g ugha gS fd A rFkk B vkO;wgksa osQ mu lHkh ;qXeksa osQ fy,] ftuosQ
fy, AB rFkk BA ifjHkkf"kr gS] AB ≠ BA gksxkA mnkgj.k osQ fy,
1 0  3 0  3 0
;fn A =   , B = 0 , rks AB = BA =
0 2   4  0 8 
 
è;ku nhft, fd leku dksfV osQ fod.kZ vkO;wgksa dk xq.ku Øe&fofues; gksrk gSA
nks 'kwU;srj vkO;wgksa osQ xq.kuiQy osQ :i esa 'kwU; vkO;wg% (Zero matrix as the product
of two non-zero matrices)
gesa Kkr gS fd nks okLrfod la[;kvksa a rFkk b osQ fy,] ;fn ab = 0 gS rks ;k rks a = 0 vFkok
b = 0 gksrk gSA ¯drq vkO;wgksa osQ fy, ;g vfuok;Zr% lR; ugha gksrk gSA bl ckr dks ge ,d mnkgj.k
}kjk ns[ksaxsA
 0 −1 3 5 
mnkgj.k 15 ;fn A =   rFkk B =   gS rks AB dk eku Kkr dhft,
0 2 0 0 

 0 −1   3 5   0 0 
gy ;gk¡ ij AB =   = 
0 2   0 0   0 0 
vr% ;fn nks vkO;wgksa dk xq.kuiQy ,d 'kwU; vkO;wg gS rks vko';d ugha gS fd muesa ls ,d
vkO;wg vfuok;Zr% 'kwU; vkO;wg gksA
3.4.6 vkO;wgksa osQ xq.ku osQ xq.k/eZ (Properties of multiplication of matrices)
vkO;wgksa osQ xq.ku osQ xq.k/eks± dk ge uhps fcuk mudh miifÙk fn, mYys[k dj jgs gSa%
1. lkgp;Z fu;e% fdUgha Hkh rhu vkO;wgksa A, B rFkk C osQ fy,
(AB) C = A (BC), tc dHkh lehdj.k osQ nksuksa i{k ifjHkkf"kr gksrs gSaA

2018-19
84 xf.kr

2. forj.k fu;e % fdUgha Hkh rhu vkO;wgksa A, B rFkk C osQ fy,


(i) A (B+C) = AB + AC
(ii) (A+B) C = AC + BC, tc Hkh lehdj.k osQ nksuksa i{k ifjHkkf"kr gksrs gSaA
3. xq.ku osQ rRled dk vfLrRo % izR;sd oxZ vkO;wg A osQ fy, leku dksfV osQ ,d vkO;wg
I dk vfLrRo bl izdkj gksrk gS] fd IA = AI = A
vc ge mnkgj.kksa osQ }kjk mi;qZDr xq.k/ek± dk lR;kiu djsaxsA

 1 1 −1 1 3
1 2 3 − 4
mnkgj.k 16 ;fn A =  2 0 3  , B =  0
  2 rFkk C =  rks A(BC)
  2 0 − 2 1
 3 −1 2   −1 4
rFkk (AB)C Kkr dhft, vkSj fn[kykb, fd (AB)C = A(BC) gSA

 1 1 −1  1 3  1 + 0 + 1 3 + 2 − 4   2 1 
gy ;gk¡ AB =  2 0 3  0 2 =  2 + 0 − 3 6 + 0 + 12 = −1 18
 3 −1 2  −1 4  3 + 0 − 2 9 − 2 + 8   1 15

 2 1  2+2 4 + 0 6 − 2 − 8+1 
−1 18 1 2 3 − 4 =  −1 + 36 −2 + 0 −3 − 36 4 + 18
(AB) (C) =    2 0 −2 1  
 1 15   
 1 + 30 2 + 0 3 − 30 − 4 + 15

4 4 4 −7 
35 −2 −39 22 
=  
31 2 −27 11

 1 3  1 + 6 2 + 0 3 − 6 −4 + 3 
1 2 3 −4  
vc BC =  0


2   =  0 + 4 0 + 0 0 − 4 0 + 2 
 −1 2 0 −2 1 
4   −1 + 8 −2 + 0 −3 − 8 4 + 4 

7 2 −3 −1 
 
=  4 0 −4 2 
7 −2 −11 8 

2018-19
vkO;wg 85

 1 1 −1   7 2 −3 −1 
vr,o A(BC) =  2 0 3   4 0 − 4 2 
   
 3 −1 2   7 −2 −11 8 

 7 + 4 − 7 2 + 0 + 2 −3 − 4 + 11 −1 + 2 − 8 
 
= 14 + 0 + 21 4 + 0 − 6 − 6 + 0 − 33 −2 + 0 + 24
 21 − 4 + 14 6 + 0 − 4 −9 + 4 − 22 −3 − 2 + 16 

4 4 4 −7 
35 −2 −39 22 
=  
31 2 −27 11

Li"Vr;k] (AB) C = A (BC)

 0 6 7 0 1 1  2 
mnkgj.k 17 ;fn A =  − 6 0 8  , B = 1 0 2  , C = −2
   

 7 − 8 0  1 2 0   3 

rks AC, BC rFkk (A + B)C dk ifjdyu dhft,A ;g Hkh lR;kfir dhft, fd


(A + B) C = AC + BC

 0 7 8
gy A + B = −5 0 10
 8 − 6 0 

 0 7 8 2   0 − 14 + 24  10 
 10  −2  = −10 + 0 + 30  =  20
vr,o] (A + B) C = −5 0      
 8 − 6 0   3   16 + 12 + 0   28

0 6 7   2   0 − 12 + 21  9
blosQ vfrfjDr AC = − 6 0 8  −2  = −12 + 0 + 24
  = 12 
       
 7 − 8 0  3   14 + 16 + 0  30

2018-19
86 xf.kr

0 1 1   2   0 − 2 + 3  1 
    =  2 + 0 + 6 =  8 
vkSj BC = 1 0 2  −2     
1 2 0   3   2 − 4 + 0 − 2 

9   1  10 
     
blfy, AC + BC = 12  +  8  = 20
30  −2   28

Li"Vr;k (A + B) C = AC + BC

1 2 3
mnkgj.k 18 ;fn A =  3 −2 1 gS rks n'kkZb, fd A3 – 23A – 40I = O
 4 2 1

1 2 3  1 2 3 19 4 8
gy ge tkurs gSa fd A = A.A = 3 −2
2
1  3 −2 1 = 1 12 8 
4 2 1  4 2 1 14 6 15 

1 2 3 19 4 8   63 46 69
 1 1 12 8  =  69 − 6 23
blfy, A3 = A A2 =  3 −2    
 4 2 1 14 6 15   92 46 63

 63 46 69 1 2 3  1 0 0
 69 − 6 23 – 23  3 −2 1 – 40 0 1 0

vc A – 23A – 40I = 
3
    
 92 46 63  4 2 1 0 0 1

 63 46 69  −23 − 46 − 69 − 40 0 0 


 69 − 6 23 +  − 69 46 −23  +  0 − 40 0 
=      
 92 46 63  − 92 − 46 − 23  0 0 − 40 

 63 − 23 − 40 46 − 46 + 0 69 − 69 + 0   0 0 0
 69 − 69 + 0 − 6 + 46 − 40 23 − 23 + 0   0 0 0 = O
=   =  
 92 − 92 + 0 46 − 46 + 0 63 − 23 − 40 0 0 0

2018-19
vkO;wg 87

mnkgj.k 19 fdlh fo/ku lHkk pquko osQ nkSjku ,d jktuSfrd ny us vius mEehnokj osQ izpkj
gsrq ,d tu laioZQ iQeZ dks BsosQ ij vuqcaf¼r fd;kA izpkj gsrq rhu fof/;ksa }kjk laioZQ LFkkfir
djuk fuf'pr gqvkA ;s gSa% VsyhiQksu }kjk] ?kj&?kj tkdj rFkk ipkZ forj.k }kjkA izR;sd laioZQ dk
'kqYd (iSlksa esa) uhps vkO;wg A esa O;Dr gS]

izfr laioZQ ewY;


 40  VsyhiQksu }kjk
A=   ?kj tkdj
 100 
 50  ipkZ }kjkk

X rFkk Y nks 'kgjksa esa] izR;sd izdkj osQ lEidks± dh la[;k vkO;wg

VsyhiQksu ?kj tkdj ipkZ }kjk


1000 500 5000  → X
B=  esa O;Dr gSA X rFkk Y 'kgjksa esa jktuSfrd ny }kjk O;; dh
3000 1000 10, 000 → Y

xbZ oqQy /ujkf'k Kkr dhft,A


gy ;gk¡ ij
 40,000 + 50, 000 + 250,000  → X
BA =  
120,000 + 100,000 +500,000  → Y

 340, 000  → X
=  
 720,000  → Y
vr% ny }kjk nksuksa 'kgjksa esa O;; dh xbZ oqQy /ujkf'k Øe'k% 3]40]000 iSls o 7]20]000
iSls vFkkZr~ Rs 3400 rFkk Rs 7200 gSaA

iz'ukoyh 3-2

2 4  1 3 −2 5
1. eku yhft, fd A =   ,B=  ,C= , rks fuEufyf[kr Kkr dhft,%
3 2  −2 5 3 4
(i) A + B (ii) A – B (iii) 3A – C
(iv) AB (v) BA

2018-19
88 xf.kr

2. fuEufyf[kr dks ifjdfyr dhft,%


a b  a b a2 + b2 b2 + c 2   2ab 2bc 
(i)  + (ii)  2 + 
−b a   b a   a + c
2
a + b  −2ac −2ab 
2 2

−1 4 − 6 12 7 6
 cos 2 x sin 2 x   sin 2 x cos 2 x 
(iii)  8 5 16  +  8 0 5 (iv)  + 2 
   2 2 2
 2 8 5   3 2 4  sin x cos x  cos x sin x 

3. funf'kZr xq.kuiQy ifjdfyr dhft,%

1 
a b   a −b     1 −2  1 2 3
(i)     (ii)  2  [2 3 4] (iii)   
−b a  b a   2 3   2 3 1
 3 

 2 3 4  1 −3 5 2 1
3  1 0 1
(iv)  3 4 5  0 2 4 (v)  2 
   −1 2 1
 4 5 6  3 0 5  −1 1 

 2 −3
 3 −1 3  
(vi)    1 0  .
−1 0 2 
 3 1 
1 2 −3  3 −1 2 4 1 2
   5 rFkk C =  0 3
 2 , rks (A+B) rFkk
4. ;fn A = 5 0 2  , B =  4 2   
1 −1 1   2 0 3  1 −2 3

(B – C) ifjdfyr dhft,A lkFk gh lR;kfir dhft, fd A + (B – C) = (A + B) – C.

2 5 2 3 
3 1  5 1
3 5
   
1 2 4
rFkk B = 
1 2 4
5. ;fn A =   , rks 3A – 5B ifjdfyr dhft,A
3 3 3 5 5 5
   
 7 2 7 6 2
2
 3 3   5 5 5 

2018-19
vkO;wg 89

 cos θ sin θ   sin θ − cos θ 


6. ljy dhft,] cosθ   + sinθ 
 − sin θ cos θ   cos θ sin θ

7. X rFkk Y Kkr dhft, ;fn

7 0  3 0
(i) X + Y =   rFkk X Y =  
 2 5  0 3

 2 3  2 −2
(ii) 2X + 3Y =   rFkk 3X + 2Y =  
 4 0  −1 5 

3 2   1 0
8. X rFkk Y Kkr dhft, ;fn Y =   rFkk 2X + Y =  −3 2 
1 4   

1 3   y 0 5 6 
9. x rFkk y Kkr dhft, ;fn 2 0 x  +  1 2  = 1 8 
     
10. iznÙk lehdj.k dks x, y, z rFkk t osQ fy, gy dhft, ;fn
x z 1 −1  3 5
2  +3  =3 
y t 0 2   4 6

2  −1  10 
11. ;fn x   + y   =   gS rks x rFkk y osQ eku Kkr dhft,A
3   1  5 

x y  x 6   4 x + y
12. ;fn 3   =  + gS rks x, y, z rFkk w osQ ekuksa dks Kkr
 z w  −1 2 w  z + w 3 
dhft,A
cos x − sin x 0 
13. ;fn F ( x ) =  sin x cos x 0  gS rks fl¼ dhft, fd F(x) F(y) = F(x + y)
 
 0 0 1 
14. n'kkZb, fd
 5 −1  2 1   2 1   5 −1
(i)   ≠  
6 7  3 4  3 4  6 7 

2018-19
90 xf.kr

1 2 3 −1 1 0   −1 1 0  1 2 3 
  1  ≠  0 −1 1  0 1 0 
(ii) 0 1 0   0 −1
1 1 0   2 3 4   2 3 4 1 1 0 

2 0 1
15. ;fn A =  2 1 3 gS rks A2 – 5A + 6I, dk eku Kkr dhft,A
1 −1 0 

1 0 2 
16. ;fn A = 0 2 1  gS rks fl¼ dhft, fd A3 – 6A2 + 7A + 2I = 0
 
2 0 3

 3 −2 1 0 
17. ;fn A =   rFkk I =   ,oa A = kA – 2I gks rks k Kkr dhft,A
2

 4 −2   0 1 

 α
 0 − tan
2
18. ;fn A =   rFkk I dksfV 2 dk ,d rRled vkO;wg gSA rks fl¼ dhft,
 tan α 0 
 2 

 cos α − sin α 
fd I + A = (I – A) 
 sin α cos α 
19. fdlh O;kikj la?k osQ ikl 30]000 #i;ksa dk dks"k gS ftls nks fHkUu&fHkUu izdkj osQ ckaMksa
esa fuosf'kr djuk gSA izFke ckaM ij 5% okf"kZd rFkk f}rh; ckaM ij 7% okf"kZd C;kt izkIr
gksrk gSA vkO;wg xq.ku osQ iz;ksx }kjk ;g fu/kZfjr dhft, fd 30]000 #i;ksa osQ dks"k dks
nks izdkj osQ ckaMksa esa fuos'k djus osQ fy, fdl izdkj ck¡Vas ftlls O;kikj la?k dks izkIr oqQy
okf"kZd C;kt
(a) Rs 1800 gksA (b) Rs 2000 gksA
20. fdlh LowQy dh iqLrdksa dh nqdku esa 10 ntZu jlk;u foKku] 8 ntZu HkkSfrd foKku rFkk
10 ntZu vFkZ'kkL=k dh iqLrosaQ gSaA bu iqLrdksa dk foØ; ewY; Øe'k% Rs 80] Rs 60 rFkk
Rs 40 izfr iqLrd gSA vkO;wg chtxf.kr osQ iz;ksx }kjk Kkr dhft, fd lHkh iqLrdksa dks
cspus ls nqdku dks oqQy fdruh /ujkf'k izkIr gksxhA
eku yhft, fd X, Y, Z, W rFkk P Øe'k% 2 × n, 3 × k, 2 × p, n × 3 rFkk p × k, dksfV;ksa
osQ vkO;wg gSaA uhps fn, iz'u la[;k 21 rFkk 22 esa lgh mÙkj pqfu,A

2018-19
vkO;wg 91

21. PY + WY osQ ifjHkkf"kr gksus osQ fy, n, k rFkk p ij D;k izfrca/ gksxk\
(A) k = 3, p = n (B) k LosPN gS , p = 2
(C) p LosPN gS, k = 3 (D) k = 2, p = 3
22. ;fn n = p, rks vkO;wg 7X – 5Z dh dksfV gSA
(A) p × 2 (B) 2 × n (C) n × 3 (D) p × n
3.5. vkO;wg dk ifjorZ (Transpose of a Matrix)
bl vuqPNsn esa ge fdlh vkO;wg osQ ifjorZ rFkk oqQN fo'ks"k izdkj osQ vkO;wgksa] tSls lefer
vkO;wg (Symmetric Matrix) rFkk fo"ke lefer vkO;wg (Skew Symmetric Matrix) osQ
ckjs esa tkusaxsA
ifjHkk"kk 3 ;fn A = [aij] ,d m × n dksfV dk vkO;wg gS rks A dh iafDr;ksa rFkk LraHkksa dk ijLij
fofue; (Interchange) djus ls izkIr gksus okyk vkO;wg A dk ifjorZ (Transpose) dgykrk
gSA vkO;wg A osQ ifjorZ dks A′ (;k AT) ls fu:fir djrs gSaA nwljs 'kCnksa esa] ;fn
A = [aij]m × n, rks A′ = [aji]n × mgksxkA mnkgj.kkFkZ] ;fn

 3 5 3 3 0
   
A= 
3 1 gks rks A ′ =  −1  gksxkA
 0 −1 5 1
 5  2 × 3
 
 5 3 × 2

vkO;wgksa osQ ifjorZ osQ xq.k/eZ (Properties of transpose of matrices)


vc ge fdlh vkO;wg osQ ifjorZ vkO;wg osQ fuEufyf[kr xq.k/eks± dks fcuk miifÙk fn, O;Dr djrs
gSaA budk lR;kiu mi;qDr mnkgj.kksa }kjk fd;k tk ldrk gSaA mi;qDr dksfV osQ fdUgha vkO;wgksa
A rFkk B osQ fy,
(i) (A′)′ = A (ii) (kA)′ = kA′ (tgk¡ k dksbZ vpj gSA)
(iii) (A + B)′ = A′ + B′ (iv) (A B)′ = B′ A′

3 3 2  2 −1 2
mnkgj.k 20 ;fn A =   rFkk B =  rks fuEufyf[kr dks lR;kfir
4 2 0  1 2 4 

dhft,%
(i) (A′)′ = A (ii) (A + B)′ = A′ + B′
(iii) (kB)′ = kB′, tgk¡ k dksbZ vpj gSA

2018-19
92 xf.kr

gy
(i) ;gk¡

 3 4
3 3 2   ′ 3 3 2
A=   ⇒ A′ =  3 2 ⇒ ( A′ ) =  =A
4 2 0   2 0 4 2 0 
 
vr% (A′)′ = A
(ii) ;gk¡

3 3 2  2 −1 2  5 3 − 1 4
A=  , B =   ⇒A+B= 
4 2 0 1 2 4 5 4 4

 5 5
 
vr,o (A + B)′ =  3 − 1 4
 4 4

 3 4  2 1
   
vc A′ =  3 2 , B′ = −1 2
 2 0  2 4
 

 5 5
 
vr,o A′ + B′ =  3 −1 4
 4 4

vr% (A + B)′ = A′ + B′
(iii) ;gk¡
 2 −1 2  2k −k 2k 
kB = k  =
1 2 4   k 2k 4k 

 2k k   2 1
rc    
(kB)′ =  − k 2k  = k −1 2  = kB′
 2k 4k   2 4 

vr% (kB)′ = kB′

2018-19
vkO;wg 93

 −2
mnkgj.k 21 ;fn A =  4  , B = [1 3 − 6] gS rks lR;kfir dhft, (AB)′ = B′A′ gSA
 
 5 
gy ;gk¡
 −2 
 4  , B = 1 3 −6
A=   [ ]
 5 
 −2  −2 −6 12 
blfy,  4 1 3 −6
AB =   [ ] =  4 12 −24 
 5   5 15 −30 

 −2 4 5 
 − 6 12 15 
vr% (AB)′ =  
 12 −24 −30

 1
vc A′ = [–2 4 5] , B′ =  3 
 
 − 6 

 1  −2 4 5
 3  −2 4 5 =  −6 12 15  = ( AB) ′
blfy, B′A′ =   [ ]  
 − 6  12 −24 −30
Li"Vr;k (AB)′ = B′A′

3.6 lefer rFkk fo"ke lefer vkO;wg (Symmetric and Skew Symmetric
Matrices)
ifjHkk"kk 4 ,d oxZ vkO;wg A = [aij] lefer dgykrk gS ;fn A′ = A vFkkZr~ i o j osQ gj laHko
ekuksa osQ fy, [aij] = [aji] gksA

 3 2 3
mnkgj.k osQ fy,] A =  2 −1.5 −1  ,d lefer vkO;wg gS] D;ksafd A′ = A

 3 −1 1 

2018-19
94 xf.kr

ifjHkk"kk 5 ,d oxZ vkO;wg A = [aij] fo"ke lefer vkO;wg dgykrk gS] ;fn A′ = – A, vFkkZr~
i rFkk j osQ gj laHko ekuksa osQ fy, aji = – aij gksA vc] ;fn ge i = j j[ksa] rks aii = – aii gksxkA
vr% 2aii = 0 ;k aii = 0 leLr i osQ fy,A
bldk vFkZ ;g gqvk fd fdlh fo"ke lefer vkO;wg osQ fod.kZ osQ lHkh vo;o 'kwU; gksrs
 0 e f
gSaA mnkgj.kkFkZ vkO;wg B =  −e 0 g  ,d fo"ke lefer vkO;wg gS] D;ksafd B′ = – B gSA
 − f −g 0 

vc] ge lefer rFkk fo"ke lefer vkO;wgksa osQ oqQN xq.k/eks± dks fl¼ djsaxsA

izes; 1 okLrfod vo;oksa okys fdlh oxZ vkO;wg A osQ fy, A + A′ ,d lefer vkO;wg rFkk
A – A′ ,d fo"ke lefer vkO;wg gksrs gSaA
miifÙk eku yhft, fd B = A + A′ rc
B′ = (A + A′)′
= A′ + (A′)′ (D;ksafd (A + B)′ = (A′ + B′)
= A′ + A (D;ksafd (A′)′ = A)
= A + A′ (D;ksafd A + B = B + A)
= B
blfy, B = A + A′ ,d lefer vkO;wg gSA
vc eku yhft, fd C = A – A′
C′ = (A – A′)′ = A′ – (A′)′ (D;ksa?)
= A′ – A (D;ksa?)
= – (A – A′) = – C
vr% C = A – A′ ,d fo"ke lefer vkO;wg gSA
izes; 2 fdlh oxZ vkO;wg dks ,d lefer rFkk ,d fo"ke lefer vkO;wgksa osQ ;ksxiQy osQ :i
esa O;Dr fd;k tk ldrk gSA
miifÙk eku yhft, fd A ,d oxZ vkO;wg gSA ge fy[k ldrs gSa fd
1 1
A = (A + A′) + (A − A′)
2 2

2018-19
vkO;wg 95

ize;s 1 }kjk gesa Kkr gS fd (A + A′) ,d lefer vkO;wg rFkk (A – A′) ,d fo"ke lefer
vkO;wg gSA D;ksfa d fdlh Hkh vkO;wg A osQ fy, (kA)′ = kA′ gksrk gSA blls fu"d"kZ fudyrk gS fd
1 1
(A + A′) lefer vkO;wg rFkk (A − A′) fo"ke lefer vkO;wg gSA vr% fdlh oxZ vkO;wg dks
2 2
,d lefer rFkk ,d fo"ke lefer vkO;wgksa osQ ;ksxiQy osQ :i esa O;Dr fd;k tk ldrk gSA
 2 −2 − 4
mnkgj.k 22 vkO;wg B = −1 3 4  dks ,d lefer vkO;wg rFkk ,d fo"ke lefer
 1 −2 −3 
vkO;wg osQ ;ksxiQy osQ :i esa O;Dr dhft,A
 2 −1 1 
gy ;gk¡ B′ =  − 2 3 −2
 − 4 4 −3

 −3 −3 
 2 2 2
 4 −3 −3   
1  −3 1  gSA
2 = 
1
eku yhft, fd P = ( B + B′ ) = −3 6 3

2 2  2
 −3 2 − 6  −3 
 1 −3 
 2 
 −3 −3 
 2 2 2
 
−3
vc P′ =  3 1 = P
2 
 
 −3 1 −3 
 2 
1
vr% P = (B + B′) ,d lefer vkO;wg gSA
2
 −1 −5 
0 2 2
 0 −1 −5   
1 
Q = (B – B ) = 1 0 6  =  3  gSA
1 1
lkFk gh eku yhft, ′ 0
2 2 2 
5 −6 0   5 
 −3 0
 2 

2018-19
96 xf.kr

 1 5
0 2 3
 
−1
rc Q′ =  0 −3 = − Q
 2 
 
 −5 3 0
 2 

1
vr% Q= (B – B′) ,d fo"ke lefer vkO;wg gSA
2
 −3 −3   −1 −5 
 2 2 2 
0
2 2
    2 −2 − 4
−3
3  = −1 4  = B
1
vc P+Q= 3 1 + 0 3
 2  2 
     1 −2 −3 
 −3 1 −3  
5
−3 0
 2   2 
vr% vkO;wg B ,d lefer vkO;wg rFkk ,d fo"ke lefer vkO;wg osQ ;ksxiQy osQ :i esa
O;Dr fd;k x;kA

iz'ukoyh 3-3
1. fuEufyf[kr vkO;wgksa esa ls izR;sd dk ifjorZ Kkr dhft,%
5
1  −1 5 6 
 1 −1  
(i)   (ii)   (iii)  3 5 6 
2  2 3
−1   2 3 −1
   

 −1 2 3 − 4 1 −5
   2 0 gSa rks lR;kfir dhft, fd
2. ;fn A =  5 7 9 rFkk B =  1 
 −2 1 1  1 3 1
(i) (A + B)′ = A′ + B′ (ii) (A – B)′ = A′ – B′
 3 4
   −1 2 1
3. ;fn A ′ = −1 2 rFkk B =  gSa rks lR;kfir dhft, fd
 1 2 3
 0 1 
(i) (A + B)′ = A′ + B′ (ii) (A – B)′ = A′ – B′

2018-19
vkO;wg 97

 −2 3  −1 0 
4. ;fn A ′ =   rFkk B =   gSa rks (A + 2B)′ Kkr dhft,A
 1 2  1 2
5. A rFkk B vkO;wgksa osQ fy, lR;kfir dhft, fd (AB)′ = B′A′, tgk¡

1  0 
  , B = −1 2 1
(i) A = − 4  [ ] (ii) A = 1  , B = [1 5 7 ]
 3  2 

 cos α sin α 
6. (i) ;fn A =   gks rks lR;kfir dhft, fd A′ A = I
 − sin α cos α 

 sin α cos α 
(ii) ;fn A =   gks rks lR;kfir dhft, fd A′ A = I
 − cos α sin α 

1 −1 5
7. (i) fl¼ dhft, fd vkO;wg A = −1 2 1 ,d lefer vkO;wg gSA
 5 1 3

 0 1 −1 
(ii) fl¼ dhft, fd vkO;wg A = −1 0 1  ,d fo"ke lefer vkO;wg gSA
 
 1 −1 0 

1 5 
8. vkO;wg A =   osQ fy, lR;kfir dhft, fd
6 7 
(i) (A + A′) ,d lefer vkO;wg gSA
(ii) (A – A′) ,d fo"ke lefer vkO;wg gSA

 0 a b
1 1
9. ;fn A = − a 0 c  rks ( A + A′ ) rFkk ( A − A′ ) Kkr dhft,A
2 2
 −b −c 0 
10. fuEufyf[kr vkO;wgksa dks ,d lefer vkO;wg rFkk ,d fo"ke lefer vkO;wg osQ ;ksxiQy
osQ :i esa O;Dr dhft,%
 6 −2 2
3 5  
(i)   (ii) −2 3 −1 
1 −1  2 −1 3 

2018-19
98 xf.kr

 3 3 −1
 1 5
(iii)  −2 −2 1
 (iv)  
 −1 2
 − 4 −5 2

iz'u la[;k 11 rFkk 12 esa lgh mÙkj pqfu,%


11. ;fn A rFkk B leku dksfV osQ lefer vkO;wg gSa rks AB – BA ,d
(A) fo"ke lefer vkO;wg gS (B) lefer vkO;wg gS
(C) 'kwU; vkO;wg gS (D) rRled vkO;wg gS
cos α − sin α 
12. ;fn A =  rFkk A + A′ = I, rks α dk eku gS
sin α cos α 

π π
(A) (B)
6 3

(C) π (D)
2
3.7 vkO;wg ij izkjafHkd lafØ;k (vkO;wg :ikarj.k) [Elementary Operation
(Transformation) of a matrix]
fdlh vkO;wg ij N% izdkj dh lafØ;k,¡ (:ikarj.k) fd, tkrs gSa] ftuesa ls rhu iafDr;ksa rFkk rhu
LraHkksa ij gksrh gS] ftUgsa izkjafHkd lafØ;k,¡ ;k :ikarj.k dgrs gSaA
(i) fdlh nks iafDr;ksa ;k nks LraHkksa dk ijLij fofue;% izrhdkRed :i (symbolically) esa]
ioha rFkk joha iafDr;ksa osQ fofue; dks Ri ↔ Rj rFkk iosa rFkk josa LraHkksa osQ fofue; dks
Ci ↔ Cj }kjk fu:fir djrs gSaA mnkgj.k osQ fy,

1 2 1 −1 3 1
   
A = −1 3 1  , ij R1 ↔ R2 dk iz;ksx djus ij gesa vkO;wg  1 2 1  izkIr
5 6 7  5 6 7 
 
gksrk gSA
(ii) fdlh iafDr ;k LraHk osQ vo;oksa dks ,d 'kwU;srj la[;k ls xq.ku djuk% izrhdkRed :i
esa] ioha iafDr osQ izR;sd vo;o dks k, tgk¡ k ≠ 0 ls xq.ku djus dks Ri → kRi }kjk
fu:fir djrs gSaA
 1 2 1
laxr LraHk lafØ;k dks Ci → kCi }kjk fu:fir djrs gSaA mnkgj.kkFkZ B =  
 −1 3 1

2018-19
vkO;wg 99

 1
 1 2
7
ij C3 → 1 C3 , dk iz;ksx djus ij gesa vkO;wg   izkIr gksrk gSA
7  −1 3
1
 7 
(iii) fdlh iafDr vFkok LraHk osQ vo;oksa esa fdlh vU; iafDr vFkok LraHk osQ laxr vo;oksa dks
fdlh 'kwU;srj la[;k ls xq.kk djosQ tksM+uk% izrhdkRed :i esa] ioha iafDr osQ vo;oksa esa
joha iafDr osQ laxr vo;oksa dks k ls xq.kk djosQ tksM+us dks Ri → Ri + kRj ls fu:fir djrs
gSAa
laxr LraHk lafØ;k dks Ci → Ci + k Cj ls fu:fir djrs gSaA
1 2
mnkgj.k osQ fy, C =   ij R2 → R2 – 2R1 dk iz;ksx djus ij] gesa vkO;wg
 2 −1
1 2
 0 −5 izkIr gksrk gSA
 
3.8 O;qRØe.kh; vkO;wg (Invertible Matrices)
ifjHkk"kk 6 ;fn A, dksfV m, dk] ,d oxZ vkO;wg gS vkSj ;fn ,d vU; oxZ vkO;wg dk vfLrRo
bl izdkj gS] fd AB = BA = I, rks B dks vkO;wg A dk O;qRØe vkO;wg dgrs gSa vkSj bls
A– 1 }kjk fu:fir djrs gSaA ,slh n'kk esa vkO;wg A O;qRØe.kh; dgykrk gSA
 2 3  2 −3 
mnkgj.kkFkZ] eku yhft, fd A=   rFkk B =  −1 2  nks vkO;wg gSaA
1 2  
 2 3   2 −3 
vc AB =   
 1 2   −1 2 
 4 − 3 −6 + 6   1 0 
=  = =I
 2 − 2 −3 + 4   0 1 
1 0 
lkFk gh BA =   = I gSA vr% B vkO;wg] A dk O;qRØe gSA
0 1 
nwljs 'kCnksa esa] B = A– 1 rFkk A vkO;wg B, dk O;qRØe gS] vFkkZr~ A = B–1

AfVIi.kh
1. fdlh vk;rkdkj (Rectangular) vkO;wg dk O;qRØe vkO;wg ugha gksrk gS] D;ksfa d xq.kuiQy
AB rFkk BA osQ ifjHkkf"kr gksus vkSj leku gksus osQ fy,] ;g vfuok;Z gS fd A rFkk B
leku dksfV osQ oxZ vkO;wg gksaA

2018-19
100 xf.kr

2. ;fn B, vkO;wg A dk O;qRØe gS] rks A, vkO;wg B dk O;qRØe gksrk gSA

izes; 3 [O;qRØe vkO;wg dh vf}rh;rk (Uniqueness of inverse)] fdlh oxZ vkO;wg dk O;qRØe
vkO;wg] ;fn mldk vfLrRo gS rks vf}rh; gksrk gSA
miifÙk eku yhft, fd A = [aij] dksfV m dk] ,d oxZ vkO;wg gSA ;fn laHko gks] rks eku yhft,
B rFkk C vkO;wg A osQ nks O;qRØe vkO;wg gSaA vc ge fn[kk,¡xsa fd B = C gSA
D;ksafd vkO;wg A dk O;qRØe B gS
vr% AB = BA = I ... (1)
D;ksafd vkO;wg A dk O;qRØe C Hkh gS vr%
AC = CA = I ... (2)
vc B = BI = B (AC) = (BA) C = IC = C
izes; 4 ;fn A rFkk B leku dksfV osQ O;qRØe.kh; vkO;wg gksa rks (AB)–1 = B–1 A–1
miifÙk ,d O;qRØe.kh; vkO;wg dh ifjHkk"kk ls
(AB) (AB)–1 =1
;k –1
A (AB) (AB)–1 = A–1I (A–1 dk nksuksa i{kksa ls iwoZxq.ku djus ij)
;k (A–1A) B (AB)–1 = A–1 (A–1 I = A–1] rFkk vkO;wg xq.ku lkgp;Z gksrk gS)
;k IB (AB)–1 = A –1
;k B (AB)–1 = A –1
;k –1
B B (AB)–1 = B–1 A –1
;k I (AB)–1 = B–1 A –1
vr% (AB)–1 = B–1 A –1

3.8.1 izkjfEHkd lafØ;kvksa }kjk ,d vkO;wg dk O;qRØe (Inverse of a matrix by


elementary operations)
eku yhft, fd X, A rFkk B leku dksfV osQ vkO;wg gSa rFkk X = AB gSA vkO;wg lehdj.k X
= AB ij izkjafHkd iafDr lafØ;kvksa dk iz;ksx djus osQ fy,] ge bu iafDr lafØ;kvksa dk ck,¡ i{k
esa X ij rFkk nk,¡ i{k esa izFke vkO;wg A ij] ,d lkFk iz;ksx djsaxsA
blh izdkj vkO;wg lehdj.k X = AB ij izkjafHkd LraHk lafØ;kvksa dk iz;ksx djus osQ fy,]
ge bu LraHk lafØ;kvksa dk ck,¡ i{k esa X ij rFkk nk,¡ i{k esa xq.kuiQy AB esa ckn okys
vkO;wg B ij] ,d lkFk iz;ksx djsaxsA
mi;qDZ r ifjppkZ dks è;ku esa j[krs gq, ge ;g fu"d"kZ fudkyrs gSa fd] ;fn A ,d ,slk vkO;wg
gS fd A–1 dk vfLrRo gS rks izkjafHkd iafDr lafØ;kvksa osQ iz;ksx }kjk A–1 Kkr djus osQ fy,]
A = IA fyf[k, vkSj iafDr lafØ;kvksa dk iz;ksx A = IA ij rc rd djrs jfg, tc rd fd
I = BA ugha fey tkrk gSA bl izdkj izkIr vkO;wg B, vkO;wg A dk O;qRØe gksxkA blh izdkj] ;fn

2018-19
vkO;wg 101

ge LraHk lafØ;kvksa osQ iz;ksx }kjk A–1 Kkr djuk pkgrs gSa] rks A = AI fyf[k, vkSj
A = AI ij LraHk lafØ;kvksa dk iz;ksx rc rd djrs jfg, tc rd gesa I = AB izkIr ugha gks tkrk gSA
fVIi.kh ml n'kk esa tc A = IA (A = AI) ij ,d ;k vf/d izkjafHkd iafDr (LraHk) lafØ;kvksa
osQ djus ij ;fn ck,¡ i{k osQ vkO;wg A dh ,d ;k vf/d iafDr;ksa osQ lHkh vo;o 'kwU; gks tkrs
gSa rks A–1 dk vfLrRo ugha gksrk gSA
1 2
mnkgj.k 23 izkjafHkd lafØ;kvksa osQ iz;ksx }kjk vkO;wg A =  2 −1 dk O;qRØe Kkr dhft,A
 

gy izkjafHkd iafDr lafØ;kvksa osQ iz;ksx djus osQ fy, ge A = IA fy[krs gSa] vFkkZr~
 1 2   1 0 1 2   1 0 
 2 −1 =  0 1 A, rks 0 −5 =  −2 1 A (R2 → R2 – 2R1 osQ iz;ksx }kjk)
       

1 0
1 2   −1  A
1
;k 0 1  =  2 (R2 → – R osQ iz;ksx }kjk)
  5 2
5 5

1 2
 1 0  5 5
;k 0 1  =  2 A (R1 → R1 – 2R2 osQ iz;ksx }kjk)
   −1 
 5 5 

1 2
5 5
vr% A–1 =   gSA
2 −1 
 5 5 
fodYir% izkjafHkd LraHk lafØ;kvksa osQ iz;ksx gsrq] ge fy[krs gSa fd A = AI, vFkkZr~
1 2  1 0 
 2 −1 = A 0 1 
   
C2 → C2 – 2C1, osQ iz;ksx }kjk
1 0   1 −2
 2 −5 = A  0 1 
   

2018-19
102 xf.kr

1
vc C2 → − C 2 , osQ iz;ksx }kjk
5

 2
1 0  1 5
2 1 = A  −1

  0
 5 
vUrr% C1 → C1 – 2C2, osQ iz;ksx }kjk
1 2
1 0  5 5
0 1  = A  2 
−1 
  
 5 5 

1 2
5 5
vr,o A–1 =  
2 −1 
 5 5 
mnkgj.k 24 izkjafHkd lafØ;kvksa osQ iz;ksx }kjk fuEufyf[kr vkO;wg dk O;qRØe izkIr dhft,%
0 1 2 
A = 1 2 3
3 1 1 

 0 1 2   1 0 0
 
gy ge tkurs gSa fd A = I A, vFkkZr~ 1 2 3  = 0 1 0 A
 3 1 1  0 0 1 

1 2 3   0 1 0
;k 0 1 2  = 1 0 0 A (R ↔ R }kjk)
    1 2
 3 1 1  0 0 1 

1 2 3  0 1 0
0 1  0  A (R3 → R3 – 3R1}kjk)
;k  2  = 1 0
0 −5 −8  0 −3 1 

2018-19
vkO;wg 103

1 0 −1   −2 1 0
0 1 2  = 
;k   1 0 0  A (R1 → R1 – 2R2}kjk)
0 −5 −8   0 −3 1 

1 0 −1   −2 1 0
0 1 2  = 
;k   1 0 0 A (R3 → R3 + 5R2}kjk)
0 0 2   5 −3 1 

 −2 1 0
1 0 −1  
0 1 2   1 0 0  A 1
;k   =  5 −3 (R3 → R }kjk )
1 2 3
0 0 1   
2 2 2

 1 −1 1
1 0 0   2 2 2
;k  0 1 2 =  1 0 
0  A (R1 → R1 + R3 }kjk)
  
0 0 1   5 −3 1
 
2 2 2

 1 −1 1
1 0 0  2
0 1 0  2 2
 
;k   = − 4 3 −1 A (R2 → R2 – 2R3}kjk)
0 0 1   5 −3 1
 
2 2 2
 1 −1 1
2 2 2
 
vr% A =  −4 3
–1 −1 
 5 −3 1
 
2 2 2
fodYir%] A = AI fyf[k,, vFkkZr~
 0 1 2 1 0 0
1 2 3  A 0 1 0
  =  
3 1 1  0 0 1

2018-19
104 xf.kr

1 0 2   0 1 0
2 1 3  
;k   = A 1 0 0 (C1 ↔ C2)
1 3 1  0 0 1

1 0 0  0 1 0 
 2 1 −1 A 1 0 −2
;k   =   (C3 → C3 – 2C1)
1 3 −1  0 0 1 

1 0 0  0 1 1 
2 1 0  
;k   = A 1 0 −2 (C3 → C3 + C2)
1 3 2  0 0 1 

 1
1 0 0  0 1 2 
2 1 0   1
;k   = A 1 0 −1 (C3 → C)
2 3
1 3 1   1
0 0 
 2

 1
 −2 1
 1 0 0  2
 0 1 0  
;k   = A  1 0 −1 (C1 → C1 – 2C2)
 1
 −5 3 1  0 0 
 2

 1 1
 1
 1 0 0  2 2
0 1 0 A  − 4 0 −1 
;k   =   (C1 → C1 + 5C3)
 1
0 3 1 
5
0 
 2 2

 1 −1 1 
 1 0 0   2 2 2
 0 1 0 A  − 4 
3 −1 
;k   =  (C2 → C2 – 3C3)
0 0 1  5 −3 1 
 
 2 2 2

2018-19
vkO;wg 105

1 −1 1
2 2 2
 
vr% A–1 =  − 4 3 −1 
 5 −3 1
 
 2 2 2

10 −2 
mnkgj.k 25 ;fn P =  gS rks P – 1 Kkr dhft,] ;fn bldk vfLrRo gSA
 −5 1 

10 −2   1 0 
gy P = I P fyf[k, vFkkZr~]  = P
 −5 1   0 1

 −1   1 
;k 1  
5 = 10
0
P (R1 →
1
R }kjk )
    10 1
 −5 1   0 1

 −1 1 
 0
;k 1 5  =  10  P (R2 → R2 + 5R1 }kjk)
   1 1
0 0
 2 
;gk¡ ck,¡ i{k osQ vkO;wg dh f}rh; iafDr osQ lHkh vo;o 'kwU; gks tkrs gSa] vr% P–1 dk
vfLrRo ugha gSA

iz'ukoyh 3-4
iz'u la[;k 1 ls 17 rd osQ vkO;wgksa osQ O;qRØe] ;fn mudk vfLrRo gS] rks izkjafHkd :ikarj.k osQ
iz;ksx ls Kkr dhft,%
 1 −1  2 1 1 3
1.  2 3 2.   3.  
   1 1 2 7

 2 3 2 1  2 5
4. 5 7 5.   6.  
  7 4  1 3

3 1  4 5  3 10 
7. 5 2 8.   9.  
   3 4 2 7 

2018-19
106 xf.kr

 3 −1  2 − 6  6 −3
10.  − 4 2 11.   12.  
   1 −2   −2 1 

 2 −3 3 
 2 −3 2 1  
13.  −1 2  14.   15.  2 2 3 
   4 2  3 −2 2 

1 3 −2   2 0 −1 
−3 0 −5  
16.  17.  5 1 0 
 2 5 0   0 1 3 
18. vkO;wg A rFkk B ,d nwljs osQ O;qRØe gksaxs osQoy ;fn
(A) AB = BA (B) AB = BA = 0
(C) AB = 0, BA = I (D) AB = BA = I

fofo/ mnkgj.k

 cos θ sin θ 
mnkgj.k 26 ;fn A =   gS rks fl¼ dhft, fd
 − sin θ cos θ

 cos nθ sin nθ 
An =  , n∈N
 − sin nθ cos nθ

gy ge bldks xf.krh; vkxeu osQ fl¼kar }kjk fl¼ djsaxsA


 cos θ sin θ   cos nθ sin nθ 
;gk¡ ij P(n) : ;fn A =   , rks A n =  ,n∈N
 − sin θ cos θ   − sin nθ cos nθ 

 cos θ sin θ   cos θ sin θ 


vc P(1) : A =   , blfy, A = 
1

 − sin θ cos θ   − sin θ cos θ 
vr%] ifj.kke n = 1 osQ fy, lR; gSA
eku yhft, fd ifj.kke n = k osQ fy, lR; gSA
 cos θ sin θ   cos k θ sin k θ 
, rks A = 
k
blfy, P(k) : A =   .
 − sin θ cos θ  − sin k θ cos k θ 

2018-19
vkO;wg 107

vc ge fl¼ djsaxs fd ifj.kke n = k +1 osQ fy, Hkh lR; gSA


 cos θ sin θ   cos k θ sin k θ 
Ak + 1 = A ⋅ A = 
k
vc  
 − sin θ cos θ  − sin k θ cos k θ 

 cos θ cos k θ – sin θ sin k θ cos θ sin k θ + sin θ cos k θ 


=  
 − sin θ cos k θ + cos θ sin k θ − sin θ sin k θ + cos θ cos k θ 

 cos (θ + k θ) sin (θ + k θ)   cos ( k + 1)θ sin ( k + 1)θ 


=  = 
 − sin (θ + k θ) cos (θ + k θ)   − sin ( k + 1)θ cos (k + 1)θ 
blfy, ifj.kke n = k + 1 osQ fy, Hkh lR; gSA vr% xf.krh; vkxeu dk fl¼kar ls izekf.kr
 cos n θ sin n θ 
gksrk gS fd A n =  , leLr izko`Qr la[;kvksa n osQ fy, lR; gSA
− sin n θ cos n θ

mnkgj.k 27 ;fn A rFkk B leku dksfV osQ lefer vkO;wg gSa rks n'kkZb, fd AB lefer gS] ;fn
vkSj osQoy ;fn A rFkk B Øefofues; gS] vFkkZr~ AB = BA gSA
gy fn;k gS fd A rFkk B nksuksa lefer vkO;wg gSa] blfy, A′ = A rFkk B′ = B gSA
eku yhft, fd AB lefer gS rks (AB)′ = AB
¯drq (AB)′ = B′A′= BA (D;ksa?)
vr% BA = AB
foykser%] ;fn AB = BA gS rks ge fl¼ djsaxs fd AB lefer gSA
vc (AB)′ = B′A′
= B A (D;ksafd A rFkk B lefer gSa )
= AB
vr% AB lefer gSA

 2 −1 5 2  2 5
mnkgj.k 28 eku yhft, fd A =   ,B=  ,C=  gSA ,d ,slk vkO;wg
3 4 7 4  3 8
D Kkr dhft, fd CD – AB = O gksA
gy D;ksafd A, B, C lHkh dksfV 2, osQ oxZ vkO;wg gSa vkSj CD – AB Hkyh&Hkk¡fr ifjHkkf"kr gS]
blfy, D dksfV 2 dk ,d oxZ vkO;wg gksuk pkfg,A

2018-19
108 xf.kr

a b 
eku yhft, fd D=   gSA rc CD – AB = O ls izkIr gksrk gS fd
c d 

 2 5  a b   2 −1  5 2
 3 8  c d  − 3 4  7 4 = O
     

 2a + 5c 2b + 5d   3 0   0 0 
;k  3a + 8c 3b + 8d  −  43 22 =  
    0 0 

 2a + 5c − 3 2b + 5d   0 0 
;k  3a + 8c − 43 3b + 8d − 22 =  0 0 
   
vkO;wgksa dh lekurk ls gesa fuEufyf[kr lehdj.k izkIr gksrs gSa%
2a + 5c – 3 = 0 ... (1)
3a + 8c – 43 = 0 ... (2)
2b + 5d = 0 ... (3)
rFkk 3b + 8d – 22 = 0 ... (4)
(1) rFkk (2), dks ljy djus ij a = –191, c = 77 izkIr gksrk gSA
(3) rFkk (4), dks ljy djus ij b = – 110, d = 44 izkIr gksrk gSA
 a b   −191 −110 
vr% D=  =
 c d   77 44 

vè;k; 3 ij fofo/ iz'ukoyh


0 1 
1. eku yhft, fd A =   gks rks fn[kkb, fd lHkh n ∈ N osQ fy,
0 0
(aI + bA)n = an I + nan – 1 bA, tgk¡ I dksfV 2 dk rRled vkO;wg gSA

1 1 1 3n −1 3n−1 3n −1 
   
2. ;fn A = 1 1 1 , rks fl¼ dhft, fd A n = 3n −1 3n−1 3n −1  , n ∈ N
1 1 1  n −1 n−1 n −1 
3 3 3 

3 − 4  1 + 2n − 4n 
3. ;fn A =   rks fl¼ dhft, fd A n =  tgk¡ n ,d /u iw.kk±d gSA
1 −1   n 1 − 2n 

2018-19
vkO;wg 109

4. ;fn A rFkk B lefer vkO;wg gSa rks fl¼ dhft, fd AB – BA ,d fo"ke lefer vkO;wg gSA
5. fl¼ dhft, fd vkO;wg B′AB lefer vFkok fo"ke lefer gS ;fn A lefer vFkok
fo"ke lefer gSA
0 2 y z
6. x, y, rFkk z osQ ekuksa dks Kkr dhft,] ;fn vkO;wg A =  x y − z  lehdj.k

 x − y z 
A′A = I dks larq"V djrk gSA
1 2 0   0 
7. x osQ fdl eku osQ fy, [1 2 1]  2 0 1   2  = O gS ?
   
1 0 2   x 

3 1
8. ;fn A =  gks rks fl¼ dhft, fd A2 – 5A + 7I = O gSA
−1 2

1 0 2   x 
9. ;fn [ x −5 −1] 0 2 1  4  = O gS rks x dk eku Kkr dhft,A
  
2 0 3  1 
10. ,d fuekZrk rhu izdkj dh oLrq,¡ x, y, rFkk z dk mRiknu djrk gS ftu dk og nks cktkjksa
esa foØ; djrk gSA oLrqvksa dh okf"kZd fcØh uhps lwfpr (funf'kZr) gS%
ck”kkj mRiknu
I 10,000 2,000 18,000
II 6,000 20,000 8,000
(a) ;fn x, y rFkk z dh izR;sd bdkbZ dk foØ; ewY; Øe'k% Rs 2-50] Rs 1-50 rFkk
Rs 1-00 gS rks izR;sd ck”kkj esa oqQy vk; (Revenue)] vkO;wg chtxf.kr dh lgk;rk
ls Kkr dhft,A
(b) ;fn mi;qZDr rhu oLrqvksa dh izR;sd bdkbZ dh ykxr (Cost) Øe'k% Rs 2-00]
Rs 1-00 rFkk iSls 50 gS rks oqQy ykHk (Gross profit) Kkr dhft,A
1 2 3  −7 −8 −9 
11. vkO;wg X Kkr dhft,] ;fn X  = gSA
4 5 6  2 4 6 
12. ;fn A rFkk B leku dksfV osQ oxZ vkO;wg bl izdkj gSa fd AB = BA gS rks xf.krh;
vkxeu }kjk fl¼ dhft, fd ABn = BnA gksxkA blosQ vfrfjDr fl¼ dhft, fd
leLr n ∈ N osQ fy, (AB)n = AnBn gksxkA

2018-19
110 xf.kr

fuEufyf[kr iz'uksa esa lgh mÙkj pqfu,%


α β 
13. ;fn A =  γ −α 
bl izdkj gS fd A² = I, rks

(A) 1 + α² + βγ = 0 (B) 1 – α² + βγ = 0
(C) 1 – α² – βγ = 0 (D) 1 + α² – βγ = 0
14. ;fn ,d vkO;wg lefer rFkk fo"ke lefer nksuksa gh gS rks%
(A) A ,d fod.kZ vkO;wg gSA (B) A ,d 'kwU; vkO;wg gSA
(C) A ,d oxZ vkO;wg gSA (D) buesa ls dksbZ ughaA
15. ;fn A ,d oxZ vkO;wg bl izdkj gS fd A2 = A, rks (I + A)³ – 7 A cjkcj gS%
(A) A (B) I – A (C) I (D) 3A

lkjka'k
® vkO;wg] iQyuksa ;k la[;kvksa dk ,d vk;rkdkj Øe&foU;kl gSA
® m iafDr;ksa rFkk n LraHkksa okys vkO;wg dks m × n dksfV dk vkO;wg dgrs gSaA
® [aij]m × 1 ,d LraHk vkO;wg gSA
® [aij]1 × n ,d iafDr vkO;wg gSA
® ,d m × n vkO;wg ,d oxZ vkO;wg gS] ;fn m = n gSA
® A = [aij]m × m ,d fod.kZ vkO;wg gS] ;fn aij = 0, tc i ≠ j
® A = [aij]n × n ,d vfn'k vkO;wg gS] ;fn aij = 0, tc i ≠ j, aij = k, (k ,d vpj gS),
tc i = j gSA
® A = [aij]n × n ,d rRled vkO;wg gS] ;fn aij = 1 tc i = j rFkk aij = 0 tc
i ≠ j gSA
® fdlh 'kwU; vkO;wg (;k fjDr vkO;wg) osQ lHkh vo;o 'kwU; gksrs gSaA
® A = [aij] = [bij] = B ;fn (i) A rFkk B leku dksfV osQ gSa rFkk (ii) i rFkk j osQ leLr
laHko ekuksa osQ fy, aij = bij gksA
® kA = k[aij]m × n = [k(aij)]m × n
® – A = (–1)A
® A – B = A + (–1) B
® A+ B = B +A

2018-19
vkO;wg 111

® (A + B) + C = A + (B + C), tgk¡ A, B rFkk C leku dksfV osQ vkO;wg gSaA


® k(A + B) = kA + kB, tgk¡ A rFkk B leku dksfV osQ vkO;wg gS rFkk k ,d vpj gSA
® (k + l ) A = kA + lA, tgk¡ k rFkk l vpj gSaA n
® ;fn A = [aij]m × n rFkk B = [bjk]n × p rks AB = C = [cik]m × p, tgk¡ cik = ∑ aij b jk gSA
j =1
® (i) A(BC) = (AB)C, (ii) A(B + C) = AB + AC, (iii) (A + B)C = AC + BC
® ;fn A = [aij]m × n rks A′ ;k AT = [aji]n × m
® (i) (A′)′ = A (ii) (kA)′ = kA′ (iii) (A + B)′ = A′ + B′ (iv) (AB)′ = B′A′
® ;fn A′ = A gS rks A ,d lefer vkO;wg gSA
® ;fn A′ = –A gS rks A ,d fo"ke lefer vkO;wg gSA
® fdlh oxZ vkO;wg dks ,d lefer vkSj ,d fo"ke lefer vkO;wgksa osQ ;ksxiQy osQ :i
esa fu:fir fd;k tk ldrk gSA
® vkO;wgksa ij izkjafHkd lafØ;k,¡ fuEufyf[kr gSa%
(i) Ri ↔ Rj ;k Ci ↔ Cj
(ii) Ri → kRi ;k Ci → kCi
(iii) Ri → Ri + kRj ;k Ci → Ci + kCj
® ;fn A rFkk B nks oxZ vkO;wg gSa] bl izdkj fd AB = BA = I, rks vkO;wg A dk O;qRØe
vkO;wg B gS] ftls A–1 }kjk fu:fir djrs gSa vkSj vkO;wg B dk O;wRØe A gSA
® oxZ vkO;wg dk O;qRØe vkO;wg] ;fn mldk vfLrRo gS] vf}rh; gksrk gSA

—v—

2018-19
112 xf.kr

vè;k; 4

lkjf.kd (Determinants)
vAll Mathematical truths are relative and conditional — C.P. STEINMETZ v

4.1 Hkwfedk (Introduction)


fiNys vè;k; es]a geus vkO;wg vkSj vkO;wgksa osQ chtxf.kr osQ fo"k;
esa vè;;u fd;k gSA geus chtxf.krh; lehdj.kksa osQ fudk; dks
vkO;wgksa osQ :i esa O;Dr djuk Hkh lh[kk gSA blosQ vuqlkj jSf[kd
lehdj.kksa osQ fudk;
a1 x + b1 y = c 1
a2 x + b2 y = c 2

a b   x c 
dks  1 1    =  1  osQ :i esa O;Dr dj ldrs gSaA vc
 a2 b2   y   c2 
bu lehdj.kksa osQ fudk; dk vf}rh; gy gS vFkok ugha] bldks P.S. Laplace
a1 b2 – a2 b1 la[;k }kjk Kkr fd;k tkrk gSA (Lej.k dhft, fd (1749-1827)

a1 b1
;fn ≠ ;k a1 b2 – a2 b1 ≠ 0, gks rks lehdj.kksa osQ fudk; dk gy vf}rh; gksrk gS) ;g
a2 b2
la[;k a1 b2 – a2 b1 tks lehdj.kksa osQ fudk; osQ vf}rh; gy Kkr djrh gS] og vkO;wg
a b1 
A= 1 ls lacaf/r gS vkSj bls A dk lkjf.kd ;k det A dgrs gSaA lkjf.kdksa dk
 a2 b2 

bathfu;fjax] foKku] vFkZ'kkL=k] lkekftd foKku bR;kfn esa foLr`r vuqiz;ksx gSaA
bl vè;k; esa] ge osQoy okLrfod izfof"V;ksa osQ 3 dksfV rd osQ lkjf.kdksa ij fopkj djsaxsA
bl vè;k; esa lkjf.kdksa osQ xq.k /eZ] milkjf.kd] lg&[k.M vkSj f=kHkqt dk {ks=kiQy Kkr djus
esa lkjf.kdksa dk vuqiz;ksx] ,d oxZ vkO;wg osQ lg[kaMt vkSj O;qRØe] jSf[kd lehdj.k osQ fudk;ksa

2018-19
lkjf.kd 113

dh laxrrk vkSj vlaxrrk vkSj ,d vkO;wg osQ O;qRØe dk iz;ksx dj nks vFkok rhu pjkadksa osQ
jSf[kd lehdj.kksa osQ gy dk vè;;u djsaxsA
4.2 lkjf.kd (Determinant)
ge n dksfV osQ izR;sd oxZ vkO;wg A = [aij] dks ,d la[;k (okLrfod ;k lfEeJ) }kjk lacfa /r djk
ldrs gSa ftls oxZ vkO;wg dk lkjf.kd dgrs gSaA bls ,d iQyu dh rjg lkspk tk ldrk gS tks
izR;sd vkO;wg dks ,d vf}rh; la[;k (okLrfod ;k lfEeJ) ls lacaf/r djrk gSA
;fn M oxZ vkO;wgksa dk leqPp; gS] k lHkh la[;kvksa (okLrfod ;k lfEeJ) dk leqPp; gS
vkSj f : M → K, f (A) = k, osQ }kjk ifjHkkf"kr gS tgk¡ A ∈ M vkSj k ∈ K rc f (A) , A dk
lkjf.kd dgykrk gSA bls | A | ;k det (A) ;k ∆ osQ }kjk Hkh fu:fir fd;k tkrk gSA

a b a b
;fn A =  c d  , rks A osQ lkjf.kd dks | A| = c d = det (A) }kjk fy[kk tkrk gSA
 
fVIi.kh
(i) vkO;wg A osQ fy,] | A | dks A dk lkjf.kd i<+rs gSaA
(ii) osQoy oxZ vkO;wgksa osQ lkjf.kd gksrs gSaA
4.2.1 ,d dksfV osQ vkO;wg dk lkjf.kd (Determinant of a matrix of order one)
ekuk ,d dksfV dk vkO;wg A = [a ] gks rks A osQ lkjf.kd dks a osQ cjkcj ifjHkkf"kr fd;k tkrk gSA
4.2.2 f}rh; dksfV osQ vkO;wg dk lkjf.kd (Determinant of a matrix of order two)

 a11 a12 
ekuk 2 × 2 dksfV dk vkO;wg A =  a  gSA
 21 a22 
rks A osQ lkjf.kd dks bl izdkj ls ifjHkkf"kr fd;k tk ldrk gS%

det (A) = |A| = ∆ = = a11a22 – a21a12

2 4
mnkgj.k 1 –1 2 dk eku Kkr dhft,A

2 4
gy –1 2 = 2 (2) – 4(–1) = 4 + 4 = 8

2018-19
114 xf.kr

x x +1
mnkgj.k 2 x –1 x dk eku Kkr dhft,A
x x +1
gy x – 1 x = x (x) – (x + 1) (x – 1) = x2 – (x2 – 1) = x2 – x2 + 1 = 1

4.2.3 3 × 3 dksfV osQ vkO;wg dk lkjf.kd (Determinant of a matrix of order 3 × 3)


r`rh; dksfV osQ vkO;wg osQ lkjf.kd dks f}rh; dksfV osQ lkjf.kdksa esa O;Dr djosQ Kkr fd;k tkrk
gSA ;g ,d lkjf.kd dk ,d iafDr (;k ,d LraHk) osQ vuqfn'k izlj.k dgykrk gSA r`rh; dksfV
osQ lkjf.kd dks N% izdkj ls izlkfjr fd;k tkrk gS rhuksa iafDr;ksa (R1, R2 rFkk R3) esa ls izR;sd
osQ laxr vkSj rhuksa LraHk (C1, C2 rFkk C3) esa ls izR;sd osQ laxr n'kkZ, x, izlj.k leku ifj.kke
nsrs gSsa tSlk fd fuEufyf[kr fLFkfr;ksa esa Li"V fd;k x;k gSA
oxZ vkO;wg A = [aij]3 × 3 , osQ lkjf.kd ij fopkj djrs gSaA
a11 a12 a13
tgk¡ | A | = a21 a22 a23
a31 a32 a33

izFke iafDr (R1) osQ vuqfn'k izlj.k


a11 a12 a13
| A | = a21 a22 a23
a31 a32 a33
pj.k 1 R1 osQ igys vo;o a11 dks (–1)(1 + 1) [(–1) a11esa vuqyXukas dk ;kxs ] vkSj lkjf.kd |A| dh igyh
iafDr (R1) rFkk igyk LraHk (C1) osQ vo;oksa dks gVkus ls izkIr f}rh; dksfV osQ lkjf.kd ls xq.kk
dhft, D;ksafd a11, R1 vkSj C1 esa fLFkr gS
a22 a23
vFkkZr~ (–1)1 + 1 a11 a a33
32

pj.k 2 D;ksafd a12, R1 rFkk C2 esa fLFkr gS blfy, R1 osQ nwljs vo;o a12 dks (–1)1 + 2
[(–1) a esa vuqyXukas dk ;kxs ] vkSj lkjf.kd | A | dh igyh iafDr (R1) o nwljs LraHk (C2) dks gVkus ls izkIr
12

f}rh; Øe osQ lkjf.kd ls xq.kk dhft,


a21 a23
vFkkZr~ (–1)1 + 2a12 a a33
31

pj.k 3 D;ksafd a13, R1 rFkk C3 esa fLFkr gS blfy, R1 osQ rhljs vo;o dks (–1)1 + 3
[(–1) a esa vuqyXukas dk ;kxs ] vkSj lkjf.kd | A | dh igyh iafDr (R1) o rhljs LraHk (C3) dks gVkus ls izkIr
13

r`rh; dksfV osQ lkjf.kd ls xq.kk dhft,

2018-19
lkjf.kd 115

a21 a22
vFkkZr~ (–1)1 + 3 a13 a a
31 32

pj.k 4 vc A dk lkjf.kd vFkkZr~ | A | osQ O;atd dks mijksDr pj.k 1] 2 o 3 ls izkIr rhuksa
inksa dk ;ksx djosQ fyf[k, vFkkZr~
a22 a23 a21 a23
det A = |A| = (–1)1 + 1 a11 a + (–1)1 + 2 a12
32 a33 a31 a33

1+ 3 a21 a22
+ (–1) a13
a31 a32

;k |A| = a11 (a22 a33 – a32 a23) – a12 (a21 a33 – a31 a23)
+ a13 (a21 a32 – a31 a22)
= a11 a22 a33 – a11 a32 a23 – a12 a21 a33 + a12 a31 a23 + a13 a21 a32
– a13 a31 a22 ... (1)

AfVIi.kh ge pkjksa pj.kksa dk ,d lkFk iz;ksx djsaxsA


f}rh; iafDr (R2) osQ vuqfn'k izlj.k
a11 a12 a13
| A | = a21 a22 a23
a31 a32 a33
R2 osQ vuqfn'k izlj.k djus ij] gesa izkIr gksrk gS
2+1 a12 a13 a11 a13
| A | = (–1) a21 + (–1) 2 + 2 a22
a32 a33 a31 a33
a11 a12
+ (–1)2 + 3 a23
a31 a32
= – a21 (a12 a33 – a32 a13) + a22 (a11 a33 – a31 a13)
– a23 (a11 a32 – a31 a12)
| A | = – a21 a12 a33 + a21 a32 a13 + a22 a11 a33 – a22 a31 a13 – a23 a11 a32
+ a23 a31 a12
= a11 a22 a33 – a11 a23 a32 – a12 a21 a33 + a12 a23 a31 + a13 a21 a32
– a13 a31 a22 ... (2)

2018-19
116 xf.kr

igys LraHk (C1) osQ vuqfn'k izlj.k


a11 a12 a13
| A | = a21 a22 a23
a31 a32 a33

C1, osQ vuqfn'k izlj.k djus ij gesa izkIr gksrk gS

1+1 a22 a23 a12 a13


| A | = a11 (–1) + a21 ( −1) 2 + 1
a32 a33 a32 a33

3+1 a 12 a13
+ a31 (–1)
a22 a23

= a11 (a22 a33 – a23 a32) – a21 (a12 a33 – a13 a32) + a31 (a12 a23 – a13 a22)
| A | = a11 a22 a33 – a11 a23 a32 – a21 a12 a33 + a21 a13 a32 + a31 a12 a23
– a31 a13 a22
= a11 a22 a33 – a11 a23 a32 – a12 a21 a33 + a12 a23 a31 + a13 a21 a32
– a13 a31 a22 ... (3)
(1), (2) vkSj (3) ls Li"V gS fd | A | dk eku leku gSA ;g ikBdksa osQ vH;kl osQ fy, NksM+
fn;k x;k gS fd os ;g lR;kfir djsa fd |A| dk R3, C2 vkSj C3 osQ vuqfn'k izlj.k (1)] (2)
vkSj (3) ls izkIr ifj.kkeksa osQ leku gSA
vr% ,d lkjf.kd dks fdlh Hkh iafDr ;k LraHk osQ vuqfn'k izlj.k djus ij leku eku izkIr
gksrk gSA
fVIi.kh
(i) x.kuk dks ljy djus osQ fy, ge lkjf.kd dk ml iafDr ;k LraHk osQ vuqfn'k izlj.k djsaxs
ftlesa 'kwU;ksa dh la[;k vf/dre gksrh gSA
(ii) lkjf.kdksa dk izlj.k djrs le; (–1)i + j ls xq.kk djus osQ LFkku ij] ge (i + j) osQ le ;k
fo"ke gksus osQ vuqlkj +1 ;k –1 ls xq.kk dj ldrs gSaA
2 2 1 1
(iii) eku yhft, A =   vkSj B =   rks ;g fl¼ djuk ljy gS fd
4 0 2 0
A = 2B. ¯drq | A | = 0 – 8 = – 8 vkSj | B | = 0 – 2 = – 2 gSA

2018-19
lkjf.kd 117

voyksdu dhft, fd | A | = 4 (– 2) = 22 | B | ;k | A | = 2n | B |, tgk¡ n = 2, oxZ vkO;wgksa A


o B dh dksfV gSA
O;kid :i esa] ;fn A = kB, tgk¡ A o B oxZ vkO;wgksa dh dksfV n gS] rc | A| = kn | B |, tgk¡
n = 1, 2, 3 gSA

1 2 4
mnkgj.k 3 lkjf.kd ∆ = –1 3 0 dk eku Kkr dhft,A
4 1 0

gy è;ku nhft, fd rhljs LraHk esa nks izfof"V;k¡ 'kwU; gSaA blfy, rhljs LraHk (C3) osQ vuqfn'k
izlj.k djus ij geas izkIr gksrk gS fd
–1 3 1 2 1 2
∆= 4 –0 +0
4 1 4 1 –1 3
= 4 (–1 – 12) – 0 + 0 = – 52

0 sin α – cos α
mnkgj.k 4 ∆ = – sin α 0 sin β dk eku Kkr dhft,A
cos α – sin β 0

gy R1 osQ vuqfn'k izlj.k djus ij gesa izkIr gksrk gS fd


0 sin β – sin α sin β – sin α 0
∆= 0 – sin α – cos α
– sin β 0 cos α 0 cos α – sin β
= 0 – sin α (0 – sin β cos α) – cos α (sin α sin β – 0)
= sin α sin β cos α – cos α sin α sin β = 0
3 x 3 2
mnkgj.k 5 ;fn = rks x osQ eku Kkr dhft,A
x 1 4 1

3 x 3 2
gy fn;k gS fd =
x 1 4 1
vFkkZr~ 3 – x2 = 3 – 8
vFkkZr~ x2 = 8
vr% x= ±2 2

2018-19
118 xf.kr

iz'ukoyh 4-1
iz'u 1 ls 2 rd esa lkjf.kdksa dk eku Kkr dhft,
2 4
1.
–5 –1

cos θ – sin θ x2 – x + 1 x – 1
2. (i) (ii)
sin θ cos θ x +1 x +1

1 2
3. ;fn A=   , rks fn[kkb, | 2A | = 4 | A |
 4 2

1 0 1
 
4. ;fn A =  0 1 2  gks] rks fn[kkb, | 3 A | = 27 | A |
 0 0 4 

5. fuEufyf[kr lkjf.kdksa dk eku Kkr dhft,

3 –1 –2 3 –4 5 0 1 2
(i) 0 0 –1 (ii) 1 1 –2 (iii) –1 0 –3
3 –5 0 2 3 1 –2 3 0

2 –1 –2
(iv) 0 2 –1
3 –5 0

1 1 2
 3  , gks rks | A | Kkr dhft,A
6. ;fn A= 2 1 
 5 4 9 

7. x osQ eku Kkr dhft, ;fn


2 4 2x 4 2 3 x 3
(i) = (ii) =
5 1 6 x 4 5 2x 5

2018-19
lkjf.kd 119

x 2 6 2
8. ;fn = gks rks x cjkcj gS%
18 x 18 6
(A) 6 (B) ± 6 (C) – 6 (D) 0
4.3 lkjf.kdksa osQ xq.k/eZ (Properties of Determinants)
fiNys vuqPNsn esa geus lkjf.kdksa dk izlj.k djuk lh[kk gSA bl vuqPNsn esa ge lkjf.kdksa osQ oqQN
xq.k/eks± dks lwphc¼ djsaxs ftlls ,d iafDr ;k LraHk esa 'kwU; dh la[;kvksa dks vf/dre izkIr
djus ls budk eku Kkr djuk ljy gks tkrk gSA ;s xq.k/eZ fdlh Hkh dksfV osQ lkjf.kd osQ fy,
lR; gSa ¯drq ge Lo;a dks bUgsa osQoy rhljh dksfV rd osQ lkjf.kdksa rd lhfer j[ksaxsA
xq.k/eZ 1 fdlh lkjf.kd dk eku bldh iafDr;ksa vkSj LraHkksa osQ ijLij ifjofrZr djus ij
vifjofrZr jgrk gSA
a1 a2 a3
lR;kiu – eku yhft, ∆ = b1 b2 b3
c1 c2 c3
izFke iafDr osQ vuqfn'k izlj.k djus ij] ge izkIr djrs gSa fd
b2 b3 b1 b3 b1 b2
∆ = a1 − a2 + a3
c2 c3 c1 c3 c1 c2
= a1 (b2 c3 – b3 c2) – a2 (b1 c3 – b3 c1) + a3 (b1 c2 – b2 c1)
∆ dh iafDr;ksa dks LraHkksa esa ifjofrZr djus ij gesa lkjf.kd
a1 b1 c1
∆1 = a2 b2 c2 izkIr gksrk gSA
a3 b3 c3

∆1 dks izFke LraHk osQ vuqfn'k izlj.k djus ij ge ikrs gSa fd


∆1 = a1 (b2 c3 – c2 b3) – a2 (b1 c3 – b3 c1) + a3 (b1 c2 – b2 c1)
vr% ∆ = ∆1
fVIi.kh mi;qZDr O;k[;k ls Li"V gS fd ;fn A ,d oxZ vkO;wg gS rks det (A) = det (A′), tgk¡
A′, Α dk ifjorZ gSA

AfVIi.kh ;fn Ri = i oha iafDr vkSj Ci = i ok¡ LraHk gS] rks iafDr;ksa vkSj LraHkksa osQ ijLij
ifjorZu dks ge laosQru esa Ci ↔ Ri fy[ksaxsA
vkb, ge mijksDr xq.k/eZ dks mnkgj.k }kjk lR;kfir djsaA

2018-19
120 xf.kr

2 –3 5
mnkgj.k 6 ∆ = 6 0 4 osQ fy, xq.k/eZ 1 dk lR;kiu dhft,A
1 5 –7
gy lkjf.kd dk izFke iafDr osQ vuqfn'k izlj.k djus ij]
0 4 6 4 6 0
∆= 2 – (–3) +5
5 –7 1 –7 1 5
= 2 (0 – 20) + 3 (– 42 – 4) + 5 (30 – 0)
= – 40 – 138 + 150 = – 28
iafDr;ksa vkSj LraHkksa dks ijLij ifjorZu djus ij gesa izkIr gksrk gSA
2 6 1
∆1 = –3 0 5 (igys LraHk osQ vuqfn'k izlj.k djus ij)
5 4 –7

0 5 6 1 6 1
= 2 – (–3) +5
4 –7 4 –7 0 5
= 2 (0 – 20) + 3 (– 42 – 4) + 5 (30 – 0)
= – 40 – 138 + 150 = – 28
Li"Vr% ∆ = ∆1
vr% xq.k/eZ 1 lR;kfir gqvkA
xq.k/eZ 2 ;fn ,d lkjf.kd dh dksbZ nks iafDr;ksa (;k LraHkksa) dks ijLij ifjofrZr dj fn;k tkrk
gS] rc lkjf.kd dk fpÉ ifjofrZr gks tkrk gSA

a1 a2 a3
lR;kiu eku yhft, ∆ = b1 b2 b3
c1 c2 c3

izFke iafDr osQ vuqfn'k izlj.k djus ij ge ikrs gSa


∆ = a1 (b2 c3 – b3 c2) – a2 (b1 c3 – b3 c1) + a3 (b1 c2 – b2 c1)
igyh vkSj rhljh iafDr;ksa dks ijLij ifjofrZr djus vFkkZr~ R2↔R3 ls izkIr u;k lkjf.kd

2018-19
lkjf.kd 121

c1 c2 c3
∆1 = b1 b2 b3
a1 a2 a3

gSA bls rhljh iafDr osQ vuqfn'k izlj.k djus ij]


∆1 = a1 (c2 b3 – b2 c3) – a2 (c1 b3 – c3 b1) + a3 (b2 c1 – b1 c2)
= – [a1 (b2 c3 – b3 c2) – a2 (b1 c3 – b3 c1) + a3 (b1 c2 – b2 c1)] izkIr gksrk gSA
;g Li"V gS fd ∆1 = – ∆
blh izdkj] ge fdUgha nks LraHkksa dks ijLij ifjofrZr djds mDr ifj.kke dks lR;kfir dj ldrs gSAa

AfVIi.kh ge iafDr;ksa osQ ijLij ifjorZu dks Ri ↔ Rj vkSj LraHkksa osQ ijLij ifjorZu dks
Ci ↔ Cj osQ }kjk fufnZ"V djrs gSaA

2 –3 5
mnkgj.k 7 ;fn ∆ = 6 0 4 gS rks xq.k/eZ 2 dk lR;kiu dhft,A
1 5 –7

2 –3 5
gy ge Kkr dj pqosQ gSa fd ∆ = 6 0 4 = – 28 (nsf[k, mnkgj.k 6)
1 5 –7
R2 vkSj R3 dks ijLij ifjofrZr djus ij vFkkZr~ R2 ↔ R3 ls
2 –3 5
∆1 = 1 5 –7 izkIr gksrk gSA
6 0 4
lkjf.kd ∆1 dks igyh iafDr osQ vuqfn'k izlj.k djus ij ge izkIr djrs gSa fd
5 –7 1 –7 1 5
∆1 = 2 – (–3) +5
0 4 6 4 6 0
= 2 (20 – 0) + 3 (4 + 42) + 5 (0 – 30)
= 40 + 138 – 150 = 28
Li"Vr;k ∆1 = – ∆
vr% xq.k/eZ 2 lR;kfir gqvkA

2018-19
122 xf.kr

xq.k/eZ 3 ;fn ,d lkjf.kd dh dksbZ nks iafDr;k¡ (vFkok LraHk) leku gSa (lHkh laxr vo;o
leku gSa)] rks lkjf.kd dk eku 'kwU; gksrk gSA
miifÙk ;fn ge lkjf.kd ∆ dh leku iafDr;ksa (;k LraHkksa) dks ijLij ifjofrZr dj nsrs gaS rks ∆
dk eku ifjofrZr ugha gksrk gSA
rFkkfi] xq.k/eZ 2 osQ vuqlkj ∆ dk fpÉ cny x;k gSA
blfy, ∆=– ∆
;k ∆=0
vkb, ge mijksDr xq.k/eZ dk ,d mnkgj.k osQ }kjk lR;kiu djrs gSaA
3 2 3
mnkgj.k 8 ∆ = 2 2 3 dk eku Kkr dhft,A
3 2 3
gy igyh iafDr osQ vuqfn'k izlj.k djus ij ge izkIr djrs gSa fd
∆ = 3 (6 – 6) – 2 (6 – 9) + 3 (4 – 6)
= 0 – 2 (–3) + 3 (–2) = 6 – 6 = 0
;gk¡ R2 vkSj R3 leku gSaA
xq.k/eZ 4 ;fn ,d lkjf.kd osQ fdlh ,d iafDr (vFkok LraHk) osQ izR;sd vO;o dks ,d vpj
k, ls xq.kk djrs gSa rks mldk eku Hkh k ls xqf.kr gks tkrk gSA
a1 b1 c1
lR;kiu eku yhft, ∆ = a2 b2 c2
a3 b3 c3
bldh izFke iafDr osQ vo;oksa dks k ls xq.kk djus ij izkIr lkjf.kd ∆1 gS rks
k a1 k b1 k c1
∆1 = a2 b2 c2
a3 b3 c3
izFke iafDr osQ vuqfn'k izlj.k djus ij] ge izkIr djrs gSa fd
∆1 = k a1 (b2 c3 – b3 c2) – k b1 (a2 c3 – c2 a3) + k c1 (a2 b3 – b2 a3)
= k [a1 (b2 c3 – b3 c2) – b1 (a2 c3 – c2 a3) + c1 (a2 b3 – b2 a3)] = k ∆
k a1 k b1 k c1 a1 b1 c1
vr% a2 b2 c2 = k a2 b2 c2
a3 b3 c3 a3 b3 c3

2018-19
lkjf.kd 123

fVIi.kh
(i) bl xq.k/eZ osQ vuqlkj] ge ,d lkjf.kd dh fdlh ,d iafDr ;k LrHkksa ls lkoZ mHk;fu"B
xq.ku[kaM ckgj fudky ldrs gSaA
(ii) ;fn ,d lkjf.kd dh fdUgha nks iafDr;ksa (;k LraHkksa) osQ laxr vo;o lekuqikrh (mlh
vuqikr esa) gS] rc mldk eku 'kwU; gksrk gSA mnkgj.kr%
a1 a2 a3
∆= b1 b2 b3 = 0 (iafDr;k¡ R2 o R3 lekuqikrh gS)
k a1 k a2 k a3

102 18 36
mnkgj.k 9 lkjf.kd 1 3 4 dk eku Kkr dhft,
17 3 6

102 18 36 6(17) 6(3) 6(6) 17 3 6


gy è;ku nhft, fd 1 3 4 = 1 3 4 =6 1 3 4 =0
17 3 6 17 3 6 17 3 6
(xq.k/eZ 3 vkSj 4 )
xq.k/eZ 5 ;fn ,d lkjf.kd dh ,d iafDr ;k LraHk osQ oqQN ;k lHkh vo;o nks (;k vf/d)
inksa osQ ;ksxiQy osQ :i esa O;Dr gksa rks lkjf.kd dks nks (;k vf/d) lkjf.kdksa osQ ;ksxiQy osQ
:i esa O;Dr fd;k tk ldrk gSA
a1 + λ1 a2 + λ 2 a3 + λ 3 a1 a2 a3 λ1 λ2 λ3
mnkgj.kr;k b1 b2 b3 = b1 b2 b3 + b1 b2 b3
c1 c2 c3 c1 c2 c3 c1 c2 c3

a1 + λ1 a2 + λ 2 a3 + λ 3
lR;kiu ck¡;k i{k = b1 b2 b3
c1 c2 c3

izFke iafDr osQ vuqfn'k izlj.k djus ij ge ikrs gSa fd


∆ = (a1 + λ1) (b2 c3 – c2 b3) – (a2 + λ2) (b1 c3 – b3 c1)
+ (a3 + λ3) (b1 c2 – b2 c1)

2018-19
124 xf.kr

= a1 (b2 c3 – c2 b3) – a2 (b1 c3 – b3 c1) + a3 (b1 c2 – b2 c1)


+ λ1 (b2 c3 – c2 b3) – λ2 (b1 c3 – b3 c1) + λ3 (b1 c2 – b2 c1)
(inksa dks O;ofLFkr djus ij)

a1 a2 a3 λ1 λ2 λ3
= b1 b2 b3 + b1 b2 b3 = nk¡;k i{k
c1 c2 c3 c1 c2 c3

blh izdkj nwljh iafDr;ksa o LraHkksa osQ fy, ge xq.k/eZ 5 dk lR;kiu dj ldrs gSaA
a b c
mnkgj.k 10 n'kkZb, fd a + 2 x b + 2 y c + 2 z = 0
x y z

a b c a b c a b c
gy ge tkurs gSa fd a + 2 x b + 2 y c + 2 z = a b c + 2 x 2 y 2 z
x y z x y z x y z

(xq.k/eZ 5 osQ }kjk)


=0+0=0 (xq.k/eZ 3 vkSj 4 dk iz;ksx djus ij)
xq.k/eZ 6 ;fn ,d lkjf.kd osQ fdlh iafDr ;k LraHk osQ izR;sd vo;o esa] nwljh iafDr ;k LraHk
osQ laxr vo;oksa osQ leku xq.ktksa dks tksM+ fn;k tkrk gS rks lkjf.kd dk eku ogh jgrk gSA vFkkZr~]
;fn ge Ri → Ri + kRj ;k Ci → Ci + k Cj dk iz;ksx djsa rks lkjf.kd dk eku ogh jgrk gSA
lR;kiu
a1 a2 a3 a1 + k c1 a2 + k c2 a3 + k c3
eku yhft, ∆ = b1 b2 b3 vkSj ∆ =
1
b1 b2 b3 ,
c1 c2 c3 c1 c2 c3

tgk¡ ∆1 lafØ;k R1 → R1 + kR3 osQ iz;ksx }kjk izkIr gksrk gS


;gk¡ ge rhljh iafDr (R3) osQ vo;oksa dks vpj k ls xq.kk djosQ vkSj mUgsa igyh iafDr (R1) osQ
laxr vo;oksa esa tksM+rs gSaA
laosQru }kjk bl lafØ;k dks bl izdkj fy[krs gSa fd R1 → R1 + k R3

2018-19
lkjf.kd 125

vc iqu%
a1 a2 a3 k c1 k c2 k c3
∆1 = b1 b2 b3 + b1 b2 b3 (xq.k/eZ 5 osQ }kjk)
c1 c2 c3 c1 c2 c3

=∆+0 (tc fd R1 vkSj R3 lekuqikrh gSa)


vr% ∆ = ∆1
fVIi.kh
(i) ;fn lkjf.kd ∆ esa Ri → kRi ;k Ci → kCi osQ iz;ksx ls izkIr lkjf.kd ∆1 gS] rks
∆1 = k∆.
(ii) ;fn ,d lkFk Ri → Ri + kRj tSlh lafØ;kvksa dk ,d ls vf/d ckj iz;ksx fd;k x;k
gks rks è;ku nsuk pkfg, fd igyh lafØ;k ls izHkkfor iafDr dk vU; lafØ;k esa iz;ksx ugha
gksuk pkfg,A Bhd blh izdkj dh fVIi.kh LraHkksa dh lafØ;kvksa esa iz;ksx dh tkrh gSA
a a+b a+b+c
mnkgj.k 11 fl¼ dhft, fd ∆ = 2a 3a + 2b 4a + 3b + 2c = a
3

3a 6a + 3b 10a + 6b + 3c
gy lkjf.kd ∆ esa R2 → R2 – 2R1 vkSj R3 → R3 – 3R1 dk iz;ksx djus ij ge ikrs gSa fd
a a+b a+b+c
∆= 0 a 2a + b
0 3a 7a + 3b
iqu% R3 → R3 – 3R2 , dk iz;ksx djus ls ge ikrs gSa fd
a a+b a+b+c
∆= 0 a 2a + b
0 0 a
C1 osQ vuqfn'k izlj.k djus ij
a 2a + b
∆= a +0+0
0 a
= a (a2 – 0) = a (a2) = a3 izkIr gksrk gSA

2018-19
126 xf.kr

mnkgj.k 12 izlj.k fd, fcuk fl¼ dhft, fd

x+ y y+z z+x
∆= z x y =0
1 1 1

gy ∆ esa R1 → R1 + R2 dk iz;ksx djus ij ge ikrs gSa

x+ y+z x+ y+z x+ y+z


∆= z x y
1 1 1

vc R1 vkSj R3 osQ vo;o lekuqikrh gSaA


blfy, ∆=0

mnkgj.k 13 fuEufyf[kr dk eku Kkr dhft,

1 a bc
∆ = 1 b ca
1 c ab

gy R2 → R2 – R1 vkSj R3 → R3 – R1, dk iz;ksx djus ij ge ikrs gSa fd

1 a bc
∆= 0 b − a c ( a − b)
0 c − a b (a − c )

R2 vkSj R3 ls Øe'k% (b – a) vkSj (c – a) mHk;fu"B ysus ij ge ikrs gSa fd

1 a bc
∆ = (b − a ) (c − a ) 0 1 –c
0 1 –b

= (b – a) (c – a) [(– b + c)] (igys LraHk osQ vuqfn'k izlj.k djus ij)


= (a – b) (b – c) (c – a)

2018-19
lkjf.kd 127

b+c a a
mnkgj.k 14 fl¼ dhft, fd b c+a b = 4 abc
c c a+b
gy eku yhft,
b+c a a
∆= b c+a b
c c a+b
lkjf.kd ij R1 → R1 – R2 – R3 dk iz;ksx djus ij ge ikrs gSa fd
0 –2c –2b
∆= b c+ a b
c c a+b
R1 osQ vuqfn'k izlj.k djus ij ge ikrs gSa fd
c+a b b b b c+a
∆= 0 – (–2 c ) + (–2b)
c a+b c a+b c c
= 2 c (a b + b2 – bc) – 2 b (b c – c2 – ac)
= 2 a b c + 2 cb2 – 2 bc2 – 2 b2c + 2 bc2 + 2 abc
= 4 abc

x x2 1 + x3
mnkgj.k 15 ;fn x, y, z fofHkUu gksa vkSj ∆ = y y 2 1 + y 3 = 0 ,
z z2 1 + z3
rks n'kkZb, fd 1 + xyz = 0
x x2 1 + x3
gy gesa Kkr gS ∆ = y y 2 1 + y 3
z z2 1 + z3

x x2 1 x x2 x3
∆= y y2 1 + y y2 y 3 (xq.k/eZ 5 osQ iz;ksx }kjk)
z z2 1 z z2 z3

2018-19
128 xf.kr

1 x x2 1 x x2
= ( −1) 1 y
2
y 2 + xyz 1 y y 2 (C3 ↔ C2 vkSj rc C1 ↔ C2 osQ iz;ksx }kjk)
1 z z2 1 z z2

1 x x2
= 1 y y 2 (1 + xyz )
1 z z2

1 x x2
= (1 + xyz ) 0 y−x y 2 − x 2 (R2→R2– R1 vkSj R3 → R3–R1 dk iz;ksx djus ij)
0 z−x z 2 − x2
R2 ls (y – x) vkSj R3 ls (z – x) mHk;fu"B ysus ij ge izkIr djrs gSa fd

1 x x2
∆ = (1+xyz ) (y –x ) (z –x) 0 1 y+x
0 1 z+x

= (1 + xyz) (y – x) (z – x) (z – y) (C1 osQ vuqfn'k izlj.k djus ij)


pw¡fd ∆ = 0 vkSj x, y vkSj z lHkh fHkUu gSa]
vr% x – y ≠ 0, y – z ≠ 0, z – x ≠ 0, ls gesa 1 + xyz = 0 izkIr gksrk gSA
1+ a 1 1
 1 1 1
mnkgj.k 16 n'kkZb, fd 1 1 + b 1 = abc 1 + + +  = abc + bc + ca + ab
a b c
1 1 1+ c
gy R1, R2 vkSj R3 esa ls Øe'k% a, b vkSj c mHk;fu"B ysus ij ge izkIr djrs gSa fd
1 1 1
+1
a a a
1 1 1
ck¡;k i{k = abc b b + 1 b
1 1 1
+1
c c c
R1→ R1 + R2 + R3 dk iz;ksx djus ij ge ikrs gSa fd

2018-19
lkjf.kd 129

1 1 1 1 1 1 1 1 1
1+ + + 1+ + + 1+ + +
a b c a b c a b c
1 1 1
∆ = abc +1
b b b
1 1 1
+1
c c c
1 1 1
 1 1 1 1 1 1
;k ∆ = abc 1+ + +  +1
 a b c b b b
1 1 1
+1
c c c
vc C2 → C2 – C1 vkSj C3 → C3 – C1 dk iz;ksx djus ij ge ikrs gSa fd
1 0 0
 1 1 1 1
∆ = abc  1+ + +  1 0
 a b c b
1
0 1
c
 1 1 1
= abc 1 + + +  1(1 – 0 )
 a b c

 1 1 1
= abc 1+ + +  = abc + bc + ca + ab = nk¡;k i{k
 a b c

AfVIi.kh vU; fof/ }kjk C1 → C1 – C2 o C3 → C3 – C2, dk vuqiz;ksx djosQ rFkk


C1→ C1 – a C3 dk iz;ksx djosQ mijksDr mnkgj.k dks gy djus dk iz;Ru djsaA

iz'ukoyh 4.2
fcuk izlj.k fd, vkSj lkjf.kdksa osQ xq.k/eks± dk iz;ksx djosQ fuEufyf[kr iz'u 1 ls 5 dks fl¼
dhft,A
x a x+a a −b b−c c−a 2 7 65
1. y b y +b =0 2. b − c c − a a − b = 0 3. 3 8 75 = 0
z c z+c c−a a−b b−c 5 9 86

2018-19
130 xf.kr

1 bc a ( b + c ) b+c q+r y+z a p x


4. 1 ca b ( c + a ) = 0 5. c+a r+ p z+x = 2 b q y
1 ab c ( a + b ) a+b p+q x+ y c r z

lkjf.kdksa osQ xq.k/eks± dk iz;ksx djosQ iz'u 6 ls 14 rd dks fl¼ dhft,%

0 a −b −a 2 ab ac
6. − a 0 −c = 0 7. ba −b 2
bc = 4 a 2 b 2 c 2
b c 0 ca cb −c 2

1 a a2
1 b b 2 = ( a − b )(b − c )(c − a )
8. (i)
1 c c2

1 1 1
a b c = ( a − b )(b − c )(c − a )( a + b + c )
(ii)
3 3
a b c3

x x2 yz
2
9. y y zx = (x – y) (y – z) (z – x) (xy + yz + zx)
2
z z xy

x+4 2x 2x
2x = (5 x + 4 )( 4 − x )
2
10. (i) 2x x+4
2x 2x x+4

y+k y y
(ii) y y+k y = k 2 (3 y + k )
y y y+k

a −b −c 2a 2a
b−c−a = (a + b + c )
3
11. (i) 2b 2b
2c 2c c − a −b

2018-19
lkjf.kd 131

x + y + 2z x y
= 2( x + y + z )
3
(ii) z y + z + 2x y
z x z + x + 2y

1 x x2
x = (1 − x 3 )
2
12. x2 1
x x2 1

1 + a 2 − b2 2ab −2b
( )
3
13. 2ab 1− a + b
2 2
2a = 1 + a2 + b2
2b −2a 1 − a2 − b2

a2 + 1 ab ac
14. ab b +1
2
bc =1 + a 2 + b 2 + c 2
ca cb c2 + 1

iz'u la[;k 15 rFkk 16 esa lgh mÙkj pqfu,A


15. ;fn A ,d 3 × 3 dksfV dk oxZ vkO;wg gS rks | kA | dk eku gksxk%
(A) k | A | (B) k 2 | A | (C) k 3 | A | (D) 3k | A |
16. fuEufyf[kr esa ls dkSu lk dFku lgh gSA
(A) lkjf.kd ,d oxZ vkO;wg gSA
(B) lkjf.kd ,d vkO;wg ls lac¼ ,d la[;k gSA
(C) lkjf.kd ,d oxZ vkO;wg ls lac¼ ,d la[;k gSA
(D) buesa ls dksbZ ughaA
4.4 f=kHkqt dk {ks=kiQy (Area of a Triangle)
geus fiNyh d{kkvksa esa lh[kk gS fd ,d f=kHkqt ftlosQ 'kh"kZ¯cnq (x1, y1), (x2, y2) rFkk (x3, y3),
1
gksa rks mldk {ks=kiQy O;atd [x (y –y ) + x2 (y3–y1) + x3 (y1–y2)] }kjk O;Dr fd;k tkrk
2 1 2 3
gSA vc bl O;atd dks lkjf.kd osQ :i esa bl izdkj fy[kk tk ldrk gS%
x1 y1 1
1
∆ = x2 y2 1 ... (1)
2
x3 y3 1

2018-19
132 xf.kr

fVIi.kh
(i) D;ksafd {ks=kiQy ,d /ukRed jkf'k gksrh gS blfy, ge lnSo (1) esa lkjf.kd dk fujis{k
eku ysrs gSaA
(ii) ;fn {ks=kiQy fn;k gks rks x.kuk osQ fy, lkjf.kd dk /ukRed vkSj ½.kkRed nksuksa ekuksa dk
iz;ksx dhft,A
(iii) rhu lajs[k ¯cnqvksa ls cus f=kHkqt dk {ks=kiQy 'kwU; gksxkA

mnkgj.k 17 ,d f=kHkqt dk {ks=kiQy Kkr dhft, ftlosQ 'kh"kZ (3, 8), (– 4, 2) vkSj (5, 1) gSaA
gy f=kHkqt dk {ks=kiQy%
3 8 1
1 1
∆= –4 2 1 3 ( 2 – 1) – 8 ( – 4 – 5) + 1( – 4 – 10 )
2
=
2
5 1 1

1 61
= (3 + 72 – 14 ) =
2 2

mnkgj.k 18 lkjf.kdksa dk iz;ksx djosQ A(1, 3) vkSj B (0, 0) dks tksM+us okyh js[kk dk lehdj.k
Kkr dhft, vkSj k dk eku Kkr dhft, ;fn ,d ¯cnq D(k, 0) bl izdkj gS fd ∆ ABD dk
{ks=kiQy 3 oxZ bdkbZ gSA
gy eku yhft, AB ij dksbZ ¯cnq P (x, y) gS rc ∆ ABP dk {ks=kiQy = 0 (D;ksa?)
0 0 1
1
blfy, 1 3 1 = 0
2
x y 1

1
blls izkIr gS ( y – 3 x ) = 0 ;k y = 3x
2
tks vHkh"V js[kk AB dk lehdj.k gSA
fdarq ∆ ABD dk {ks=kiQy 3 oxZ bdkbZ fn;k gS vr%
1 3 1
1 − 3k
0 0 1 = ± 3 gesa izkIr gS = ± 3 , i.e., k = ∓ 2
2 2
k 0 1

2018-19
lkjf.kd 133

iz'ukoyh 4-3
1. fuEufyf[kr izR;sd esa fn, x, 'kh"kZ ¯cnqvksa okys f=kHkqtksa dk {ks=kiQy Kkr dhft,A
(i) (1, 0), (6, 0), (4, 3) (ii) (2, 7), (1, 1), (10, 8)
(iii) (–2, –3), (3, 2), (–1, –8)
2. n'kkZb, fd ¯cnq A (a, b + c), B (b, c + a) vkSj C (c, a + b) lajs[k gSaA
3. izR;sd esa k dk eku Kkr dhft, ;fn f=kHkqtksa dk {ks=kiQy 4 oxZ bdkbZ gS tgk¡ 'kh"kZ¯cnq
fuEufyf[kr gaS%
(i) (k, 0), (4, 0), (0, 2) (ii) (–2, 0), (0, 4), (0, k)
4. (i) lkjf.kdksa dk iz;ksx djosQ (1, 2) vkSj (3, 6) dks feykus okyh js[kk dk lehdj.k Kkr
dhft,A
(ii) lkjf.kdksa dk iz;ksx djosQ (3, 1) vkSj (9, 3) dks feykus okyh js[kk dk lehdj.k Kkr
dhft,A
5. ;fn 'kh"kZ (2, – 6), (5, 4) vkSj (k, 4) okys f=kHkqt dk {ks=kiQy 35 oxZ bdkbZ gks rks k dk
eku gS%
(A) 12 (B) –2 (C) –12, –2 (D) 12, –2
4.5 milkjf.kd vkSj lg[kaM (Minor and Co-factor)
bl vuqPNsn esa ge milkjf.kdksa vkSj lg[kaMksa dk iz;ksx djosQ lkjf.kdks osQ izlj.k dk foLr`r :i
fy[kuk lh[ksaxsA
ifjHkk"kk 1 lkjf.kd osQ vo;o aij dk milkjf.kd ,d lkjf.kd gS tks i oh iafDr vkSj j ok¡ LraHk
ftlesa vo;o aij fLFkr gS] dks gVkus ls izkIr gksrk gSA vo;o aij osQ milkjf.kd dks Mij osQ }kjk
O;Dr djrs gSaA
fVIi.kh n(n ≥ 2) Øe osQ lkjf.kd osQ vo;o dk milkjf.kd n – 1 Øe dk lkjf.kd gksrk gSA
1 2 3
mnkgj.k 19 lkjf.kd ∆ = 4 5 6 esa vo;o 6 dk milkjf.kd Kkr dhft,A
7 8 9
gy D;ksafd 6 nwljh iafDr ,oa r`rh; LraHk esa fLFkr gSA blfy, bldk milkfj.kd = M23
fuEufyf[kr izdkj ls izkIr gksrk gSA
1 2
M23 = = 8 – 14 = – 6 (∆ ls R2 vkSj C3 gVkus ij)
7 8

2018-19
134 xf.kr

ifjHkk"kk 2 ,d vo;o aij dk lg[kaM ftls Aij }kjk O;Dr djrs gSa] tgk¡
Aij = (–1)i + j Mij,
osQ }kjk ifjHkkf"kr djrs gSa tgk¡ aij dk milkjf.kd Mij gSA

1 –2
mnkgj.k 20 lkjf.kd osQ lHkh vo;oksa osQ milkjf.kd o lg[kaM Kkr dhft,A
4 3

gy vo;o aij dk milkjf.kd Mij gSA


;gk¡ a11 = 1, blfy, M11 = a11dk milkjf.kd = 3
M12 = vo;o a12 dk milkjf.kd = 4
M21 = vo;o a21 dk milkjf.kd = – 2
M22 = vo;o a22 dk milkjf.kd = 1
vc aij dk lg[kaM Aij gSA blfy,
A11 = (–1)1 + 1 M11 = (–1)2 (3) = 3
A12 = (–1)1 + 2 M12 = (–1)3 (4) = – 4
A21 = (–1)2 + 1 M21 = (–1)3 (–2) = 2
A22 = (–1)2 + 2 M22 = (–1)4 (1) = 1

a11 a12 a13


mnkgj.k 21 ∆ = a21 a22 a23 osQ vo;oksa a11 rFkk a21 osQ milkjf.kd vkSj lg[kaM
a31 a32 a33
Kkr dhft,A
gy milkjf.kd vkSj lg[kaM dh ifjHkk"kk }kjk ge ikrs gSa%
a22 a23
a11 dk milkjf.kd = M11 = = a22 a33– a23 a32
a32 a33
a11 dk lg[kaM = A11 = (–1)1+1 M11 = a22 a33 – a23 a32
a12 a13
a21 dk milkjf.kd = M21 = = a12 a33 – a13 a32
a32 a33
a21 dk lg[kaM = A21 = (–1)2+1 M21 = (–1) (a12 a33 – a13 a32) = – a12 a33 + a13 a32

2018-19
lkjf.kd 135

fVIi.kh mnkgj.k 21 esa lkjf.kd ∆ dk R1 osQ lkis{k izlj.k djus ij ge ikrs gSa fd
a22 a23 a21 a23 a21 a22
∆ = (–1) 1+1
a11 a32 a33 + (–1)1+2
a 12 a a33 + (–1)
1+3
a13 a31 a32
31

= a11 A11 + a12 A12 + a13 A13, tgk¡ aij dk lg[kaM Aij gSaA
= R1 osQ vo;oksa vkSj muosQ laxr lg[kaMksa osQ xq.kuiQy dk ;ksxA
blh izdkj ∆ dk R2, R3, C1, C2 vkSj C3 osQ vuqfn'k 5 izlj.k vU; izdkj ls gSaA
vr% lkjf.kd ∆ , fdlh iafDr (;k LraHk) osQ vo;oksa vkSj muosQ laxr lg[kaMksa osQ xq.kuiQy
dk ;ksx gSA

AfVIi.kh ;fn ,d iafDr (;k LraHk) osQ vo;oksa dks vU; iafDr (;k LraHk) osQ lg[kaMksa
ls xq.kk fd;k tk, rks mudk ;ksx 'kwU; gksrk gSA mnkgj.kr;k] ekuk ∆ = a11 A21 + a12 A22
+ a13 A23 rc%

a12 a13 a11 a13 a a


∆ = a11 (–1)1+1 a 1+2
a33 + a12 (–1) a + a13 (–1)1+3 11 12
32
31 a33 a31 a32

a11 a12 a13


= a11 a12 a13 = 0 ( D;ksafd R vkSj R leku gSa)
1 2
a31 a32 a33

blh izdkj ge vU; iafDr;ksa vkSj LraHkksa osQ fy, iz;Ru dj ldrs gSaA
2 –3 5
mnkgj.k 22 lkjf.kd 6 0 4 osQ vo;oksa osQ milkjf.kd vkSj lg[kaM Kkr dhft, vkSj
1 5 –7
lR;kfir dhft, fd a11 A31 + a12 A32 + a13 A33= 0 gSA
0 4
gy ;gk¡ M11 = 5 –7 = 0 –20 = –20; blfy, A11 = (–1)1+1 (–20) = –20

6 4
M12 = 1 –7 = – 42 – 4 = – 46; blfy, A12 = (–1)1+2 (– 46) = 46

6 0
M13 = = 30 – 0 = 30; blfy, A13 = (–1)1+3 (30) = 30
1 5

2018-19
136 xf.kr

–3 5
M21 = = 21 – 25 = – 4; blfy, A21 = (–1)2+1 (– 4) = 4
5 –7

2 5
M22 = = –14 – 5 = –19; blfy, A22 = (–1)2+2 (–19) = –19
1 –7

2 –3
M23 = = 10 + 3 = 13; blfy, A23 = (–1)2+3 (13) = –13
1 5

–3 5
M31 = = –12 – 0 = –12; blfy, A31 = (–1)3+1 (–12) = –12
0 4

2 5
M32 = = 8 – 30 = –22; blfy, A32 = (–1)3+2 (–22) = 22
6 4

2 –3
vkSj M33 =
6 0
= 0 + 18 = 18; blfy, A33 = (–1)3+3 (18) = 18

vc a11 = 2, a12 = –3, a13 = 5; rFkk A31 = –12, A32 = 22, A33 = 18 gSA
blfy, a11 A31 + a12 A32 + a13 A33
= 2 (–12) + (–3) (22) + 5 (18) = –24 – 66 + 90 = 0

iz'ukoyh 4-4
fuEufyf[kr lkjf.kdksa osQ vo;oksa osQ milkjf.kd ,oa lg[kaM fyf[k,A
2 –4 a c
1. (i) (ii)
0 3 b d

1 0 0 1 0 4
2. (i) 0 1 0 (ii) 3 5 –1
0 0 1 0 1 2

5 3 8
3. nwljh iafDr osQ vo;oksa osQ lg[kaMksa dk iz;ksx djosQ ∆ = 2 0 1 dk eku Kkr dhft,A
1 2 3

2018-19
lkjf.kd 137

1 x yz
4. rhljs LraHk osQ vo;oksa osQ lg[kaMksa dk iz;ksx djosQ ∆ = 1 y zx dk eku Kkr dhft,A
1 z xy

a11 a12 a13


5. ;fn ∆ = a21 a22 a23 vkSj aij dk lg[kaM Aij gks rks ∆ dk eku fuEufyf[kr :i esa
a31 a32 a33

O;Dr fd;k tkrk gS%


(A) a11 A31+ a12 A32 + a13 A33 (B) a11 A11+ a12 A21 + a13 A31
(C) a21 A11+ a22 A12 + a23 A13 (D) a11 A11+ a21 A21 + a31 A31

4.6 vkO;wg osQ lg[kaMt vkSj O;qRØe (Adjoint and Inverse of a Matrix)
fiNys vè;k; esa geus ,d vkO;wg osQ O;qRØe dk vè;;u fd;k gSA bl vuqPNsn esa ge ,d
vkO;wg osQ O;qRØe osQ vfLrRo osQ fy, 'krks± dh Hkh O;k[;k djsaxsA
A–1 Kkr djus osQ fy, igys ge ,d vkO;wg dk lg[kaMt ifjHkkf"kr djsaxsA

4.6.1 vkO;wg dk lg[kaMt (Adjoint of a matrix)


ifjHkk"kk 3 ,d oxZ vkO;wg A = [aij] dk lg[kaMt] vkO;wg [Aij] osQ ifjorZ osQ :i esa ifjHkkf"kr gS]
tgk¡ Aij] vo;o aij dk lg[kaM gSA vkO;wg A osQ lg[kaMt dks adj A osQ }kjk O;Dr djrs gSAa

 a11 a12 a13 


 a23  gSA
eku yhft, A =  a21 a22
 a31 a32 a33 

 A11 A12 A13   A11 A 21 A 31 


rc adj A =  A 21   A 32  gksrk gSA
 A 22 A 23  dk ifjorZ =  A12 A 22
 A31 A32 A 33   A13 A 23 A33 

 2 3
mnkgj.k 23 vkO;wg A =   dk lg[kaMt Kkr dhft,A
 1 4

2018-19
138 xf.kr

gy ge tkurs gSa fd A11 = 4, A12 = –1, A21 = –3, A22 = 2

 A11 A 21   4 –3
vr% adj A =  =
A 22   –1 2 
 A12

 a11 a12 
fVIi.kh 2 × 2 dksfV osQ oxZ vkO;wg A =  dk lg[kaMt adj A, a11 vkSj a22 dks ijLij
 a21 a22 

cnyus ,oa a12 vkSj a21 osQ fpÉ ifjofrZr dj nsus ls Hkh izkIr fd;k tk ldrk gS tSlk uhps n'kkZ;k
x;k gSA

ge fcuk miifÙk osQ fuEufyf[kr izes; fufnZ"V djrs gSaA


izes; 1 ;fn A dksbZ n dksfV dk vkO;wg gS rks] A(adj A) = (adj A) A = A I , tgk¡ I, n dksfV
dk rRled vkO;wg gSA
lR;kiu% eku yhft,

 a11 a12 a13   A11 A 21 A31 


 
a23 , gS rc adj A =  A12
A =  a21 a22
 A 22 A32 
 a31 a32 a33   A13 A 23 A 33 
D;ksafd ,d iafDr ;k LraHk osQ vo;oksa dk laxr lg[kaMksa dh xq.kk dk ;ksx | A | osQ leku gksrk
gS vU;Fkk 'kwU; gksrk gSA
A 0 0 1 0 0
 
bl izdkj A (adj A) =  0 A 0  = A 0 1 0 = A I
0 0 A  0 0 1 

blh izdkj] ge n'kkZ ldrs gSa fd (adj A) A = | A | I
vr% A (adj A) = (adj A) A = | A | I lR;kfir gSA

2018-19
lkjf.kd 139

ifjHkk"kk 4 ,d oxZ vkO;wg A vO;qRØe.kh; (singular) dgykrk gS ;fn A = 0 gSA

1 2
mnkgj.k osQ fy, vkO;wg A =  4 8  dk lkjf.kd 'kwU; gSA vr% A vO;qRØe.kh; gSA
 

ifjHkk"kk 5 ,d oxZ vkO;wg A O;qRØe.kh; (non-singular) dgykrk gS ;fn A ≠ 0

1 2  1 2
eku yhft, A =   gks rks A = 3 4 = 4 – 6 = – 2 ≠ 0 gSA
3 4
vr% A O;qRØe.kh; gSA
ge fuEufyf[kr izes; fcuk miifÙk osQ fufnZ"V dj jgs gSaA
izes; 2 ;fn A rFkk B nksuksa ,d gh dksfV osQ O;qRØe.kh; vkO;wg gksa rks AB rFkk BA Hkh mlh
dksfV osQ O;qRØe.kh; vkO;wg gksrs gaSA
izes; 3 vkO;wgksa osQ xq.kuiQy dk lkjf.kd muosQ Øe'k% lkjf.kdksa osQ xq.kuiQy osQ leku gksrk
gS vFkkZr~ AB = A B , tgk¡ A rFkk B leku dksfV osQ oxZ vkO;wg gSaA
A 0 0
 
fVIi.kh ge tkurs gSa fd (adj A) A = A I =  0 A 0
 0 0 A 

nksuksa vksj vkO;wgksa dk lkjf.kd ysus ij]


A 0 0
(adj A) A = 0 A 0
0 0 A

1 0 0
3
vFkkZr~ |(adj A)| |A| = A 0 1 0 (D;ksa?)
0 0 1

vFkkZr~ |(adj A)| |A| = A (1)


3

vFkkZr~ |(adj A)| = A


2

O;kid #i ls] ;fn n dksfV dk ,d oxZ vkO;wg A gks rks | adj A| = | A |n – 1 gksxkA

2018-19
140 xf.kr

izes; 4 ,d oxZ vkO;wg A osQ O;qRØe dk vfLrRo gS] ;fn vkSj osQoy ;fn A O;qRØe.kh; vkO;wg gSA
miifÙk eku yhft, n dksfV dk O;qRØe.kh; vkO;wg A gS vkSj n dksfV dk rRled vkO;wg I gSA
rc n dksfV osQ ,d oxZ vkO;wg B dk vfLrRo bl izdkj gks rkfd AB = BA = I
vc AB = I gS rks | AB | = | I | ;k | A | | B | = 1 (D;ksafd | I | = 1, | AB | = | A | | B |)
blls izkIr gksrk gS | A | ≠ 0. vr% A O;qRØe.kh; gSA
foykser% eku yhft, A O;qRØe.kh; gSA rc | A | ≠ 0
vc A (adj A) = (adj A) A = A I (izes; 1)

 1   1 
;k A adj A  =  adj A  A = I
|A|   |A| 

1
;k AB = BA = I, tgk¡ B =
|A|
adj A

1
vr% A osQ O;qRØe dk vfLrRo gS vkSj A–1 = adj A
|A|

1 3 3
 
mnkgj.k 24 ;fn A = 1 4 3 gks rks lR;kfir dhft, fd A. adj A = A . I vkSj A–1
1 3 4

Kkr dhft,A
gy ge ikrs gSa fd A = 1 (16 – 9) –3 (4 – 3) + 3 (3 – 4) = 1 ≠ 0
vc A11 = 7, A12 = –1, A13 = –1, A21 = –3, A22 = 1, A23 = 0, A31 = –3, A32 = 0, A33 = 1
 7 −3 −3
 
blfy, adj A =  −1 1 0 
 −1 0 1 

1 3 3  7 −3 −3
  
vc A.(adj A) = 1 4 3  −1 1 0 
1 3 4  −1 0 1 

2018-19
lkjf.kd 141

 7 − 3 − 3 −3 + 3 + 0 −3 + 0 + 3
 
=  7 − 4 − 3 −3 + 4 + 0 −3 + 0 + 3
 7 − 3 − 4 −3 + 3 + 0 −3 + 0 + 4

1 0 0  1 0 0
 0 1 0
=  0 1 0 = (1)   = A .I
 
 0 0 1 0 0 1

 7 −3 −3  7 −3 −3
⋅ adj A = −1 1 0  =  −1 1 0 
−11 1
vkSj A =
A 1   
 −1 0 1   −1 0 1 

2 3 1 −2 
mnkgj.k 25 ;fn A = 1 − 4 , B =  −1 3  , rks lR;kfir dhft, fd (AB)–1 = B–1A–1 gSA
   

2 3  1 −2   −1 5 
gy ge tkurs gSa fd AB =   = −14 
 1 − 4   −1 3   5

D;ksafd AB = –11 ≠ 0, (AB)–1 dk vfLrRo gS vkSj bls fuEufyf[kr izdkj ls O;Dr fd;k
tkrk gSA
1 1  −14 −5 = 1 14 5
. adj (AB) = − 
(AB)–1 =
AB 11  −5 −1 11  5 1

vkSj A = –11 ≠ 0 o B = 1 ≠ 0. blfy, A–1 vkSj B–1 nksuksa dk vfLrRo gS vkSj ftls
fuEufyf[kr :i esa O;Dr fd;k tk ldrk gSA
1  − 4 −3 −1 3 2 
A −1 = − ,B = 
11  −1 2  
1 1 

1 3 2  −4 −3 1  −14 −5 1 14 5


blfy, B−1 A −1 = −     =−   = 
11 1 1   −1 2  11  −5 −1 11  5 1

vr% (AB)–1 = B–1 A–1 gSA

2018-19
142 xf.kr

 2 3
mnkgj.k 26 iznf'kZr dhft, fd vkO;wg A = 1 2 lehdj.k A2 – 4A + I = O, tgk¡ I
 
2 × 2 dksfV dk ,d rRled vkO;wg gS vkSj O, 2 × 2 dksfV dk ,d 'kwU; vkO;wg gSA bldh
lgk;rk ls A–1 Kkr dhft,A
 2 3   2 3   7 12
gy ge tkurs gSa fd A 2 = A.A =    = 
1 2  1 2   4 7 
 7 12  8 12 1 0  0 0
vr% A2 – 4A + I =  −  +  = =O
 4 7   4 8  0 1  0 0
vc A2 – 4A + I = O
blfy, A A – 4A = – I
;k A A (A ) – 4 A A–1 = – I A–1 (nksuksa vksj A–1 ls mÙkj xq.ku }kjk D;ksafd |A| ≠ 0)
–1

;k A (A A–1) – 4I = – A–1
;k AI – 4I = – A–1

 4 0   2 3  2 −3
;k A–1 = 4I – A =   −  =  
 0 4  1 2  −1 2 

 2 −3
vr% A–1 =  
 −1 2 

iz'ukoyh 4-5
iz'u 1 vkSj 2 esa izR;sd vkO;wg dk lg[kaMt (adjoint) Kkkr dhft,

 1 −1 2
 1 2  
1.  3 4 2.  2 3 5 
   −2 0 1 

iz'u 3 vkSj 4 esa lR;kfir dhft, fd A (adj A) = (adj A) .A = A . I gSA


1 −1 2 
2 3 3 0 −2
3.  −4 −6 4.  
  1 0 3 

2018-19
lkjf.kd 143

iz'u 5 ls 11 esa fn, x, izR;sd vkO;wgksa osQ O;qRØe (ftudk vfLrRo gks) Kkr dhft,A
1 2 3
 2 −2  −1 5 0 2 4
5. 4 3  6.   7.  
   −3 2  0 0 5 

1 0 0   2 1 3  1 −1 2 
3 3 0   4 −1 0  
8.   9.   10.  0 2 −3
5 2 −1  −7 2 1   3 −2 4 

1 0 0 
0 cos α sin α 
11.  
0 sin α − cos α 

3 7  6 8
12. ;fn A =   vkSj B = 7 9 gS rks lR;kfir dhft, fd (AB)–1 = B–1 A–1 gSA
 2 5  
 3 1
13. ;fn A =   gS rks n'kkZb, fd A2 – 5A + 7I = O gS bldh lgk;rk ls A–1 Kkr dhft,A
 −1 2

 3 2
14. vkO;wg A =   osQ fy, a vkSj b ,slh la[;k,¡ Kkr dhft, rkfd
1 1 
A2 + aA + bI = O gksA

1 1 1 
 
15. vkO;wg A = 1 2 −3 osQ fy, n'kkZb, fd A3– 6A2 + 5A + 11 I = O gSA
 2 −1 3 

bldh lgk;rk ls A–1 Kkr dhft,A

 2 −1 1 
 
16. ;fn A =  −1 2 −1 , rks lR;kfir dhft, fd A3 – 6A2 + 9A – 4I = O gS rFkk
 1 −1 2 

bldh lgk;rk ls A–1 Kkr dhft,A

2018-19
144 xf.kr

17. ;fn A, 3 × 3 dksfV dk oxZ vkO;wg gS rks | adj A | dk eku gS%


(A) | A | (B) | A | 2 (C) | A | 3 (D) 3 | A |
18. ;fn A dksfV nks dk O;qRØeh; vkO;wg gS rks det (A–1) cjkcj%

1
(A) det (A) (B) det (A) (C) 1 (D) 0

4.7 lkjf.kdksa vkSj vkO;wgksa osQ vuqiz;ksx (Applications of Determinants and


Matrices)
bl vuqPNsn esa ge nks ;k rhu vKkr jkf'k;ksa osQ jSf[kd lehdj.k fudk; osQ gy vkSj jSf[kd
lehdj.kksa osQ fudk; dh laxrrk dh tk¡p esa lkjf.kdksa vkSj vkO;wgksa osQ vuqiz;ksxksa dk o.kZu djsaxsA
laxr fudk;% fudk; laxr dgykrk gS ;fn blosQ gyksa (,d ;k vf/d) dk vfLrRo gksrk gSA
vlaxr fudk;% fudk; vlaxr dgykrk gS ;fn blosQ fdlh Hkh gy dk vfLrRo ugha gksrk gSA

AfVIi.kh bl vè;k; esa ge vf}rh; gy osQ lehdj.k fudk; rd lhfer jgsaxsA

4.7.1 vkO;wg osQ O;qRØe }kjk jSf[kd lehdj.kksa osQ fudk; dk gy (Solution of a system
of linear equations using inverse of a matrix)
vkb, ge jSf[kd lehdj.kksa osQ fudk; dks vkO;wg lehdj.k osQ :i esa O;Dr djrs gSa vkSj vkO;wg
osQ O;qRØe dk iz;ksx djosQ mls gy djrs gSaA
fuEufyf[kr lehdj.k fudk; ij fopkj dhft,
a1 x + b1 y + c1 z = d 1
a2 x + b2 y + c2 z = d 2
a3 x + b3 y + c3 z = d 3

 a1 b1 c1   x  d1 
eku yhft, A =  a2 b2 c2  , X =  y  vkSj B =  d 
   2
 a3 b3 c3   z   d3 

rc lehdj.k fudk; AX = B osQ :i esa fuEufyf[kr izdkj ls O;Dr dh tk ldrh gSA


 a1 b1 c1   x   d1 
a b2 c2   y d 
 2   =  2
 a3 b3 c3   z   d3 

2018-19
lkjf.kd 145

fLFkfr 1 ;fn A ,d O;qRØe.kh; vkO;wg gS rc blosQ O;qRØe dk vfLrRo gSA vr% AX = B ls


ge ikrs gSa fd
A–1 (AX) = A–1 B (A–1 ls iwoZ xq.ku osQ }kjk)
;k (A–1A) X = A–1 B (lkgp;Z xq.ku }kjk)
;k IX=A B –1

;k X = A–1 B
;g vkO;wg lehdj.k fn, x, lehdj.k fudk; dk vf}rh; gy iznku djrk gS D;ksafd ,d
vkO;wg dk O;qRØe vf}rh; gksrk gSA lehdj.kksa osQ fudk; osQ gy djus dh ;g fof/ vkO;wg fof/
dgykrh gSA
fLFkfr 2 ;fn A ,d vO;qRØe.kh; vkO;wg gS rc | A | = 0 gksrk gSA
bl fLFkfr esa ge (adj A) B Kkr djrs gSaA
;fn (adj A) B ≠ O, (O 'kwU; vkO;wg gS), rc dksbZ gy ugha gksrk gS vkSj lehdj.k fudk;
vlaxr dgykrh gSA
;fn (adj A) B = O, rc fudk; laxr ;k vlaxr gksxh D;ksafd fudk; osQ vuar gy gksaxs ;k
dksbZ Hkh gy ugha gksxkA
mnkgj.k 27 fuEufyf[kr lehdj.k fudk; dks gy dhft,%
2x + 5y = 1
3x + 2y = 7
gy lehdj.k fudk; AX = B osQ :i esa fy[kk tk ldrk gS] tgk¡
2 5  x 1 
A=   , X =   vkSj B =  
3 2  y 7 
vc, A = –11 ≠ 0, vr% A O;qRØe.kh; vkO;wg gS blfy, blosQ O;qRØe dk vfLrRo gSA vkSj
bldk ,d vf}rh; gy gSA
1  2 −5
è;ku nhft, fd A–1 = −
11  −3 2 
1  2 −5  1
blfy, X = A–1B = −
11  −3 2   7
 x 1  −33  3 
vFkkZr~  y  = − 11  11  =  −1
     
vr% x = 3, y = – 1

2018-19
146 xf.kr

mnkgj.k 28 fuEufyf[kr lehdj.k fudk;


3x – 2y + 3z = 8
2x + y – z = 1
4x – 3y + 2z = 4
dks vkO;wg fof/ ls gy dhft,A
gy lehdj.k fudk; dks AX = B osQ :i esa O;Dr fd;k tk ldrk gS tgk¡
 3 −2 3   x 8
A = 2 1 −1 , X =  y  vkSj B =
  1
     
 4 −3 2   z   4

ge ns[krs gSa fd
A = 3 (2 – 3) + 2(4 + 4) + 3 (– 6 – 4) = – 17 ≠ 0 gSA
vr% A O;qRØe.kh; gS] vkSj blosQ O;qRØe dk vfLrRo gSA
A11 = –1, A12 = – 8, A13 = –10
A21 = –5, A22 = – 6, A23 = 1
A31 = –1, A32 = 9, A33 = 7
 −1 − 5 −1
1  
blfy, A = −  −8 − 6 9 
–1
17
 −10 1 7 

 −1 − 5 −1  8 
1    
vkSj X = A B = −  −8 − 6 9  1 
–1

17
 −10 1 7   4

 x  −17   1 
 y 1    
vr%   = − 17  −34  =  2 
 z   −51  3 
vr% x = 1, y = 2 o z = 3
mnkgj.k 29 rhu la[;kvksa dk ;ksx 6 gSA ;fn ge rhljh la[;k dks 3 ls xq.kk djosQ nwljh la[;k
esa tksM+ nsa rks gesa 11 izkIr gksrk gSA igyh vksj rhljh dks tksM+us ls gesa nwljh la[;k dk nqxquk izkIr
gksrk gSA bldk chtxf.krh; fu:i.k dhft, vkSj vkO;wg fof/ ls la[;k,¡ Kkr dhft,A

2018-19
lkjf.kd 147

gy eku yhft, igyh] nwljh o rhljh la[;k Øe'k% x, y vkSj z, }kjk fu:fir gSA rc nh xbZ
'krks± osQ vuqlkj gesa izkIr gksrk gS%
x+y+z=6
y + 3z = 11
x + z = 2y
;k x – 2y + z = 0
bl fudk; dks A X = B osQ :i esa fy[kk tk ldrk gS tgk¡
 1 1 1  x 6
   y 11
A =  0 1 3 , X =   vkSj B =   gSA
1 –2 1  z   0 

;gk¡ A = 1 (1 + 6) + 0 + 1 (3 – 1) = 9 ≠ 0 gSA vc ge adj A Kkr djrs gSaA


A11 = 1 (1 + 6) = 7, A12 = – (0 – 3) = 3, A13 = – 1
A21 = – (1 + 2) = – 3, A22 = 0, A23 = – (– 2 – 1) = 3
A31 = (3 – 1) = 2, A32 = – (3 – 0) = – 3, A33 = (1 – 0) = 1
 7 –3 2 
 
vr% adj A =  3 0 –3
 –1 3 1 

 7 –3 2 
1 1 
bl izdkj A –1
= adj. (A) =  3 0 –3
A 9
 –1 3 1 

D;ksafd X = A–1 B

 7 –3 2   6 
1  
X =  3 0 –3 11
9
 –1 3 1   0 

 x  42 − 33 + 0  9 1 
 y 1  18 + 0 + 0  1 18   2
;k   =   =   =  
 z  9  −6 + 33 + 0 9  27  3
   
vr% x = 1, y = 2, z = 3

2018-19
148 xf.kr

iz'ukoyh 4-6
fuEufyf[kr iz'uksa 1 ls 6 rd nh xbZ lehdj.k fudk;ksa dk laxr vFkok vlaxr osQ :i esa oxhZdj.k
dhft,
1. x + 2y = 2 2. 2x – y = 5 3. x + 3y = 5
2x + 3y = 3 x+y=4 2x + 6y = 8
4. x + y + z = 1 5. 3x–y – 2z = 2 6. 5x – y + 4z = 5
2x + 3y + 2z = 2 2y – z = –1 2x + 3y + 5z = 2
ax + ay + 2az = 4 3x – 5y = 3 5x – 2y + 6z = –1
fuEufyf[kr iz'u 7 ls 14 rd izR;sd lehdj.k fudk; dks vkO;wg fof/ ls gy dhft,A
7. 5x + 2y = 4 8. 2x – y = –2 9. 4x – 3y = 3
7x + 3y = 5 3x + 4y = 3 3x – 5y = 7
10. 5x + 2y = 3 11. 2x + y + z = 1 12. x – y + z = 4

3
3x + 2y = 5 x – 2y – z = 2x + y – 3z = 0
2
3y – 5z = 9 x+y+z=2
13. 2x + 3y +3 z = 5 14. x – y + 2z = 7
x – 2y + z = – 4 3x + 4y – 5z = – 5
3x – y – 2z = 3 2x – y + 3z = 12

 2 –3 5 
 
15. ;fn A =  3 2 – 4  gS rks A –1 Kkr dhft,A A–1 dk iz;ksx djosQ fuEufyf[kr
 1 1 –2 

lehdj.k fudk; dks gy dhft,A


2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
16. 4 kg I;kt] 3 kg xsgw¡ vkSj 2 kg pkoy dk ewY; Rs 60 gSA 2 kg I;kt] 4 kg xsgw¡ vkSj
6 kg pkoy dk ewY; Rs 90 gSA 6 kg I;kt] 2 kg vkSj 3 kg pkoy dk ewY;
Rs 70 gSA vkO;wg fof/ }kjk izR;sd dk ewY; izfr kg Kkr dhft,A

2018-19
lkjf.kd 149

fofo/ mnkgj.k
mngkj.k 30 ;fn a, b, c /ukRed vkSj fHkUu gSa rks fn[kkb, fd lkjf.kd
a b c
∆= b c a dk eku ½.kkRed gSA
c a b
gy C1 → C1 + C2 + C3 dk iz;ksx djus ij
a+b+c b c 1 b c
∆ = a + b + c c a = (a + b + c) 1 c a
a+b+c a b 1 a b

1 b c
= (a + b + c) 0 c – b a – c (R2→ R2–R1, vkSj R3 → R3 – R1 dk iz;ksx djus ij)
0 a–b b–c

= (a + b + c) [(c – b) (b – c) – (a – c) (a – b)] (C1 osQ vuqfn'k izlj.k djus ij)


= ( a + b + c)(– a2 – b2 – c2 + ab + bc + ca)
–1
= (a + b + c) (2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca)
2
–1
= (a + b + c) [(a – b)2 + (b – c)2 + (c – a)2]
2
tks ½.kkRed gS ( D;ksafd a + b + c > 0 vkSj (a – b)2 + (b – c)2 + (c – a)2 > 0)
mnkgj.k 31 ;fn a, b, c lekarj Js<+h esa gkas rks fuEufyf[kr lkjf.kd dk eku Kkr dhft,
2y + 4 5y + 7 8y + a
∆ = 3y + 5 6 y + 8 9 y + b
4 y + 6 7 y + 9 10 y + c
gy R1 → R1 + R3 – 2R2 dk iz;ksx djus ij
0 0 0
∆ = 3y + 5 6 y + 8 9 y + b = 0 (D;ksafd 2b = a + c)
4 y + 6 7 y + 9 10 y + c

2018-19
150 xf.kr

mnkgj.k 32 n'kkZb, fd lkjf.kd


( y+ z )
2
xy zx
( x+ z )
2
∆= xy yz = 2xyz (x + y + z)3
( x+ y )
2
xz yz

gy lkjf.kd esa R1 → xR1, R2 → yR2 , R3 → z R3 dk iz;ksx djus vkSj xyz, ls Hkkx djus ij
ge izkIr djrs gSa fd lkjf.kd
x ( y+ z)
2
x2 y x2 z
1
y ( x+ z )
2
∆= xy 2 y2 z
xyz
z ( x+ y )
2
xz 2 yz 2

C1 , C2 vkSj C3 ls Øe'k% x, y, z mHk;fu"B ysus ij]

(y+ z)
2
x2 x2
xyz
(x+ z)
2

∆= y2 y2
xyz
(x+ y)
2
z2 z2

C2 → C2– C1, C3 → C3– C1, dk iz;ksx djus ij ge izkIr djrs gSa fd

( y + z )2 x2 – ( y + z )
2
x2 − ( y + z )
2

∆= y2 ( x + z )2 − y 2 0
z2 0 ( x + y )2 – z 2
vc C2 vkSj C3 ls (x + y + z) mHk;fu"B ysus ij] izkIr lkjf.kd
(y + z) x – ( y + z) x – ( y + z)
2

∆ = (x + y + z)2 y 2
(x + z) – y 0
z2 0 (x + y) – z
R1 → R1 – (R2 + R3) dk iz;ksx djus ij ge fuEufyf[kr lkjf.kd izkIr djrs gaS

2 yz –2z –2y
∆ = (x + y + z) 2 y2 x− y+z 0
z2 0 x+ y –z

2018-19
lkjf.kd 151

1  1 
C2 → (C2 + C1) vkSj C3 →  C 3 + C1  dk iz;ksx djus ij izkIr lkjf.kd
y  z 

2 yz 0 0
y2
y2 x+ z
∆ = (x + y + z)2 z
z2
z2 x+ y
y

R1 osQ vuqfn'k izlj.k djus ij


∆ = (x + y + z)2 (2yz) [(x + z) (x + y) – yz] = (x + y + z)2 (2yz) (x2 + xy + xz)
= (x + y + z)3 (2xyz) izkIr gksrk gSA

 1 –1 2   – 2 0 1 
mnkgj.k 33 vkO;wgksa osQ xq.kuiQy 0 2 –3  9 2 –3 dk iz;ksx djrs gq, fuEufyf[kr
 3 –2 4   6 1 –2
lehdj.k fudk; dks gy dhft,%
x – y + 2z = 1
2y – 3z = 1
3x – 2y + 4z = 2

1 –1 2  –2 0 1 
gy fn;k x;k xq.kuiQy  0 2 – 3  9
 2 – 3 
 3 –2 4   6 1 – 2 

 − 2 − 9 + 12 0 − 2 + 2 1 + 3 − 4 1 0 0
   
=  0 + 18 − 18 0 + 4 − 3 0 − 6 + 6 = 0 1 0
 − 6 − 18 + 24 0 − 4 + 4 3 + 6 − 8 0 0 1
–1
 1 –1 2   –2 0 1 
vr%  0 2 –3  =  9 2 – 3
   
 3 –2 4   6 1 –2

2018-19
152 xf.kr

vc fn, x, lehdj.k fudk; dks vkO;wg osQ :i fuEufyf[kr :i esa fy[kk tk ldrk gS
 1 –1 2   x  1 
 0 2 –3  y  =  1 
     
 3 –2 4   z   2

−1
 x 1 −1 2  1   –2 0 1  1 
;k  y
  = 0
 2 −3 1  =  9 2 –3 1 
 
 z   3 −2 4  2   6 1 –2  2

 −2 + 0 + 2  0 
   
=  9 + 2 − 6  = 5 
 6 + 1 − 4   3
vr% x = 0, y = 5 vkSj z = 3
mnkgj.k 34 fl¼ dhft, fd lkjf.kd
a + bx c + dx p + qx a c p
∆ = ax + b cx + d px + q = (1 − x ) b d
2
q
u v w u v w
gy lkjf.kd ∆ ij R1 → R1 – x R2 dk iz;ksx djus ij gesa

a (1 − x 2 ) c (1 − x 2 ) p (1 − x 2 )
D= ax + b cx + d px + q izkIr gksrk gS
u v w

a c p
= (1 − x ) ax + b cx + d px + q
2

u v w

R2 → R2 – x R1, dk iz;ksx djus ij gesa lkjf.kd

a c p
∆ = (1 − x ) b d q izkIr gksrk gSA
2

u v w

2018-19
lkjf.kd 153

vè;k; 4 ij fofo/ iz'ukoyh

x sin θ cos θ
1. fl¼ dhft, fd lkjf.kd – sin θ – x 1 , θ ls Lora=k gSA
cos θ 1 x

a a2 bc 1 a2 a3
2. lkjf.kd dk izlj.k fd, fcuk fl¼ dhft, fd b b2 ca = 1 b 2 b3
c c2 ab 1 c2 c3

cos α cos β cos α sin β – sin α


3. – sin β cos β 0 dk eku Kkr dhft,A
sin α cos β sin α sin β cos α

4. ;fn a, b vkSj c okLrfod la[;k,¡ gks vkSj lkjf.kd

b+ c c+ a a+ b
∆ = c + a a+ b b+ c =0
a+b b+ c c+ a
gks rks n'kkZb, fd ;k rks a + b + c = 0 ;k a = b = c gSA
x+a x x
5. ;fn a ≠ 0 gks rks lehdj.k x x+a x = 0 dks gy dhft,A
x x x+a

a2 bc ac + c 2
6. fl¼ dhft, fd a + ab
2
b2 ac = 4a2b2c2
ab b2 + bc c 2

 3 –1 1   1 2 –2 
   
7. ;fn A–1 =  –15 6 –5 vkSj B =  –1 3 0  , gks rks ( AB) dk eku Kkr dhft,A
−1

 5 –2 2   0 –2 1 

2018-19
154 xf.kr

 1 –2 1 
 
8. eku yhft, A =  –2 3 1 gks rks lR;kfir dhft, fd
 1 1 5

(i) [adj A]–1 = adj (A–1) (ii) (A–1)–1 = A

x y x+ y
9. y x+ y x dk eku Kkr dhft,A
x+ y x y

1 x y
10. 1 x+ y y dk eku Kkr dhft,A
1 x x+ y

lkjf.kdksa osQ xq.k/eks± dk iz;ksx djosQ fuEufyf[kr 11 ls 15 rd iz'uksa dks fl¼ dhft,%

α α2 β+γ
11. β β 2
γ + α = (β – γ) (γ – α) (α – β) (α + β + γ)
γ γ 2
α +β

x x 2 1 + px 3
12. y y 2 1 + py 3 = (1 + pxyz) (x – y) (y – z) (z – x),
z z2 1 + pz 3

3a – a+ b – a+ c
13. –b+ a 3b – b + c = 3(a + b + c) (ab + bc + ca)
–c+ a – c+ b 3c

1 1+ p 1+ p+ q
14. 2 3+ 2 p 4 + 3 p + 2q = 1
3 6 + 3 p 10 + 6 p + 3 q

2018-19
lkjf.kd 155

sin α cos α cos (α + δ )


15. sin β cos β cos (β + δ ) = 0
sin γ cos γ cos ( γ + δ )

16. fuEufyf[kr lehdj.k fudk; dks gy dhft,

2 3 10
+ + =4
x y z

4 6 5
– + =1
x y z

6 9 20
+ – =2
x y z
fuEufyf[kr iz'uksa 17 ls 19 esa lgh mÙkj dk pquko dhft,A
17. ;fn a, b, c lekarj Js<+h esa gksa rks lkjf.kd

x + 2 x + 3 x + 2a
x + 3 x + 4 x + 2b dk eku gksxk%
x + 4 x + 5 x + 2c

(A) 0 (B) 1 (C) x (D) 2x

 x 0 0
 
18. ;fn x, y, z 'kwU;srj okLrfod la[;k,¡ gksa rks vkO;wg A =  0 y 0 dk O;qÙØe gS%
 0 0 z 

 x −1 0 0   x −1 0 0 
   
(A)  0 y −1 0  (B) xyz  0 y −1 0 
   
 0 0 z −1   0 0 z −1 

 x 0 0 1 0 0 
1 
0 y 0 
1 
(C)  (D)  0 1 0 
xyz xyz
0 0 z  0 0 1 

2018-19
156 xf.kr

 1 sin θ 1 
 − sin θ sin θ, tgk¡ 0 ≤ θ ≤ 2π gks rks%
19. ;fn A =  1

 −1 − sin θ 1 
(A) det (A) = 0 (B) det (A) ∈ (2, ∞)
(C) det (A) ∈ (2, 4) (D) det (A) ∈ [2, 4].

lkjka'k

® vkO;wg A = [a11 ] 1×1 dk lkjf.kd a11 1×1 = a11 osQ }kjk fn;k tkrk gSA

 a11 a12 
® vkO;wg A =
a22 
dk lkjf.kd
 a21

a11 a12
A = = a11 a22 – a12 a21 osQ }kjk fn;k tkrk gSA
a21 a22

 a1 b1 c1 
® vkO;wg A = a2 b2 c2  osQ lkjf.kd dk eku (R1 osQ vuqfn'k izlj.k ls) fuEufyf[kr
 a3 b3 c3 

:i }kjk fn;k tkrk gSA

a1 b1 c1
b c2 a2 c2 a2 b2
A = a2 b2 c2 = a1 2 − b1 + c1
b3 c3 a3 c3 a3 b3
a3 b3 c3
fdlh oxZ vkO;wg A osQ fy,] |A| fuEufyf[kr xq.k/eks± dks larq"V djrk gSA
® A′ = A , tgk¡ A′ = A dk ifjorZ gSA

® ;fn ge nks iafDr;ksa ;k LraHkksa dks ijLij cny nsa rks lkjf.kd dk fpÉ cny tkrk gSA
® ;fn lkjf.kd dh dksbZ nks iafDr ;k LraHk leku ;k lekuqikrh gksa rks lkjf.kd dk eku
'kwU; gksrk gSA
® ;fn ge ,d lkjf.kd dh ,d iafDr ;k LraHk dks vpj k, ls xq.kk dj nsa rks lkjf.kd
dk eku k xquk gks tkrk gSA

2018-19
lkjf.kd 157

® ,d lkjf.kd dks k ls xq.kk djus dk vFkZ gS fd mlosQ vanj osQoy fdlh ,d iafDr
;k LraHk osQ vo;oksa dks k ls xq.kk djukA
® ;fn A = [aij ]3×3 , rks k .A = k 3 A
® ;fn ,d lkjf.kd osQ ,d iafDr ;k LraHk osQ vo;o nks ;k vf/d vo;oksa osQ ;ksx osQ
:i esa O;Dr fd, tk ldrs gksa rks ml fn, x, lkjf.kd dks nks ;k vf/d lkjf.kdksa
osQ ;ksx osQ :i esa O;Dr fd;k tk ldrk gSA
® ;fn ,d lkjf.kd osQ fdlh ,d iafDr ;k LraHk osQ izR;sd vo;o osQ lexq.kt vU; iafDr
;k LraHk osQ laxr vo;oksa esa tksM+ fn, tkrs gSa rks lkjf.kd dk eku vifjofrZr jgrk gSA
® (x1, y1), (x2, y2) vkSj (x3, y3) 'kh"kks± okyh f=kHkqt dk {ks=kiQy fuEufyf[kr :i }kjk
fn;k tkrk gS%
x1 y1 1
1
∆= x2 y2 1
2
x3 y3 1

® fn, x, vkO;wg A osQ lkjf.kd osQ ,d vo;o aij dk milkjf.kd] i oha iafDr vkSj
j oka LraHk gVkus ls izkIr lkjf.kd gksrk gS vkSj bls Mij }kjk O;Dr fd;k tkrk gSA
® aij dk lg[kaM Aij = (– 1)i+j Mij }kjk fn;k tkrk gSA

® A osQ lkjf.kd dk eku A = a11 A11 + a12 A12 + a13 A13 gS vkSj bls ,d iafDr ;k
LraHk osQ vo;oksa vkSj muosQ laxr lg[kaMksa osQ xq.kuiQy dk ;ksx djosQ izkIr fd;k tkrk
gSA
® ;fn ,d iafDr (;k LraHk) osQ vo;oksa vkSj vU; nwljh iafDr (;k LraHk) osQ lg[kaMksa
dh xq.kk dj nh tk, rks mudk ;ksx 'kwU; gksrk gS mnkgj.kr;k
a11 A21 + a12 A22 + a13 A23 = 0

 a11 a12 a13   A11 A 21 A31 


® ;fn vkO;wg A = a21 a22 a23  , rks lg[kaMt adj A = A
 12 A 22 A32  gksrk
 a31 a32 a33   A13 A 23 A 33 
gS] tgk¡ aij dk lg[kaM Aij gSA
® A (adj A) = (adj A) A = A I, tgk¡ A, n dksfV dk oxZ vkO;wg gSA
® ;fn dksbZ oxZ vkO;wg Øe'k% vO;qRØe.kh; ;k O;qRØe.kh; dgykrk gS ;fn A =0
;k A ≠ 0

2018-19
158 xf.kr

® ;fn–1 AB = BA = I, tgk¡ B ,d oxZ vkO;wg gS rc A dk O;qRØe B gksrk gS vkSj


A = B ;k B–1 = A vkSj blfy, (A–1)–1 = A
® fdlh oxZ vkO;wg A dk O;qRØe gS ;fn vkSj osQoy ;fn A O;qRØe.kh; gSA
1
® A –1 = ( adj A)
A
® ;fn a1 x + b1 y + c1 z = d1
a2 x + b2 y + c2 z = d2
a3 x + b3 y + c3 z = d3
rc bu lehdj.kksa dks A X = B osQ :i esa fy[kk tk ldrk gSA
 a1 b1 c1   x  d1 
tgk¡ A = a2 b2 c2  , X = y vkSj B=  d 2 
 
 

 a3 b3 c3   z   d3 

® lehdj.k AX = B dk vf}rh; gy X = A–1 B }kjk fn;k tkrk gS tgk¡ A ≠ 0


® lehdj.kksa dk ,d fudk; laxr ;k vlaxr gksrk gS ;fn blosQ gy dk vfLrRo gS vFkok
ugha gSA
® vkO;wg lehdj.k AX = B esa ,d oxZ vkO;wg A osQ fy,
(i) ;fn A ≠ 0 , rks vf}rh; gy dk vfLrRo gSA

(ii) ;fn A = 0 vkSj (adj A) B ≠ O, rks fdlh gy dk vfLrRo ugha gSA

(iii) ;fn A = 0 vkSj (adj A) B = O, rks fudk; laxr ;k vlaxr gksrh gSA

,sfrgkfld i`"BHkwfe
x.kuk cksMZ ij NM+ksa dk iz;ksx djosQ oqQN jSf[kd lehdj.kksa dh vKkr jkf'k;ksa osQ
xq.kkadksa dks fu:fir djus dh phuh fof/ us okLro esa foyksiu dh lk/kj.k fof/ dh [kkst
djus esa lgk;rk dh gSA NM+ksa dh O;oLFkk Øe ,d lkjf.kd esa la[;kvksa dh mfpr O;oLFkk
Øe tSlh FkhA blfy, ,d lkjf.kd dh ljyhdj.k esa LraHkksa ;k iafDr;ksa osQ ?kVkus dk fopkj
mRiUu djus esa phuh izFke fopkjdksa esa Fks (‘Mikami, China, pp 30, 93).
l=kgoha 'krkCnh osQ egku tkikuh xf.krK Seki Kowa }kjk 1683 esa fyf[kr iqLrd
'Kai Fukudai no Ho' ls Kkr gksrk gS fd mUgsa lkjf.kdksa vkSj muosQ izlkj dk Kku FkkA ijarq

2018-19
lkjf.kd 159

mUgksaus bl fof/ dk iz;ksx osQoy nks lehdj.kksa ls ,d jkf'k osQ foyksiu esa fd;k ijarq ;qxir
jSf[kd lehdj.kksa osQ gy Kkr djus esa bldk lh/k iz;ksx ugha fd;k FkkA ‘T. Hayashi,
“The Fakudoi and Determinants in Japanese Mathematics,” in the proc. of the
Tokyo Math. Soc., V.
Vendermonde igys O;fDr Fks ftUgksuas lkjf.kdksa dks Lora=k iQyu dh rjg ls igpkuk
bUgsa fof/or bldk vUos"kd (laLFkkid) dgk tk ldrk gSA Laplace (1772) us lkjf.kdksa
dks blosQ iwjd milkjf.kdksa osQ :i esa O;Dr djosQ izlj.k dh O;kid fof/ nhA 1773 esa
Lagrange us nwljs o rhljs Øe osQ lkjf.kdksa dks O;oâr fd;k vkSj lkjf.kdksa osQ gy osQ
vfrfjDr mudk vU;=k Hkh iz;ksx fd;kA 1801 esa Gauss us la[;k osQ fl¼karksa esa lkjf.kdksa
dk iz;ksx fd;kA
vxys egku ;ksxnku nsus okys Jacques - Philippe - Marie Binet, (1812) Fks ftUgksaus
m-LraHkksa vkSj n-iafDr;ksa osQ nks vkO;wgksa osQ xq.kuiQy ls lacaf/r izes; dk mYys[k fd;k tks
fo'ks"k fLFkfr m = n esa xq.kuiQy izes; esa cny tkrh gSA
mlh fnu Cauchy (1812) us Hkh mlh fo"k;&oLrq ij 'kks/ izLrqr fd,A mUgksaus vkt
ossQ O;kogkfjd lkjf.kd 'kCn dk iz;ksx fd;kA mUgksaus Binet ls vf/d larq"V djus okyh
xq.kuiQy izes; dh miifÙk nhA
bu fl¼karksa ij egkure ;ksxnku okys Carl Gustav Jacob Jacobi FksA blosQ i'pkr
lkjf.kd 'kCn dks vafre Loho`Qfr izkIr gqbZA

—v—

2018-19
160 xf.kr

vè;k; 5
lkarR; rFkk vodyuh;rk
(Continuity and Differentiability)

vThe whole of science is nothing more than a refinement


of everyday thinking.” — ALBERT EINSTEIN v

5.1 Hkwfedk (Introduction)


;g vè;k; vfuok;Zr% d{kk 11 esa i<+s x, iQyuksa osQ vodyu
(differentiation) dk Øekxr gSA ge oqQN fuf'pr cgqinh; iQyuksa
,oa f=kdks.kferh; iQyuksa dk vodyu djuk lh[k pqosQ gSaA
bl vè;k; es a ge lka r R; (continuity), vodyuh;rk
(differentiability) rFkk buosQ ikjLifjd laca/ksa dh egRoiw.kZ
ladYiukvksa dks izLrqr djsaxsA ;gk¡ ge izfrykse f=kdks.kferh;
(inverse trigonometric) iQyuksa dk vodyu djuk Hkh lh[ksaxsA
vc ge oqQN u, izdkj osQ iQyuksa dks izLrqr dj jgs gSa] ftudks
pj?kkrkadh (exponential) vkSj y?kqx.kdh; (logarithmic) iQyu
dgrs gSAa bu iQyuksa }kjk gesa vodyu dh l'kDr izfof/;ksa dk Kku
gksrk gSA vody xf.kr (differential calculus) osQ ekè;e ls ge
T;kferh; :i ls lqLi"V (obvious) oqQN fLFkfr;ksa dks le>krs gSaA
bl izfØ;k] esa ge bl fo"k; dh oqQN vk/kjHkwr (ewy) izes;ksa Sir Issac Newton
(theorems) dks lh[ksaxsA (1642-1727)
5.2 lkarR; (Continuity)
lkarR; dh ladYiuk dk oqQN vuqeku (cks/) djkus osQ
fy,] ge vuqPNsn dks nks vukSipkfjd mnkgj.kksa ls
izkjaHk djrs gSaA fuEufyf[kr iQyu ij fopkj dhft,%
1, ;fn x ≤ 0
f ( x) = 
2, ;fn x > 0
;g iQyu okLro esa okLrfod js[kk (real line) osQ
izR;sd ¯cnq ij ifjHkkf"kr gSA bl iQyu dk vkys[k
vko`Qfr 5-1 esa n'kkZ;k x;k gSA dksbZ Hkh bl vkys[k ls
fu"d"kZ fudky ldrk gS fd x = 0 osQ vfrfjDr] x&v{k vko`Qfr 5-1

2018-19
lkarR; rFkk vodyuh;rk 161

osQ vU; lfUudV ¯cnqvksa osQ fy, iQyu osQ laxr eku Hkh x = 0 dks NksM+dj ,d nwljs osQ lehi
(yxHkx leku) gSaA 0 osQ lfUudV ck;ha vksj osQ ¯cnqvksa] vFkkZr~ – 0.1, – 0.01, – 0.001, izdkj
osQ ¯cnqvksa] ij iQyu dk eku 1 gS rFkk 0 osQ lfUudV nk;ha vksj osQ ¯cnqvksa] vFkkZr~ 0.1, 0.01,
0.001, izdkj osQ ¯cnqvksa ij iQyu dk eku 2 gSA ck,¡ vkSj nk,¡ i{k dh lhekvksa (limits) dh Hkk"kk
dk iz;ksx djosQ] ge dg ldrs gSa fd x = 0 ij iQyu f osQ ck,¡ rFkk nk,¡ i{k dh lhek,¡ Øe'k%
1 rFkk 2 gSaA fo'ks"k :i ls ck,¡ rFkk nk,¡ i{k dh lhek,¡ leku @ laikrh (coincident) ugha gSaA
ge ;g Hkh ns[krs gSa fd x = 0 ij iQyu dk eku ck,¡ i{k dh lhek osQ laikrh gS (cjkcj gS)A
uksV dhft, fd bl vkys[k dks ge yxkrkj ,d lkFk (in one stroke)] vFkkZr~ dye dks bl
dkx”k dh lrg ls fcuk mBk,] ugha [khap ldrsA okLro esa] gesa dye dks mBkus dh vko';drk
rc gksrh gS tc ge 'kwU; ls ck;ha vksj vkrs gSaA ;g ,d mnkgj.k gS tgk¡ iQyu
x = 0 ij larr (continuous) ugha gSA
vc uhps n'kkZ, x, iQyu ij fopkj dhft,%
1, ;fn x ≠ 0
f ( x) = 
 2, ;fn x = 0
;g iQyu Hkh izR;sd ¯cnq ij ifjHkkf"kr gSA
x = 0 ij nksuksa gh] ck,¡ rFkk nk,¡ i{k dh lhek,¡ 1 osQ
cjkcj gSaA fdarq x = 0 ij iQyu dk eku 2 gS] tks ck,¡
vkSj nk,¡ i{k dh lhekvksa osQ mHk;fu"B eku osQ cjkcj
ugha gSA
iqu% ge uksV djrs gSa fd iQyu osQ vkys[k dks
fcuk dye mBk, ge ugha [khap ldrs gSaA ;g ,d
nwljk mnkgj.k gS ftlesa x = 0 ij iQyu larr ugha gSA
vko`Qfr 5-2
lgt :i ls (naively) ge dg ldrs gSa fd
,d vpj ¯cnq ij dksbZ iQyu larr gS] ;fn ml ¯cnq osQ vkl&ikl (around) iQyu osQ vkys[k
dks ge dkx”k dh lrg ls dye mBk, fcuk [khap ldrs gSaA bl ckr dks ge xf.krh; Hkk"kk esa]
;FkkrF; (precisely)] fuEufyf[kr izdkj ls O;Dr dj ldrs gSa%
ifjHkk"kk 1 eku yhft, fd f okLrfod la[;kvksa osQ fdlh mileqPp; esa ifjHkkf"kr ,d okLrfod
iQyu gS vkSj eku yhft, fd f osQ izkra esa c ,d ¯cnq gSA rc f ¯cnq c ij larr gS] ;fn
lim f ( x) = f (c ) gSA
x→ c

foLr`r :i ls ;fn x = c ij ck,¡ i{k dh lhek] nk,¡ i{k dh lhek rFkk iQyu osQ eku dk
;fn vfLrRo (existence) gS vkSj ;s lHkh ,d nwljs osQ cjkcj gksa] rks x = c ij f larr dgykrk
gSA Lej.k dhft, fd ;fn x = c ij ck,¡ i{k rFkk nk,¡ i{k dh lhek,¡ laikrh gSa] rks buosQ mHk;fu"B

2018-19
162 xf.kr

eku dks ge x = c ij iQyu dh lhek dgrs gSaA bl izdkj ge lkarR; dh ifjHkk"kk dks ,d vU;
izdkj ls Hkh O;Dr dj ldrs gSa] tSlk fd uhps fn;k x;k gSA
,d iQyu x = c ij larr gS] ;fn iQyu x = c ij ifjHkkf"kr gS vkSj ;fn x = c ij iQyu
dk eku x = c ij iQyu dh lhek osQ cjkcj gSA ;fn x = c ij iQyu larr ugha gS rks ge dgrs
gSa fd c ij f vlarr (discontinuous) gS rFkk c dks f dk ,d vlkarR; dk ¯cnq (point of
discontinuity) dgrs gSAa
mnkgj.k 1 x = 1 ij iQyu f (x) = 2x + 3 osQ lkarR; dh tk¡p dhft,A
gy igys ;g è;ku nhft, fd iQyu] x = 1 ij ifjHkkf"kr gS vkSj bldk eku 5 gSA vc iQyu
dh x = 1 ij lhek Kkr djrs gSaA Li"V gS fd
lim f ( x ) = lim (2 x + 3) = 2(1) + 3 = 5 gSA
x →1 x →1

vr% lim f ( x ) = 5 = f (1)


x →1

vr,o x = 1 ij f larr gSA


mnkgj.k 2 tk¡fp, fd D;k iQyu f (x) = x2, x = 0 ij larr gS\
gy è;ku nhft, fd iznÙk ¯cnq x = 0 ij iQyu ifjHkkf"kr gS vkSj bldk eku 0 gSA vc
x = 0 ij iQyu dh lhek fudkyrs gSaA Li"Vr;k

lim f ( x) = lim x 2 = 02 = 0
x→ 0 x→0

bl izdkj lim f ( x ) = 0 = f (0)


x→ 0

vr% x = 0 ij f larr gSA


mnkgj.k 3 x = 0 ij iQyu f (x) = | x | osQ lkarR; ij fopkj dhft,A
gy ifjHkk"kk }kjk
− x, ;fn x < 0
f (x) = 
 x, ;fn x ≥ 0
Li"Vr;k x = 0 ij iQyu ifjHkkf"kr gS vkSj f (0) = 0 gSA ¯cnq x = 0 ij f dh ck,¡ i{k dh lhek
lim f ( x ) = lim− (– x) = 0 gSA
x → 0− x→0

2018-19
lkarR; rFkk vodyuh;rk 163

blh izdkj 0 ij f dh nk,¡ i{k dh lhek osQ fy,


lim f ( x ) = lim+ x = 0 gSA
x → 0+ x→0

bl izdkj x = 0 ij ck,¡ i{k dh lhek] nk,¡ i{k dh lhek rFkk iQyu dk eku laikrh gaSA vr%
x = 0 ij f larr gSA
mnkgj.k 4 n'kkZb, fd iQyu
 x3 + 3, ;fn x ≠ 0
f (x) = 
1, ;fn x = 0

x = 0 ij larr ugha gSA


gy ;gk¡ x = 0 ij iQyu ifjHkkf"kr gS vkSj x = 0 ij bldk eku 1 gSA tc x ≠ 0, rc iQyu
cgqinh; gSA blfy,
lim f ( x) = lim ( x 3 + 3) = 03 + 3 = 3
x→ 0 x→0

D;ksafd x = 0 ij f dh lhek] f (0) osQ cjkcj ugha gS] blfy, x = 0 ij iQyu larr ugha
gSA ge ;g Hkh lqfuf'pr dj ldrs gSa fd bl iQyu osQ fy, vlkarR; dk ¯cnq osQoy x = 0 gSA
mnkgj.k 5 mu ¯cnqvksa dh tk¡p dhft, ftu ij vpj iQyu (Constant function)
f (x) = k larr gSA

gy ;g iQyu lHkh okLrfod la[;kvksa osQ fy, ifjHkkf"kr gS vkSj fdlh Hkh okLrfod la[;k osQ
fy, bldk eku k gSA eku yhft, fd c ,d okLrfod la[;k gS] rks
lim f ( x) = lim k = k
x→ c x→ c

pw¡fd fdlh okLrfod la[;k c osQ fy, f (c) = k = lim


x → c f (x) gS blfy, iQyu f izR;sd

okLrfod la[;k osQ fy, larr gSA


mnkgj.k 6 fl¼ dhft, fd okLrfod la[;kvksa osQ fy, rRled iQyu (Identity function)
f (x) = x, izR;sd okLrfod la[;k osQ fy, larr gSA

gy Li"Vr;k ;g iQyu izR;sd ¯cnq ij ifjHkkf"kr gS vkSj izR;sd okLrfod la[;k c osQ fy,
f (c) = c gSA

lkFk gh lim f ( x) = lim x = c


x→ c x→c

2018-19
164 xf.kr

bl izdkj] lim
x→c
f(x) = c = f(c) vkSj blfy, ;g iQyu f osQ izkar osQ lHkh ¯cnqvksa ij larr gS A

,d iznÙk ¯cnq ij fdlh iQyu osQ lkarR; dks ifjHkkf"kr djus osQ ckn vc ge bl ifjHkk"kk
dk LokHkkfod izlkj (extension) djosQ fdlh iQyu osQ] mlosQ izkar esa] lkarR; ij fopkj djsaxsA
ifjHkk"kk 2 ,d okLrfod iQyu f larr dgykrk gS ;fn og f osQ izkra osQ izR;sd ¯cnq ij larr gSA
bl ifjHkk"kk dks oqQN foLrkj ls le>us dh vko';drk gSA eku yhft, fd f ,d ,slk iQyu gS]
tks lao`r varjky (closed interval) [a, b] esa ifjHkkf"kr gS] rks f osQ larr gksus osQ fy, vko';d
gS fd og [a, b] osQ vaR; ¯cnqvksa (end points) a rFkk b lfgr mlosQ izR;sd ¯cnq ij larr gksA
f dk vaR; ¯cnq a ij lakrR; dk vFkZ gS fd

lim f ( x ) = f (a)
x→ a+

vkSj f dk b ij lkarR; dk vFkZ gS fd


lim f ( x) = f(b)
x→b –

iz{s k.k dhft, fd lim f ( x) rFkk lim f ( x) dk dksbZ vFkZ ugha gSA bl ifjHkk"kk osQ ifj.kkeLo:i]
x→ a− x → b+

;fn f osQoy ,d ¯cnq ij ifjHkkf"kr gS] rks og ml ¯cnq ij larr gksrk gS] vFkkZr~ ;fn f dk
izkar ,dy (leqPp;) gS] rks f ,d larr iQyu gksrk gSA
mnkgj.k 7 D;k f (x) = | x | }kjk ifjHkkf"kr iQyu ,d larr iQyu gS\

 − x, ;fn x < 0
gy f dks ge ,sls fy[k ldrs gSa fd f (x) = 
 x, ;fn x ≥ 0

mnkgj.k 3 ls ge tkurs gSa fd x = 0 ij f larr gSA


eku yhft, fd c ,d okLrfod la[;k bl izdkj gS fd c < 0 gSA vr,o f (c) = – c
lkFk gh lim f ( x) = lim (− x) = – c (D;ksa?)
x→ c x→c

pw¡fd lim f ( x) = f (c ) , blfy, f lHkh ½.kkRed okLrfod la[;kvksa osQ fy, larr gSA
x→ c

vc eku yhft, fd c ,d okLrfod la[;k bl izdkj gS fd c > 0 gSA vr,o f (c) = c


lkFk gh lim f ( x) = lim x = c (D;ksa?)
x→ c x→ c

2018-19
lkarR; rFkk vodyuh;rk 165

D;ksafd lim f ( x) = f (c ) , blfy, f lHkh /ukRed okLrfod la[;kvksa osQ fy, larr gSA
x→ c

pw¡fd f lHkh ¯cnqvksa ij larr gS] vr% ;g ,d larr iQyu gSA


mnkgj.k 8 iQyu f (x) = x3 + x2 – 1 osQ lkarR; ij fopkj dhft,A
gy Li"Vr;k f izR;sd okLrfod la[;k c osQ fy, ifjHkkf"kr gS vkSj c ij bldk eku
c3 + c2 – 1 gSA ge ;g Hkh tkurs gSa fd

lim f ( x) = lim ( x 3 + x 2 − 1) = c 3 + c 2 − 1
x→ c x→c

vr% lim f ( x) = f (c ) gS blfy, izR;sd okLrfod la[;k osQ fy, f larr gSA bldk vFkZ
x→ c

gS fd f ,d larr iQyu gSA


1
mnkgj.k 9 f (x) = , x ≠ 0 }kjk ifjHkkf"kr iQyu f osQ lkarR; ij fopkj dhft,A
x
gy fdlh ,d 'kwU;srj ( Non-zero) okLrfod la[;k c dks lqfuf'pr dhft,
1 1
vc lim f ( x) = lim =
x→c x→ c x c
1
lkFk gh] pw¡fd c ≠ 0, blfy, f (c) = gSA bl izdkj lim
x→ c
f ( x) = f (c ) vkSj blfy, f vius
c
izkar osQ izR;sd ¯cnq ij larr gSA bl izdkj f ,d larr iQyu gSA
ge bl volj dk ykHk] vuar (infinity) dh ladYiuk (concept) dks le>kus osQ fy,]
1
mBkrs gSaA ge blosQ fy, iQyu f (x) = dk fo'ys"k.k x = 0 osQ fudVLFk ekukas ij djrs gSaA
x
blosQ fy, ge 0 osQ lfUudV dh okLrfod la[;kvksa osQ fy, iQyu osQ ekuksa dk vè;;u djus
dh izpfyr ;qfDr dk iz;ksx djrs gSaA vfuok;Zr% (essentially) ge x = 0 ij f osQ nk,¡ i{k dh
lhek Kkr djus dk iz;kl djrs gSaA bldks ge uhps lkj.khc¼ djrs gSaA (lkj.kh 5.1)
lkj.kh 5-1
x 1 0.3 0.2 0.1 = 10–1 0.01 = 10–2 0.001 = 10–3 10–n
f (x) 1 3.333... 5 10 100 = 102 1000 = 103 10n

ge ns[krs gSa fd tSls&tSls x nk;ha vksj ls 0 osQ fudV vxzlj gksrk gS f (x) dk eku mÙkjksÙkj
vfr 'kh?kzrk ls c<+rk tkrk gSA bl ckr dks ,d vU; izdkj ls Hkh O;Dr fd;k tk ldrk gS] tSls%

2018-19
166 xf.kr

,d /u okLrfod la[;k dks 0 osQ vR;ar fudV pqudj] f (x) osQ eku dks fdlh Hkh iznÙk la[;k
ls vf/d fd;k tk ldrk gSA izrhdksa esa bl ckr dks ge fuEufyf[kr izdkj ls fy[krs gSa fd
lim f ( x ) = + ∞
x → 0+

(bldks bl izdkj i<+k tkrk gS% 0 ij] f (x) osQ nk,¡ i{k dh /ukRed lhek vuar gS)A ;gk¡ ij
ge cy nsuk pkgrs gSa fd + ∞ ,d okLrfod la[;k ugha gS vkSj blfy, 0 ij f osQ nk,¡ i{k dh
lhek dk vfLrRo ugha gS (okLrfod la[;kvksa osQ :i esa)A
blh izdkj ls 0 ij f osQ ck,¡ i{k dh lhek Kkr dh tk ldrh gSA fuEufyf[kr lkj.kh ls
Lor% Li"V gSA
lkj.kh 5-2
x –1 – 0.3 – 0.2 – 10–1 – 10–2 – 10–3 – 10–n
f (x) – 1 – 3.333... –5 – 10 – 102 – 103 – 10n

lkj.kh 5-2 ls ge fu"d"kZ fudkyrs gSa fd ,d


½.kkRed okLrfod la[;k dks 0 osQ vR;ar fudV
pqudj] f (x) osQ eku dks fdlh Hkh iznÙk la[;k ls
de fd;k tk ldrk gSA izrhdkRed :i ls ge
lim f ( x) = − ∞ fy[krs gSa

x→0
(ftls bl izdkj i<+k tkrk gS% 0 ij f (x) osQ ck,¡
i{k dh lhek ½.kkRed vuar gSA) ;gk¡ ge bl ckr
ij cy nsuk pkgrs gSa fd – ∞ ,d okLrfod la[;k
ugha gS vr,o 0 ij f osQ ck,¡ i{k dh lhek dk
vfLrRo ugha gS (okLrfod la[;kvksa osQ :i esa)A
vko`Qfr 5.3 dk vkys[k mi;qDZ r rF;ksa dk T;kferh;
fu:i.k gSA vko`Qfr 5-3
mnkgj.k 10 fuEufyf[kr iQyu osQ lkarR; ij fopkj dhft,%
 x + 2, ;fn x ≤ 1
f (x) = 
 x − 2, ;fn x > 1

gy iQyu f okLrfod js[kk osQ izR;sd ¯cnq ij ifjHkkf"kr gSA


n'kk 1 ;fn c < 1, rks f (c) = c + 2 gSA bl izdkj lim f ( x) = lim x + 2 = c + 2 gSA
x →c x →c

2018-19
lkarR; rFkk vodyuh;rk 167

vr% 1 ls de lHkh okLrfod la[;kvksa ij f larr gSA


n'kk 2 ;fn c > 1, rks f (c) = c – 2 gSA
blfy, lim f ( x) = lim (x – 2) = c – 2 = f (c) gSA
x →c x→c

vr,o mu lHkh ¯cnqvksa ij tgk¡ x > 1 gS] f larr gSA


n'kk 3 ;fn c = 1, rks x = 1 ij f osQ ck,¡ i{k dh lhek]
vFkkZr~
lim f ( x ) = lim– ( x + 2) = 1 + 2 = 3
x →1– x →1

x = 1 ij f osQ nk,¡ i{k dh lhek] vFkkZr~


vko`Qfr 5-4
lim f ( x) = lim– ( x − 2) = 1 − 2 = −1
x →1+ x→1

vc pw¡fd x = 1 ij f osQ ck,¡ rFkk nk,¡ i{k dh lhek,¡ laikrh (coincident) ugha gSa] vr%
x = 1 ij f larr ugha gSA bl izdkj f osQ vlkarR; dk ¯cnq osQoy ek=k x = 1 gSA bl iQyu
dk vkys[k vko`Qfr 5-4 esa n'kkZ;k x;k gSA
mnkgj.k 11 fuEufyf[kr izdkj ls ifjHkkf"kr iQyu f osQ leLr (lHkh) vlkarR; ¯cnqvksa dks Kkr dhft,

 x + 2, ;fn x < 1

f (x) =  0 , ;fn x = 1
 x − 2, ;fn x > 1

gy iwoZorhZ mnkgj.k dh rjg ;gk¡ Hkh ge ns[krs gSa izR;sd okLrfod la[;k x ≠ 1 osQ fy, f larr
gSA x = 1 osQ fy, f osQ ck,¡ i{k dh lhek] lim− f ( x) = lim– ( x + 2) = 1 + 2 = 3 gSA
x→1 x→1
x = 1 osQ fy, f osQ nk,¡ i{k dh lhek] lim− f ( x) = lim– ( x − 2) = 1 − 2 = −1 gSA
x→1 x→1

pw¡fd x = 1 ij f osQ ck,¡ rFkk nk,¡ i{k dh lhek,¡ laikrh ugha gSa] vr% x = 1 ij f larr
ugha gSA bl izdkj f osQ vlkarR; dk ¯cnq osQoy ek=k x = 1 gSA bl iQyu dk vkys[k vko`Qfr
5-5 esa n'kkZ;k x;k gSA
mnkgj.k 12 fuEufyf[kr iQyu osQ lkarR; ij fopkj dhft,%

 x + 2,;fn x < 0
f (x) = 
− x + 2, ;fn x > 0

2018-19
168 xf.kr

gy è;ku nhft, fd fopkjk/hu iQyu 0 ('kwU;) osQ


vfrfjDr vU; leLr okLrfod la[;kvksa osQ fy, ifjHkkf"kr
gSA ifjHkk"kkuqlkj bl iQyu dk izkar
D1 ∪ D2 gS tgk¡ D1 = {x ∈ R : x < 0} vkSj
D2 = {x ∈ R : x > 0}gSA
n'kk 1 ;fn c ∈ D1, rks lim f ( x) = lim (x + 2) =
x→c x→c
c + 2 = f (c) gS vr,o D1 esa f larr gSA

n'kk 2 ;fn c ∈ D2, rks lim f ( x) = lim (– x + 2) =


x→c x→c
vko`Qfr 5-5
– c + 2 = f (c) gS vr,o D2 esa Hkh f larr gSA
D;ksafd f vius izkar osQ leLr ¯cnqvksa ij larr gS
ftlls ge fu"d"kZ fudkyrs gSa fd f ,d larr iQyu gSA
bl iQyu dk vkys[k vko`Qfr 5.6 esa [khapk x;k gSA è;ku
nhft, fd bl iQyu osQ vkys[k dks [khapus osQ fy, gesa
dye dks dkx”k dh lrg ls mBkuk iM+rk gS] fdarq gesa
,slk osQoy mu ¯cnqvksa ij djuk iM+rk gS tgk¡ ij iQyu
ifjHkkf"kr ugha gSA
mnkgj.k 13 fuEufyf[kr iQyu osQ lkarR; ij fopkj
dhft,%
vko`Qfr 5-6
 x, ;fn x ≥ 0
f (x) =  2
 x , ;fn x < 0
gy Li"Vr;k] iznÙk iQyu izR;sd okLrfod la[;k osQ
fy, ifjHkkf"kr gSA bl iQyu dk vkys[k vko`Qfr 5.7
esa fn;k gSA bl vkys[k osQ fujh{k.k ls ;g roZQlaxr
yxrk gS fd iQyu osQ izkra dks okLrfod js[kk osQ rhu
vla;Dq r (disjoint) mi leqPp;ksa esa foHkkftr dj
fy;k tk,A eku fy;k fd
D1 = {x ∈ R : x < 0}, D2 = {0} rFkk
D3 = {x ∈ R : x > 0}gSA
vko`Qfr 5-7

2018-19
lkarR; rFkk vodyuh;rk 169

n'kk 1 D1 osQ fdlh Hkh ¯cnq ij f (x) = x2 gS vkSj ;g ljyrk ls ns[kk tk ldrk gS fd D1 esa
f larr gSA (mnkgj.k 2 nsf[k,)
n'kk 2 D3 osQ fdlh Hkh ¯cnq ij f (x) = x gS vkSj ;g ljyrk ls ns[kk tk ldrk gS fd D3 esa
f larr gSA (mnkgj.k 6 nsf[k,)
n'kk 3 vc ge x = 0 ij iQyu dk fo'ys"k.k djrs gSaA 0 osQ fy, iQyu dk eku f (0) = 0 gSA
0 ij f osQ ck,¡ i{k dh lhek
lim f ( x) = lim− x2 = 02 = 0 gS rFkk
x→0– x→0
0 ij f osQ nk,¡ i{k dh lhek
lim f ( x) = lim+ x = 0 gSA
x→0+ x→0

vr% lim f ( x) = 0 = f (0) vr,o 0 ij f larr gSA bldk vFkZ ;g gqvk fd f vius izkar osQ
x→0
izR;sd ¯cnq ij larr gSA vr% f ,d larr iQyu gSA
mnkgj.k 14 n'kkZb, fd izR;sd cgqin iQyu larr gksrk gSA
gy Lej.k dhft, fd dksbZ iQyu p, ,d cgqin iQyu gksrk gS ;fn og fdlh izko`Qr la[;k n
osQ fy, p(x) = a0 + a1 x + ... + an xn }kjk ifjHkkf"kr gks] tgk¡ ai ∈ R rFkk an ≠ 0 gSA Li"Vr;k
;g iQyu izR;sd okLrfod la[;k osQ fy, ifjHkkf"kr gSA fdlh fuf'pr okLrfod la[;k c osQ fy,
ge ns[krs gSa fd
lim p ( x) = p (c)
x→c
blfy, ifjHkk"kk }kjk c ij p larr gSA pw¡fd c dksbZ Hkh okLrfod la[;k gS blfy, p fdlh
Hkh okLrfod la[;k osQ fy, larr gS]
vFkkZr~ p ,d larr iQyu gSA
mnkgj.k 15 f (x) = [x] }kjk ifjHkkf"kr
egÙke iw.kk±d iQyu osQ vlkarR; osQ leLr
¯cnqvksa dks Kkr dhft,] tgk¡ [x] ml
egÙke iw.kk±d dks izdV djrk gS] tks x ls
de ;k mlosQ cjkcj gSA
gy igys rks ge ;g ns[krs gSa fd f lHkh
okLrfod la[;kvksa osQ fy, ifjHkkf"kr gSA
bl iQyu dk vkys[k vko`Qfr 5.8 esa
fn[kk;k x;k gSA vko`Qfr 5-8

2018-19
170 xf.kr

vkys[k ls ,slk izrhr gksrk gS fd iznÙk iQyu x osQ lHkh iw.kk±d ekuksa osQ fy, vlarr gSA uhps ge
Nkuchu djsaxs fd D;k ;g lR; gSA
n'kk 1 eku yhft, fd c ,d ,slh okLrfod la[;k gS] tks fdlh Hkh iw.kk±d osQ cjkcj ugha gSA
vkys[k ls ;g Li"V gS fd c osQ fudV dh lHkh okLrfod la[;kvksa osQ fy, fn, gq, iQyu dk
eku [c]; gSa] vFkkZr~ lim f ( x) = lim [ x] = [c] lkFk gh f (c) = [c] vr% iznÙk iQyu] mu lHkh
x →c x→c

okLrfod la[;kvksa osQ fy, larr gS] tks iw.kk±d ugha gSA
n'kk 2 eku yhft, fd c ,d iw.kk±d gSA vr,o ge ,d ,slh i;kZIrr% NksVh okLrfod la[;k
r > 0 izkIr dj ldrs gSa tks fd [c – r] = c – 1 tcfd [c + r] = c gSA
lhekvksa osQ :i esa] bldk vFkZ ;g gqvk fd
lim f (x) = c – 1 rFkk lim+ f (x) = c
x →c− x →c

pw¡fd fdlh Hkh iw.kk±d c osQ fy, ;s lhek,¡ leku ugha gks ldrh gSa] vr% iznÙk iQyu x lHkh
iw.kk±d ekuksa osQ fy, vlarr gSA
5.2.1 larr iQyuksa dk chtxf.kr (Algebra of continuous functions)
fiNyh d{kk esa] lhek dh ladYiuk le>us osQ mijkar] geusa lhekvksa osQ chtxf.kr dk oqQN
vè;;u fd;k FkkA vuq:ir% vc ge larr iQyuksa osQ chtxf.kr dk Hkh oqQN vè;;u djsaxsA pw¡fd
fdlh ¯cnq ij ,d iQyu dk lkarR; iw.kZ:i ls ml ¯cnq ij iQyu dh lhek }kjk
fu/kZfjr gksrk gS] vr,o ;g rdZlaxr gS fd ge lhekvksa osQ ln`'; gh ;gk¡ Hkh chth; ifj.kkeksa
dh vis{kk djsaA
izes; 1 eku yhft, fd f rFkk g nks ,sls okLrfod iQyu gSa] tks ,d okLrfod la[;k c osQ fy,
larr gSaA rc]
(1) f + g , x = c ij larr gS
(2) f – g , x = c ij larr gS
(3) f . g , x = c ij larr gS
f 
(4)   , x = c ij larr gS (tcfd g (c) ≠ 0 gSA)
g
miifÙk ge ¯cnq x = c ij (f + g) osQ lkarR; dh tk¡p djrs gSaA ge n[krs gSa fd
lim( f + g ) ( x ) = lim [ f ( x ) + g ( x )] (f + g dh ifjHkk"kk }kjk)
x →c x →c

= lim f ( x) + lim g ( x) (lhekvksa osQ izes; }kjk)


x →c x →c

2018-19
lkarR; rFkk vodyuh;rk 171

= f (c) + g(c) (D;ksa f rFkk g larr iQyu gaS)


= (f + g) (c) (f + g dh ifjHkk"kk }kjk)
vr%] f + g Hkh x = c osQ fy, larr gSA
izes; 1 osQ 'ks"k Hkkxksa dh miifÙk blh osQ leku gS ftUgas ikBdksa osQ fy, vH;kl gsrq NksM+
fn;k x;k gSA
fVIi.kh
(i) mi;qZDr izes; osQ Hkkx (3) dh ,d fo'ks"k n'kk osQ fy,] ;fn f ,d vpj iQyu
f (x) = λ gks] tgk¡ λ, dksbZ vpj okLrfod la[;k gS] rks (λ . g) (x) = λ . g (x) }kjk
ifjHkkf"kr iQyu (λ . g) Hkh ,d larr iQyu gSA fo'ks"k :i ls] ;fn λ = – 1, rks f osQ
lkarR; esa – f dk lkarR; varfuZfgr gksrk gSA
(ii) mi;qZDr izes; osQ Hkkx (4) dh ,d fo'ks"k n'kk osQ fy,] ;fn f ,d vpj iQyu

λ λ λ
f (x) = λ, rks ( x) = }kjk ifjHkkf"kr iQyu g Hkh ,d larr iQyu gksrk gS] tgk¡
g g ( x)
1
g(x) ≠ 0 gSA fo'ks"k :i ls] g osQ lkarR; esa dk lkarR; varfuZfgr gSA
g
mi;qZDr nksuksa izes;ksa osQ mi;ksx }kjk vusd larr iQyuksa dks cuk;k tk ldrk gSA buls ;g
fuf'pr djus esa Hkh lgk;rk feyrh gS fd dksbZ iQyu larr gS ;k ughaA fuEufyf[kr mnkgj.kksa esa
;g ckr Li"V dh xbZ gSA
mnkgj.k 16 fl¼ dhft, fd izR;sd ifjes; iQyu larr gksrk gSA
gy Lej.k dhft, fd izR;sd ifjes; iQyu f fuEufyf[kr :i dk gksrk gS%
p( x )
f ( x) = , q ( x) ≠ 0
q ( x)

tgk¡ p vkSj q cgqin iQyu gSaA f dk izkar] mu ¯cnqvksa dks NksM+dj ftu ij q 'kwU; gS] leLr
okLrfod la[;k,¡ gSaA pw¡fd cgqin iQyu larr gksrs gSa (mnkgj.k 14)] vr,o izes; 1 osQ Hkkx (4)
}kjk f ,d larr iQyu gSA
mnkgj.k 17 sine iQyu osQ lkarR; ij fopkj dhft,A
gy bl ij fopkj djus osQ fy, ge fuEufyf[kr rF;ksa dk iz;ksx djrs gSa%
lim sin x = 0
x →0

2018-19
172 xf.kr

geus bu rF;ksa dks ;gk¡ izekf.kr rks ugha fd;k gS] fdUrq sine iQyu osQ vkys[k dks 'kwU; osQ
fudV ns[k dj ;s rF; lgtkuqHkwfr (intuitively) ls Li"V gks tkrk gSA
vc nsf[k, fd f (x) = sin x lHkh okLrfod la[;kvksa osQ fy, ifjHkkf"kr gSA eku yhft, fd
c ,d okLrfod la[;k gSA x = c + h j[kus ij] ;fn x → c rks ge ns[krs gSa fd h → 0 blfy,
lim f ( x ) = lim sin x
x →c x →c

= lim sin(c + h)
h →0

= lim [sin c cos h + cos c sin h]


h →0

= lim [sin c cos h] + lim [cos c sin h]


h →0 h →0
= sin c + 0 = sin c = f (c)
bl izdkj lim f (x) = f (c) vr% f ,d larr iQyu gSA
x →c

fVIi.kh blh izdkj cosine iQyu osQ lkarR; dks Hkh izekf.kr fd;k tk ldrk gSA
mnkgj.k 18 fl¼ dhft, fd f (x) = tan x ,d larr iQyu gSA
sin x
gy fn;k gqvk iQyu f (x) = tan x = gSA ;g iQyu mu lHkh okLrfod la[;kvksa osQ fy,
cos x
π
ifjHkkf"kr gS] tgk¡ cos x ≠ 0, vFkkZr~ x ≠ (2n +1)
gSA geus vHkh izekf.kr fd;k gS fd sine vkSj
2
cosine iQyu] larr iQyu gSaA blfy, tan iQyu] bu nksuksa iQyuksa dk HkkxiQy gksus osQ dkj.k] x
osQ mu lHkh ekuksa osQ fy, larr gS ftu osQ fy, ;g ifjHkkf"kr gSA
iQyuksa osQ la;kstu (composition) ls lacaf/r] larr iQyuksa dk O;ogkj ,d jkspd rF; gSA
Lej.k dhft, fd ;fn f vkSj g nks okLrfod iQyu gSa] rks
(f o g) (x) = f (g (x))
ifjHkkf"kr gS] tc dHkh g dk ifjlj f osQ izkar dk ,d mileqPp; gksrk gSA fuEufyf[kr izes;
(izek.k fcuk osQoy O;Dr)] la;qDr (composite) iQyuksa osQ lkarR; dks ifjHkkf"kr djrh gSA
izes; 2 eku yhft, fd f vkSj g bl izdkj osQ nks okLrfod ekuh; (real valued) iQyu gSa
fd c ij (f o g) ifjHkkf"kr gSA ;fn c ij g rFkk g (c) ij f larr gS] rks c ij (f o g) larr
gksrk gSA
fuEufyf[kr mnkgj.kksa esa bl izes; dks Li"V fd;k x;k gSA

2018-19
lkarR; rFkk vodyuh;rk 173

mnkgj.k 19 n'kkZb, fd f (x) = sin (x2) }kjk ifjHkkf"kr iQyu] ,d larr iQyu gSA
gy isz{k.k dhft, fd fopkjk/hu iQyu izR;sd okLrfod la[;k osQ fy, ifjHkkf"kr gSsA iQyu
f dks] g rFkk h nks iQyuksa osQ la;kstu (g o h)osQ :i esa lkspk tk ldrk gS] tgk¡ g (x) = sin x
rFkk h (x) = x2 gSA pw¡fd g vkSj h nksuksa gh larr iQyu gSa] blfy, izes; 2 }kjk ;g fu"d"kZ fudkyk
tk ldrk gS] fd f ,d larr iQyu gSA
mnkgj.k 20 n'kkZb, fd f (x) = |1 – x + | x | | }kjk ifjHkkf"kr iQyu f] tgk¡ x ,d okLrfod la[;k
gS] ,d larr iQyu gSA
gy lHkh okLrfod la[;kvksa x osQ fy, g dks g (x) = 1 – x + | x | rFkk h dks h (x) = | x | }kjk
ifjHkkf"kr dhft,A rc]
(h o g) (x) = h (g (x))
= h (1– x + | x |)
= | 1– x + | x | | = f (x)
mnkgj.k 7 esa ge ns[k pqosQ gSa fd h ,d larr iQyu gSA blh izdkj ,d cgqin iQyu vkSj ,d
ekikad iQyu dk ;ksx gksus osQ dkj.k g ,d larr iQyu gSA vr% nks larr iQyuksa dk la;qDr iQyu
gksus osQ dkj.k f Hkh ,d larr iQyu gSA

iz'ukoyh 5-1
1. fl¼ dhft, fd iQyu f (x) = 5x – 3, x = 0, x = – 3 rFkk x = 5 ij larr gSA

2. x = 3 ij iQyu f (x) = 2x2 – 1 osQ lkarR; dh tk¡p dhft,A

3. fuEufyf[kr iQyuksa osQ lkarR; dh tk¡p dhft,%


1
(a) f (x) = x – 5 (b) f (x) = ,x≠5
x−5

x 2 − 25
(c) f (x) = , x ≠ –5 (d) f (x) = | x – 5 |
x+5
4. fl¼ dhft, fd iQyu f (x) = xn , x = n, ij larr gS] tgk¡ n ,d /u iw.kk±d gSA

 x, ;fn x ≤ 1
5. D;k f ( x ) =  }kjk ifjHkkf"kr iQyu f
5, ;fn x > 1
x = 0, x = 1, rFkk x = 2 ij larr gS\

2018-19
174 xf.kr

f osQ lHkh vlkarR; osQ ¯cnqvksa dks Kkr dhft,] tc fd f fuEufyf[kr izdkj ls ifjHkkf"kr gS%

| x | +3, ;fn x ≤ − 3
 2 x + 3, ;fn x ≤ 2 
6. f ( x) =  7. f ( x ) =  −2 x, ;fn − 3 < x < 3
 2 x − 3, ;fn x > 2 6 x + 2, ;fn x ≥ 3

| x |  x
 , ;fn x ≠ 0  , ;fn x < 0
8. f ( x) =  x 9. f ( x) =  | x |
 0, ;fn x = 0  −1, ;fn x ≥ 0
 

 x + 1, ;fn x ≥ 1  x 3 − 3, ;fn x ≤ 2
10. f ( x) =  2 11. f ( x) = 
 x + 1, ;fn x < 1  x + 1, ;fn x > 2
2

 x − 1, ;fn x ≤ 1
10
12. f ( x) = 
2
 x , ;fn x > 1

 x + 5, ;fn x ≤ 1
13. D;k f ( x ) =  }kjk ifjHkkf"kr iQyu] ,d larr iQyu gS\
 x − 5, ;fn x > 1
iQyu f, osQ lkarR; ij fopkj dhft,] tgk¡ f fuEufyf[kr }kjk ifjHkkf"kr gS%

3, ;fn 0 ≤ x ≤ 1  2 x, ;fn x < 0


 
14. f ( x ) =  4, ;fn 1< x < 3 15. f ( x ) = 0, ;fn 0 ≤ x ≤ 1
5, ;fn 3 ≤ x ≤ 10  4 x, ;fn x > 1
 

 −2, ;fn x ≤ − 1

16. f ( x ) =  2 x, ;fn − 1 < x ≤ 1
 2, ;fn x > 1

17. a vkSj b osQ mu ekuksa dks Kkr dhft, ftuosQ fy,


ax + 1, ;fn x ≤ 3
f ( x) = 
bx + 3, ;fn x > 3
}kjk ifjHkkf"kr iQyu x = 3 ij larr gSA

2018-19
lkarR; rFkk vodyuh;rk 175

18. λ osQ fdl eku osQ fy,

 λ ( x − 2 x), ;fn x ≤ 0
2
f ( x) = 
 4 x + 1, ;fn x > 0
}kjk ifjHkkf"kr iQyu x = 0 ij larr gSA x = 1 ij blosQ lkarR; ij fopkj dhft,A
19. n'kkZb, fd g (x) = x – [x] }kjk ifjHkkf"kr iQyu leLr iw.kk±d ¯cnqvksa ij vlarr gSA ;gk¡
[x] ml egÙke iw.kk±d fu:fir djrk gS] tks x osQ cjkcj ;k x ls de gSA
20. D;k f (x) = x2 – sin x + 5 }kjk ifjHkkf"kr iQyu x = π ij larr gS?
21. fuEufyf[kr iQyuksa osQ lkarR; ij fopkj dhft,%
(a) f (x) = sin x + cos x (b) f (x) = sin x – cos x
(c) f (x) = sin x . cos x
22. cosine, cosecant, secant vkSj cotangent iQyuksa osQ lkarR; ij fopkj dhft,A
23. f osQ lHkh vlkarR;rk osQ ¯cnqvksa dks Kkr dhft,] tgk¡

 sin x
 , ;fn x < 0
f ( x) =  x
 x + 1, ;fn x ≥ 0

24. fu/kZfjr dhft, fd iQyu f
 2 1
 x sin , ;fn x ≠ 0
f ( x) =  x
0, ;fn x = 0

}kjk ifjHkkf"kr ,d larr iQyu gSA
25. f osQ lkarR; dh tk¡p dhft,] tgk¡ f fuEufyf[kr izdkj ls ifjHkkf"kr gS
sin x − cos x, ;fn x ≠ 0
f ( x) = 
 −1, ;fn x = 0
iz'u 26 ls 29 esa k osQ ekuksa dks Kkr dhft, rkfd iznÙk iQyu fufnZ"V ¯cnq ij larr gks%
 k cos x π
 π − 2 x , ;fn x ≠ 2 π
26. f ( x) =  }kjk ifjHkkf"kr iQyu x = ij
3, π 2
;fn x =
 2

2018-19
176 xf.kr

kx 2 , ;fn x ≤ 2
27. f ( x) =  }kjk ifjHkkf"kr iQyu x = 2 ij
3, ;fn x > 2

kx + 1, ;fn x ≤ π
28. f ( x) =  }kjk ifjHkkf"kr iQyu x = π ij
cos x, ;fn x > π

kx + 1, ;fn x ≤ 5
29. f ( x) =  }kjk ifjHkkf"kr iQyu x = 5 ij
3x − 5, ;fn x > 5
30. a rFkk b osQ ekuksa dks Kkr dhft, rkfd

5, ;fn x ≤ 2

f ( x ) =  ax + b, ;fn 2 < x < 10
 21, ;fn x ≥ 10

}kjk ifjHkkf"kr iQyu ,d larr iQyu gksA
31. n'kkZb, fd f (x) = cos (x2) }kjk ifjHkkf"kr iQyu ,d larr iQyu gSA
32. n'kkZb, fd f (x) = | cos x | }kjk ifjHkkf"kr iQyu ,d larr iQyu gSA
33. t¡kfp, fd D;k sin | x | ,d larr iQyu gSA
34. f (x) = | x | – | x + 1 | }kjk ifjHkkf"kr iQyu f osQ lHkh vlkaR;rk osQ ¯cnqvksa dks Kkr
dhft,A
5.3. vodyuh;rk (Differentiability)
fiNyh d{kk esa lh[ks x, rF;ksa dks Lej.k dhft,A geusa ,d okLrfod iQyu osQ vodyt
(Derivative) dks fuEufyf[kr izdkj ls ifjHkkf"kr fd;k FkkA
eku yhft, fd f ,d okLrfod iQyu gS rFkk c blosQ izkar esa fLFkr ,d ¯cnq gSA c ij f
dk vodyt fuEufyf[kr izdkj ls ifjHkkf"kr gS%
f (c + h ) − f (c)
lim
h →0 h
d
;fn bl lhek dk vfLrRo gks rks c ij f osQ vodyt dks f′(c) ;k ( f ( x)) | c }kjk izdV
dx
djrs gSaA
f ( x + h) − f ( x )
f ′( x) = lim
h →0 h

2018-19
lkarR; rFkk vodyuh;rk 177

}kjk ifjHkkf"kr iQyu] tc Hkh bl lhek dk vfLrRo gks] f osQ vodyt dks ifjHkkf"kr djrk gSA
d dy
f osQ vodyt dks f ′ (x) ;k ( f ( x )) }kjk izdV djrs gSa vkSj ;fn y = f (x) rks bls ;k y′
dx dx
}kjk izdV djrs gSaA fdlh iQyu dk vodyt Kkr djus dh izfØ;k dks vodyu
(differentiation)dgrs gSAa ge okD;ka'k ¶x osQ lkis{k f (x) dk vodyu dhft, (differentiate)¸
dk Hkh iz;ksx djrs gSa] ftldk vFkZ gksrk gS fd f ′(x) Kkr dhft,A
vodyt osQ chtxf.kr osQ :i esa fuEufyf[kr fu;eksa dks izekf.kr fd;k tk pqdk gS%
(1) (u ± v)′ = u′ ± v′.
(2) (uv)′ = u′v + uv′ (yscuh”k ;k xq.kuiQy fu;e)

(3)  u  = u′v − uv′ , tgk¡ v ≠ 0 (HkkxiQy fu;e)
v v2
uhps nh xbZ lkj.kh esa oqQN izkekf.kd (standard) iQyuksa osQ vodytksa dh lwph nh xbZ gS%
lkj.kh 5-3
f (x) xn sin x cos x tan x
f ′(x) nx n – 1 cos x – sin x sec2 x

tc dHkh Hkh geus vodyt dks ifjHkkf"kr fd;k gS rks ,d lq>ko Hkh fn;k gS fd ¶;fn lhek
dk vfLrRo gks A¸ vc LokHkkfod :i ls iz'u mBrk gS fd ;fn ,slk ugha gS rks D;k gksxk\ ;g
iz'u furkar izklafxd gS vkSj bldk mÙkj HkhA ;fn lim f (c + h) − f (c) dk vfLrRo ugha gS] rks
h →0 h
ge dgrs gSa fd c ij f vodyuh; ugha gSA nwljs 'kCnksa esa] ge dgrs gSa fd vius izkar osQ fdlh
f (c + h) − f (c )
¯cnq c ij iQyu f vodyuh; gS ] ;fn nks u ks a lhek,¡ lim rFkk
h →0 – h
f (c + h ) − f (c )
lim+ ifjfer (finite) rFkk leku gSaA iQyu varjky [a, b] esa vodyuh;
h →0 h
dgykrk gS] ;fn og varjky [a, b] osQ izR;sd ¯cnq ij vodyuh; gSA tSlk fd lkarR; osQ lanHkZ
esa dgk x;k Fkk fd vaR; ¯cnqvksa a rFkk b ij ge Øe'k% nk,¡ rFkk ck,¡ i{k dh lhek,¡ ysrs gSa]
tks fd vkSj oqQN ugha] cfYd a rFkk b ij iQyu osQ nk,¡ i{k rFkk ck,¡ i{k osQ vodyt gh gaSA
blh izdkj iQyu varjky (a, b) esa vodyuh; dgykrk gS] ;fn og varjky (a, b) osQ izR;sd
¯cnq ij vodyuh; gSA

2018-19
178 xf.kr

izes; 3 ;fn iQyu fdlh ¯cnq c ij vodyuh; gS] rks ml ¯cnq ij og larr Hkh gSA
miifÙk pw¡fd ¯cnq c ij f vodyuh; gS] vr%
f ( x) − f (c)
lim = f ′(c)
x →c x−c
fdarq x ≠ c osQ fy,
f ( x ) − f ( c)
f (x) – f (c) = . ( x − c)
x−c

 f ( x) − f ( c) 
blfy, lim [ f ( x ) − f (c)] = lim  . ( x − c) 
x →c x →c  x−c 

;k lim [ f ( x)] − lim [ f (c )] = lim  f ( x ) − f (c )  . lim [( x − c )]


x →c x →c x →c  x−c  x→c
= f ′(c) . 0 = 0
;k lim f ( x ) = f (c)
x →c

bl izdkj x = c ij iQyu f larr gSA


miizes; 1 izR;sd vodyuh; iQyu larr gksrk gSA
;gk¡ ge è;ku fnykrs gSa fd mi;qZDr dFku dk foykse (converse) lR; ugha gSA fu'p; gh ge
ns[k pqosQ gSa fd f (x) = | x | }kjk ifjHkkf"kr iQyu ,d larr iQyu gSA bl iQyu osQ ck,¡ i{k dh
lhek ij fopkj djus ls
f (0 + h) − f (0) − h
lim– = = −1
h →0 h h
rFkk nk¡, i{k dh lhek
f (0 + h) − f (0) h
lim = = 1 gSA
h → 0+ h h
f (0 + h) − f (0)
pwf¡ d 0 ij mi;qDZ r ck,¡ rFkk nk,¡ i{k dh lhek,¡ leku ugha ga]S blfy, lim
h →0 h
dk vfLrRo ugha gS vkSj bl izdkj 0 ij f vodyuh; ugha gSA vr% f ,d vodyuh; iQyu
ugha gSA

2018-19
lkarR; rFkk vodyuh;rk 179

5.3.1 la;qDr iQyuksa osQ vodyt (Differentials of composite functions)


la;qDr iQyuksa osQ vodyt osQ vè;;u dks ge ,d mnkgj.k }kjk Li"V djsaxsA eku yhft, fd
ge f dk vodyt Kkr djuk pkgrs gSa] tgk¡
f (x) = (2x + 1)3
,d fof/ ;g gS fd f}in izes; osQ iz;ksx }kjk (2x + 1)3 dks izlkfjr djosQ izkIr cgqin iQyu
dk vodyt Kkr djsa] tSlk uhps Li"V fd;k x;k gS_
d d
f ( x) = (2 x + 1)3 
dx dx
d
= (8 x 3 + 12 x 2 + 6 x + 1)
dx
= 24x2 + 24x + 6
= 6 (2x + 1)2
vc] è;ku nhft, fd
f (x) = (h o g) (x)
tgk¡ g(x) = 2x + 1 rFkk h(x) = x3 gSA eku yhft, t = g(x) = 2x + 1. rks f (x) = h(t) = t3.
df dh dt
vr% = 6 (2x + 1)2 = 3(2x + 1)2 . 2 = 3t2 . 2 = ⋅
dx dt dx
bl nwljh fof/ dk ykHk ;g gS fd oqQN izdkj osQ iQyu] tSls (2x + 1)100 osQ vodyt dk
ifjdyu djuk bl fofèk }kjk ljy gks tkrk gSA mi;qZDr ifjppkZ ls gesa vkSipkfjd :i ls
fuEufyf[kr izes; izkIr gksrk gS] ftls Ük`a[kyk fu;e (chain rule) dgrs gSaA
izes; 4 (Ük`a[kyk fu;e ) eku yhft, fd f ,d okLrfod ekuh; iQyu gS] tks u rFkk v nks iQyuksa
dt dv
dk la;kstu gS_ vFkkZr~ f = v o u. eku yhft, fd t = u (x) vkSj] ;fn rFkk nksuksa dk
dx dt
df dv dt
vfLrRo gS] rks = ⋅
dx dt dx
ge bl izes; dh miifÙk NksM+ nsrs gSaA Ük`a[kyk fu;e dk foLrkj fuEufyf[kr izdkj ls fd;k
tk ldrk gSA eku yhft, fd f ,d okLrfod ekuh; iQyu gS] tks rhu iQyuksa u, v vkSj w dk
la;kstu gS] vFkkZr~
f = (w o u) o v gS ;fn t = u (x) rFkk s = v (t) gS rks
df d dt dw ds dt
= (w o u ) ⋅ = ⋅ ⋅
dx dt dx ds dt dx

2018-19
180 xf.kr

;fn mi;qZDr dFku osQ lHkh vodytksa dk vfLrRo gks rks ikBd vkSj vf/d iQyuksa osQ la;kstu
osQ fy, Ük`a[kyk fu;e dks iz;qDr dj ldrs gSaA
mnkgj.k 21 f (x) = sin (x2) dk vodyt Kkr dhft,A
gy è;ku nhft, fd iznÙk iQyu nks iQyuksa dk la;kstu gSA okLro esa] ;fn u(x) = x2 vkSj
v(t) = sin t gS rks
f (x) = (v o u) (x) = v(u(x)) = v(x2) = sin x2
dv dt
t = u(x) = x2 j[kus ij è;ku nhft, fd = cos t rFkk = 2 x vkSj nksuksa dk vfLrRo Hkh
dt dx
gSaA vr% Ük`a[kyk fu;e }kjk
df dv dt
= ⋅ = cos t . 2 x
dx dt dx
lkekU;r% vafre ifj.kke dks x osQ inksa esa O;Dr djus dk izpyu gS vr,o
df
= cos t ⋅ 2 x = 2 x cos x 2
dx
fodYir% ge lh/s Hkh bldk eku fudky ldrs gSa tSls uhps of.kZr gS]
dy d
y = sin (x2) ⇒ = (sin x2)
dx dx
d 2
= cos x2 (x ) = 2x cos x2
dx
mnkgj.k 22 tan (2x + 3) dk vodyt Kkr dhft,A
gy eku yhft, fd f (x) = tan (2x + 3), u (x) = 2x + 3 rFkk v(t) = tan t gSA
(v o u) (x) = v(u(x)) = v(2x + 3) = tan (2x + 3) = f (x)

dv
bl izdkj f nks iQyuksa dk la;kstu gSA ;fn t = u(x) = 2x + 3. rks = sec2 t rFkk
dt
dt
= 2 rFkk nksuksa dk gh vfLrRo gSA vr% Ük`a[kyk fu;e }kjk
dx

df dv dt
= ⋅ = 2sec2 (2 x + 3)
dx dt dx

2018-19
lkarR; rFkk vodyuh;rk 181

mnkgj.k 23 x osQ lkis{k sin (cos (x2)) dk vodyu dhft,A


gy iQyu f (x) = sin (cos (x2)) , u, v rFkk w, rhu iQyuksa dk la;kstu gSA bl izdkj
f (x) = (w o v o u) (x), tgk¡ u(x) = x2, v(t) = cos t rFkk w(s) = sin s gSA t = u(x) = x2 vkSj
dw ds dt
s = v(t) = cos t j[kus ij ge ns[krs gSa fd = cos s, = − sin t rFkk = 2 x vkSj bu lHkh
ds dt dx
dk] x osQ lHkh okLrfod ekuksa osQ fy, vfLrRo gSA
vr% Ük`a[kyk fu;e osQ O;kidhdj.k }kjk
df dw ds dt
= ⋅ ⋅ = (cos s) (– sin t) (2x) = – 2x sin x2 cos (cos x2)
dx ds dt dx
fodYir%
y = sin (cos x2)
dy d d
blfy, = sin (cos x2) = cos (cos x2) (cos x2)
dx dx dx

d
= cos (cos x2) (– sin x2) (x2)
dx
= – sin x2 cos (cos x2) (2x)
= – 2x sin x2 cos (cos x2)

iz'ukoyh 5-2
iz'u 1 ls 8 esa x osQ lkis{k fuEufyf[kr iQyuksa dk vodyu dhft,%
1. sin (x2 + 5) 2. cos (sin x) 3. sin (ax + b)
sin (ax + b)
4. sec (tan ( x )) 5. 6. cos x3 . sin2 (x5)
cos (cx + d )

7. 2 cot ( x 2 ) 8. cos ( x )

9. fl¼ dhft, fd iQyu f (x) = | x – 1 |, x ∈ R, x = 1 ij vodfyr ugha gSA


10. fl¼ dhft, fd egÙke iw.kk±d iQyu f (x) =[x], 0 < x < 3, x = 1 rFkk x = 2 ij
vodfyr ugha gSA

2018-19
182 xf.kr

5.3.2 vLi"V iQyuksa osQ vodyt (Derivatives of Implicit Functions)


vc rd ge y = f (x) osQ :i osQ fofo/ iQyuksa dk vodyu djrs jgs gSa ijarq ;g vko';d
ugha gS fd iQyuksa dks lnSo blh :i esa O;Dr fd;k tk,A mnkgj.kkFkZ] x vkSj y osQ chp fuEufyf[kr
laca/ksa esa ls ,d ij fo'ks"k :i ls fopkj dhft,%
x–y–π=0
x + sin xy – y = 0
igyh n'kk esa] ge y osQ fy, ljy dj ldrs gSa vkSj laca/ dks y = x – π osQ :i esa fy[k
ldrs gSaA nwljh n'kk esa] ,slk ugha yxrk gS fd laca/ y dks ljy djus dk dksbZ vklku rjhdk gSA
fiQj Hkh nksuksa esa ls fdlh Hkh n'kk esa] y dh x ij fuHkZjrk osQ ckjs esa dksbZ lansg ugha gSA tc x
vkSj y osQ chp dk laca/ bl izdkj O;Dr fd;k x;k gks fd mls y osQ fy, ljy djuk vklku
gks vkSj y = f (x) osQ :i esa fy[kk tk losQ] rks ge dgrs gSa fd y dks x osQ Li"V (explicit)iQyu
osQ :i esa O;Dr fd;k x;k gSA mi;qZDr nwljs laca/ esa] ge dgrs gSa fd y dks x osQ vLi"V
(implicity) iQyu osQ :i esa O;Dr fd;k x;k gSA
dy
mnkgj.k 24 ;fn x – y = π rks Kkr dhft,A
dx

gy ,d fof/ ;g gS fd ge y osQ fy, ljy djosQ mi;qZDr laca/ dks fuEu izdkj fy[ksa ;Fkk
y=x – π
dy
rc =1
dx
fodYir% bl laca/ dk x, osQ lkis{k lh/s vodyu djus ij
d dπ
( x − y) =
dx dx


;kn dhft, fd dk vFkZ gS fd x osQ lkis{k ,d vpj π dk vodyu djukA bl izdkj
dx
d d
( x) − ( y ) = 0
dx dx
ftldk rkRi;Z gS fd
dy dx
= =1
dx dx

2018-19
lkarR; rFkk vodyuh;rk 183

mnkgj.k 25 ;fn y + sin y = cos x rks dy Kkr dhft,A


dx
gy ge bl laca/ dk lh/s vodyt djrs gSaA
dy d d
+ (sin y ) = (cos x)
dx dx dx
Ük`a[kyk fu;e dk iz;ksx djus ij
dy dy
+ cos y ⋅ = – sin x
dx dx
blls fuEufyf[kr ifj.kke feyrk gS]
dy sin x
= −
dx 1 + cos y
tgk¡ y ≠ (2n + 1) π
5.3.3 izfrykse f=kdks.kferh; iQyuksa osQ vodyt (Derivatives of Inverse Trigonometric
Functions)
ge iqu% è;ku fnykrs gSa fd izfrykse f=kdks.kferh; iQyu larr gksrs gSa] ijarq ge bls izekf.kr ugha
djsaxsA vc ge bu iQyuksa osQ vodytksa dks Kkr djus osQ fy, Ük`a[kyk fu;e dk iz;ksx djsaxsA
mnkgj.k 26 f (x) = sin –1 x dk vodyt Kkr dhft,A ;g eku yhft, fd bldk
vfLrRo gSA

gy eku yhft, fd y = f (x) = sin–1 x gS rks x = sin y


nksuksa i{kksa dk x osQ lkis{k vodyu djus ij
dy
1 = cos y
dx

dy 1 1
⇒ = =
dx cos y cos (sin −1 x )

π π
è;ku nhft, fd ;g osQoy cos y ≠ 0 osQ fy, ifjHkkf"kr gS] vFkkZr~ , sin–1 x ≠ − , , vFkkZr~
2 2
x ≠ – 1, 1, vFkkZr~ x ∈ (– 1, 1)

2018-19
184 xf.kr

bl ifj.kke dks oqQN vkd"kZd cukus gsrq ge fuEufyf[kr O;ogkj dkS'ky (manipulation)
djrs gSaA Lej.k dhft, fd x ∈ (– 1, 1) osQ fy, sin (sin–1 x) = x vkSj bl izdkj

cos2 y = 1 – (sin y)2 = 1 – (sin (sin–1 x))2 = 1 – x2


π π
lkFk gh pw¡fd y ∈  − ,  , cos y ,d /ukRed jkf'k gS vkSj blfy, cos y = 1 − x 2
 2 2
bl izdkj x ∈ (– 1, 1) osQ fy,
dy 1 1
= =
dx cos y 1 − x2
mnkgj.k 27 f (x) = tan–1 x dk vodyt Kkr dhft,] ;g ekurs gq, fd bldk vfLrRo gSA

gy eku yhft, fd y = tan–1 x gS rks x = tan y gSA x osQ lkis{k nksuksa i{kksa dk vodyu
djus ij

dy
1 = sec2 y
dx

dy 1 1 1 1
⇒ = = = −1
=
dx sec y 1 + tan y 1 + (tan (tan x)) 1 + x2
2 2 2

vU; izfrykse f=kdks.kferh; iQyuksa osQ vodytksa dk Kkr djuk vkiosQ vH;kl osQ fy, NksM+
fn;k x;k gSA 'ks"k izfrykse f=kdks.kferh; iQyuksa osQ vodytksa dks fuEufyf[kr lkj.kh 5-4 esa fn;k
x;k gSA
lkj.kh 5.4
f (x) cos –1x cot –1x sec –1x cosec–1x

−1 −1 1 −1
f ′(x) x x2 −1
1 − x2 1 + x2 x x2 − 1

Domain of f ′ (–1, 1) R (– ∞, –1) ∪ (1, ∞) (– ∞, –1) ∪ (1, ∞)

2018-19
lkarR; rFkk vodyuh;rk 185

iz'ukoyh 5-3
dy
fuEufyf[kr iz'uksa esa Kkr dhft,
dx
1. 2x + 3y = sin x 2. 2x + 3y = sin y 3. ax + by2 = cos y
4. xy + y2 = tan x + y 5. x2 + xy + y2 = 100 6. x3 + x2y + xy2 + y3 = 81

 2x 
7. sin2 y + cos xy = k 8. sin2 x + cos2 y = 1 9. y = sin–1  
 1 + x2 

 3x − x3  1 1
10. y = tan–1  2 
, − <x<
 1 − 3x  3 3

 1 − x2 
11. y = cos −1  , 0 < x < 1
 1 + x2 

 1 − x2 
12. y = sin −1  , 0 < x < 1
 1 + x2 

 2x ,
13. y = cos −1   −1 < x <1
 1 + x2 

14. (
y = sin −1 2 x 1 − x 2 , −)1
< x<
1
2 2

 1 , 1
15. y = sec −1  2  0< x<
 2x −1  2

5.4 pj?kkrakdh rFkk y?kqx.kdh; iQyu (Exponential and Logarithmic Functions)


vHkh rd geus iQyuksa] tSls cgqin iQyu] ifjes; iQyu rFkk f=kdks.kferh; iQyu] osQ fofHkUu oxks±
osQ oqQN igyqvksa osQ ckjs esa lh[kk gSA bl vuqPNsn esa ge ijLij lacaf/r iQyuksa osQ ,d u, oxZ
osQ ckjs esa lh[ksxa ]s ftUgsa pj?kkrkadh (exponential) rFkk y?kqx.kdh; (logarithmic) iQyu dgrs
gSaA ;gk¡ ij fo'ks"k :i ls ;g crykuk vko';d gS fd bl vuqPNsn osQ cgqr ls dFku izsjd rFkk
;FkkrF; gSa vkSj mudh miifÙk;k¡ bl iqLrd dh fo"k;&oLrq osQ {ks=k ls ckgj gSaA

2018-19
186 xf.kr

vko`Qfr 5-9 esa y = f1(x) = x, y = f2(x) = x2, y = f3(x) = x3 rFkk y = f4(x) = x4 osQ vkys[k
fn, x, gSaA è;ku nhft, fd T;ksa&T;ksa x dh ?kkr c<+rh tkrh gS oØ dh izo.krk Hkh c<+rh tkrh
gSA oØ dh izo.krk c<+us ls o`f¼ dh nj rst
gksrh tkrh gSA bldk vFkZ ;g gS fd x (>1) osQ
eku esa fuf'pr o`f¼ osQ laxr y = fn(x) dk
eku c<+rk tkrk gS tSls&tSls n dk eku 1] 2]
3] 4 gksrk tkrk gSA ;g dYiuh; gS fd ,slk
dFku lHkh /ukRed eku osQ fy, lR; gS tgk¡
fn(x) = xn gSA vko';d:i ls] bldk vFkZ ;g
gqvk fd tSls&tSls n esa o`f¼ gksrh tkrh gS
y = fn (x) dk vkys[k y-v{k dh vksj vf/d
>qdrk tkrk gSA mnkgj.k osQ fy, f10(x) = x10
rFkk f15(x) = x15 ij fopkj dhft,A ;fn x dk
eku 1 ls c<+dj 2 gks tkrk gS] rks f10 dk eku vko`Qfr 5-9
1 ls c<+dj 210 gks tkrk gS] tcfd f15 dk eku
1 ls c<+dj 215 gks tkrk gSA bl izdkj x esa leku o`f¼ osQ fy,] f15 dh o`f¼ f10 dh o`f¼ osQ
vis{kk vf/d rhozrk ls gksrh gSA
mi;qZDr ifjppkZ dk fu"d"kZ ;g gS fd cgqin iQyuksa dh o`f¼ muosQ ?kkr ij fuHkZj djrh gS]
vFkkZr~ ?kkr c<+krs tkb, o`f¼ c<+rh tk,xhA blosQ mijkar ,d LokHkkfod iz'u ;g mBrk gS fd]
D;k dksbZ ,slk iQyu gS tks cgqin iQyuksa dh vis{kk vf/d rsth ls c<+rk gS\ bldk mÙkj
ldkjkRed gS vkSj bl izdkj osQ iQyu dk ,d mnkgj.k y = f (x) = 10x gS
gekjk nkok ;g gS fd fdlh /u iw.kk±d n osQ fy, ;g iQyu f ] iQyu fn (x) = xn dh
vis{kk vf/d rsth ls c<+rk gSA mnkgj.k osQ fy, ge fl¼ dj ldrs gSa fd f100 (x) = x100 dh
vis{kk 10x vf/d rsth ls c<+rk gSA ;g uksV dhft, fd x osQ cM+s ekuksa osQ fy,] tSls x = 103,
f100 (x) = (103)100 = 10300 tcfd f (103) = 1010 = 101000 gSA Li"Vr% f100 (x) dh vis{kk f (x)
3

dk eku cgqr vf/d gSA ;g fl¼ djuk dfBu ugha gS fd x osQ mu lHkh ekuksa osQ fy, tgk¡
x > 103 , f (x) > f100 (x) gSA fdarq ge ;gk¡ ij bldh miifÙk nsus dk iz;kl ugha djsaxsA blh izdkj
x osQ cM+s ekuksa dks pqudj ;g lR;kfir fd;k tk ldrk gS fd] fdlh Hkh /u iw.kk±d n osQ fy,
fn (x) dh vis{kk f (x) dk eku vf/d rsth ls c<+rk gSA

ifjHkk"kk 3 iQyu y = f (x) = bx,/ukRed vk/kj b > 1 osQ fy, pj?kkrkadh iQyu dgykrk gSA
vko`Qfr 5-9 esa y = 10x dk js[kkfp=k n'kkZ;k x;k gSA

2018-19
lkarR; rFkk vodyuh;rk 187

;g lykg nh tkrh gS fd ikBd bl js[kkfp=k dks b osQ fof'k"V ekuksa] tSls 2, 3 vkSj 4 osQ fy,
[khap dj ns[ksAa pj?kkrkadh iQyu dh oqQN ize[q k fo'ks"krk,¡ fuEufyf[kr gS%a
(1) pj?kkrkadh iQyu dk izkar] okLrfod la[;kvksa dk leqPp; R gksrk gSA
(2) pj?kkrkadh iQyu dk ifjlj] leLr /ukRed okLrfod la[;kvksa dk leqPp; gksrk gSA
(3) ¯cnq (0, 1) pj?kkrkadh iQyu osQ vkys[k ij lnSo gksrk gS (;g bl rF; dk iqu% dFku
gS fd fdlh Hkh okLrfod la[;k b > 1 osQ fy, b0 = 1)
(4) pj?kkrkadh iQyu lnSo ,d o/Zeku iQyu (increasing function) gksrk gS] vFkkZr~
tSls&tSls ge ck,¡ ls nk,¡ vksj c<+rs tkrs gSa] vkys[k Åij mBrk tkrk gSA
(5) x osQ vR;f/d cM+s ½.kkRed ekuksa osQ fy, pj?kkrkadh iQyu dk eku 0 osQ vR;ar fudV
gksrk gSA nwljs 'kCnksa esa] f}rh; prqFkk±'k esa] vkys[k mÙkjksÙkj x-v{k dh vksj vxzlj gksrk
gS (fdarq mlls dHkh feyrk ugha gSA)
vk/kj 10 okys pj?kkrkadh iQyu dks lk/kj.k pj?kkrkadh iQyu (common exponential
Function) dgrs gSaA d{kk XI dh ikB~;iqLrd osQ ifjf'k"V A.1.4 esa geus ns[kk Fkk fd Js.kh

1 1
1+ + + ... gSA
1! 2!
dk ;ksx ,d ,slh la[;k gS ftldk eku 2 rFkk 3 osQ eè; gksrk gS vkSj ftls e }kjk izdV djrs gSAa
bl e dks vk/kj osQ :i esa iz;ksx djus ij] gesa ,d vR;ar egRoiw.kZ pj?kkrkadh iQyu
y = ex izkIr gksrk gSA bls izko`Qfrd pj?kkrkadh iQyu (natural exponential function)
dgrs gSAa
;g tkuuk #fpdj gksxk fd D;k pj?kkrkadh iQyu osQ izfrykse dk vfLrRo gS vkSj ;fn ^gk¡*
rks D;k mldh ,d leqfpr O;k[;k dh tk ldrh gSA ;g [kkst fuEufyf[kr ifjHkk"kk osQ fy, izsfjr
djrh gSA
ifjHkk"kk 4 eku yhft, fd b > 1 ,d okLrfod la[;k gSA rc ge dgrs gSa fd]
b vk/kj ij a dk y?kqx.kd x gS] ;fn bx = a gSA
b vk/kj ij a osQ y?kqx.kd dks izrhd logba ls izdV djrs gSaA bl izdkj ;fn bx = a, rks
logb a = x bldk vuqHko djus osQ fy, vkb, ge oqQN Li"V mnkgj.kksa dk iz;ksx djsaA gesa Kkr
gS fd 23 = 8 gSA y?kqx.kdh; 'kCnksa esa ge blh ckr dks iqu% log2 8 = 3 fy[k ldrs gSaA blh izdkj
104 = 10000 rFkk log10 10000 = 4 lerqY; dFku gSaA blh rjg ls 625 = 54 = 252 rFkk log5
625 = 4 vFkok log25 625 = 2 lerqY; dFku gSaA
FkksM+k lk vkSj vf/d ifjiDo n`f"Vdks.k ls fopkj djus ij ge dg ldrs gSa fd b > 1 dks
vk/kj fu/kZfjr djus osQ dkj.k ^y?kqx.kd* dks /u okLrfod la[;kvksa osQ leqPp; ls lHkh

2018-19
188 xf.kr

okLrfod la[;kvksa osQ leqPp; esa ,d iQyu


osQ :i esa ns[kk tk ldrk gSA ;g iQyu] ftls
y?kqx.kdh; iQyu (logarithmic function)
dgrs gSa] fuEufyf[kr izdkj ls ifjHkkf"kr gS%
logb : R+ → R
x → logb x = y ;fn by = x
iwoZ dfFkr rjg ls] ;fn vk/kj b = 10 gS
rks bls ^lk/kj.k y?kqx.kd* vkSj ;fn b = e gS
rks bls ^izko`Qfrd y?kqx.kd* dgrs gSaA cgq/k
izko`Qfrd y?kqx.kd dks ln }kjk izdV djrs gSaA vko`Qfr 5-10
bl vè;k; esa log x vk/kj e okys y?kqx.kdh; iQyu dks fu:fir djrk gSA vko`Qfr 5-10 esa 2,
rFkk 10 vk/kjh; y?kqx.kdh; iQyuksa osQ vkys[k n'kkZ, x, gSaA
vk/kj b > 1 okys y?kqx.kdh; iQyuksa dh oqQN egRoiw.kZ fo'ks"krk,¡ uhps lwphc¼ gSa%
(1) /usrj (non-positive) la[;kvksa osQ fy, ge y?kqx.kd dh dksbZ vFkZiw.kZ ifjHkk"kk ugha cuk
ldrs gSa vkSj blfy, y?kqx.kdh; iQyu dk izkar R+ gSA
(2) y?kqx.kdh; iQyu dk ifjlj leLr okLrfod la[;kvksa dk leqPp; gSA
(3) ¯cnq (1, 0) y?kqx.kdh; iQyuksa osQ vkys[k ij lnSo jgrk gSA
(4) y?kqx.kdh; iQyu ,d o/Zeku iQyu gksrs gSa] vFkkZr~ T;ksa&T;ksa ge ck,¡ ls nk,¡ vksj pyrs
gSa] vkys[k mÙkjksÙkj Åij mBrk tkrk gSA
(5) 0 osQ vR;kf/d fudV okys x osQ fy,]
log x osQ eku dks fdlh Hkh nh xbZ
okLrfod la[;k ls de fd;k tk ldrk
gSA nwljs 'kCnksa es]a pkSFks (prqFkZ) prqFkk±'k esa
vkys[k y-v{k osQ fudVre vxzlj gksrk gS
(fdarq blls dHkh feyrk ugha gS)A
(6) vko`Qfr 5.11 esa y = ex rFkk y = loge x
osQ vkys[k n'kkZ, x, gaSA ;g è;ku nsuk
jkspd gS fd nksuksa oØ js[kk y = x esa ,d
nwljs osQ niZ.k izfrfcac gSaA vko`Qfr 5-11
y?kqx.kdh; iQyuksa osQ nks egRoiw.kZ xq.k uhps izekf.kr fd, x, gSa%
(1) vk/kj ifjorZu dk ,d ekud fu;e gS] ftlls loga p dks logb p osQ inksa esa Kkr fd;k
tk ldrk gSA eku yhft, fd loga p = α, logb p = β rFkk logb a = γ gSA bldk vFkZ ;g

2018-19
lkarR; rFkk vodyuh;rk 189

gS fd aα = p, bβ = p rFkk bγ = a gSA vc rhljs ifj.kke dks igys esa j[kus ls


(bγ)α = bγα = p
bldks nwljs lehdj.k esa iz;ksx djus ij
bβ = p = bγα
β
vr% β = αγ vFkok α = gSA bl izdkj
γ
log b p
loga p =
log b a
(2) xq.kuiQyuksa ij log iQyu dk izHkko bldk ,d vU; jkspd xq.k gSA eku yhft, fd
logb pq = α gSA blls bα = pq izkIr gksrk gSA blh izdkj ;fn logb p = β rFkk logb q = γ
gS rks bβ = p rFkk bγ = q izkIr gksrk gSA ijarq bα = pq = bβbγ = bβ + γ gSA
bldk rkRi;Z gS fd α = β + γ, vFkkZr~
logb pq = logb p + logb q
blls ,d fo'ks"k jkspd rFkk egRoiw.kZ ifj.kke rc fudyrk gS tc p = q gSA ,slh n'kk esa]
mi;qZDr dks iqu% fuEufyf[kr izdkj ls fy[kk tk ldrk gS
logb p2 = logb p + logb p = 2 logb p
bldk ,d ljy O;kidhdj.k vH;kl osQ fy, NksM+ fn;k x;k gS vFkkZr~ fdlh Hkh /u iw.kk±d
n osQ fy,
logb pn = n logb p
okLro esa ;g ifj.kke n osQ fdlh Hkh okLrfod eku osQ fy, lR; gS] fdarq bls ge izekf.kr
djus dk iz;kl ugha djsaxsA blh fof/ ls ikBd fuEufyf[kr dks lR;kfir dj ldrs gSa%
x
log b = logb x – logb y
y
mnkgj.k 28 D;k ;g lR; gS fd x osQ lHkh okLrfod ekuksa osQ fy, x = elog x gS?
gy igys rks è;ku nhft, fd log iQyu dk izkar lHkh /u okLrfod la[;kvksa dk leqPp; gksrk
gSA blfy, mi;qZDr lehdj.k /usrj okLrfod la[;kvksa osQ fy, lR; ugha gSA vc eku yhft,
fd y = elog x gSA ;fn y > 0 rc nksuks i{kksa dk y?kqx.kd ysus ls log y = log (elog x) = log x . log
e = log x gSA ftlls y = x izkIr gksrk gSA vr,o x = elog x osQoy x osQ /u ekuksa osQ fy, lR; gSA
vody xf.kr (differential calculus) es]a izko`Qfrd pj?kkrkadh iQyu dk ,d vlk/kj.k xq.k
;g gS fd] vodyu dh izfØ;k esa ;g ifjofrZr ugha gksrk gSA bl xq.k dks uhps izes;ksa esa O;Dr
fd;k x;k gS] ftldh miifÙk dks ge NksM+ nsrs gSaA

2018-19
190 xf.kr

izes; 5*
d x
(1) x osQ lkis{k ex dk vodyt ex gh gksrk gS] vFkkZr~ (e ) = ex
dx
1 d 1
(2) x osQ lkis{k log x dk vodyt gksrk gS] vFkkZr~ (log x) =
x dx x
mnkgj.k 29 x osQ lkis{k fuEufyf[kr dk vodyu dhft,%
(i) e –x (ii) sin (log x), x > 0 (iii) cos–1 (ex) (iv) ecos x
gy
(i) eku yhft, y = e – x gSA vc Ük`a[kyk fu;e osQ iz;ksx }kjk
dy d
= e− x ⋅ (– x) = – e– x
dx dx
(ii) eku yhft, fd y = sin (log x) gSA vc Ük`a[kyk fu;e }kjk
dy d cos (log x )
= cos(log x ) ⋅ (log x) =
dx dx x
(iii) eku yhft, fd y = cos (e ) gSA vc Ük`a[kyk fu;e }kjk
–1 x

dy −1 d −e x
= ⋅ (e x ) = .
dx 1 − (e x ) 2 dx 1 − e2 x
(iv) eku yhft, fd y = ecos x gSA vc Ük`a[kyk fu;e }kjk
dy
= ecos x ⋅ ( − sin x) = − (sin x) ecos x
dx

iz'ukoyh 5-4
fuEufyf[kr dk x osQ lkis{k vodyu dhft,%
ex −1 3
1. 2. esin x 3. e x
sin x
2 5
4. sin (tan–1 e–x) 5. log (cos ex) 6. e x + e x + ... + e x
cos x
7. e x
, x>0 8. log (log x), x > 1 9. log x , x > 0

10. cos (log x + ex)


*o`Qi;k iwjd ikB~; lkexzh i`"B 303&304 ij ns[ksa

2018-19
lkarR; rFkk vodyuh;rk 191

5.5. y?kqx.kdh; vodyu (Logarithmic Differentiation)


bl vuqPNsn esa ge fuEufyf[kr izdkj osQ ,d fof'k"V oxZ osQ iQyuksa dk vodyu djuk lh[ksaxs%
y = f (x) = [u(x)]v (x)
y?kqx.kd (e vk/kj ij ) ysus ij mi;qZDr dks fuEufyf[kr izdkj ls iqu% fy[k ldrs gSa
log y = v (x) log [u(x)]
Ük`a[kyk fu;e osQ iz;ksx }kjk
1 dy 1
⋅ = v( x) ⋅ . u′(x) + v′(x) . log [u(x)]
y dx u ( x)
bldk rkRi;Z gS fd
dy  v( x) 
= y ⋅ u ′ ( x) + v′ ( x) ⋅ log [u ( x) ]
dx  u( x) 
bl fof/ esa è;ku nsus dh eq[; ckr ;g gS fd f (x) rFkk u(x) dks lnSo /ukRed gksuk pkfg,
vU;Fkk muosQ y?kqx.kd ifjHkkf"kr ugha gksxa As bl izfØ;k dks y?kqx.kdh; vodyu (logarithmic
differentiation) dgrs gSa vkSj ftls fuEufyf[kr mnkgj.kksa }kjk Li"V fd;k x;k gSA

( x − 3) ( x 2 + 4)
mnkgj.k 30 x osQ lkis{k dk vodyu dhft,A
3x 2 + 4 x + 5

( x − 3) ( x 2 + 4)
gy eku yhft, fd y =
(3 x 2 + 4 x + 5)
nksuksa i{kksa osQ y?kqx.kd ysus ij
1
log y = [log (x – 3) + log (x2 + 4) – log (3x2 + 4x + 5)]
2
nksuksa i{kksa dk x, osQ lkis{k voydu djus ij
1 dy 1 1 2x 6x + 4 
⋅ =  + 2 − 2
y dx 2  ( x − 3) x + 4 3x + 4 x + 5 

dy y 1 2x 6x + 4 
vFkok =  + 2 − 2
dx 2  ( x − 3) x + 4 3 x + 4 x + 5 

1 ( x − 3) ( x 2 + 4)  1 2x 6x + 4 
+ 2 − 2
3x + 4 x + 5  ( x − 3) x + 4 3 x + 4 x + 5 

= 2
2

2018-19
192 xf.kr

mnkgj.k 31 x osQ lkis{k ax dk vodyu dhft,] tgk¡ a ,d /u vpj gSA


gy eku yhft, fd y = ax, rks
log y = x log a
nksuksa i{kksa dk x, osQ lkis{k vodyu djus ij
1 dy
y dx = log a
dy
vFkok = y log a
dx
d x
bl izdkj (a ) = ax log a
dx
d x d x log a ) d
fodYir% (a ) = (e = e x log a ( x log a)
dx dx dx
= ex log a . log a = ax log a
mnkgj.k 32 x osQ lkis{k xsin x, dk vodyu dhft,] tc fd x > 0 gSA
gy eku yhft, fd y = xsin x gSA vc nksuksa i{kksa dk y?kqx.kd ysus ij
log y = sin x log x
1 dy d d
vr,o . sin x (log x ) + log x (sin x )
y dx = dx dx
1 dy 1
;k (sin x ) + log x cos x
y dx = x
dy  sin x 
;k = y + cos x log x 
dx  x 
sin x  sin x 
= x  + cos x log x 
 x 
= xsin x −1 ⋅ sin x + x sin x ⋅ cos x log x
dy
mnkgj.k 33 ;fn yx + xy + xx = ab gSA rks Kkr dhft,A
dx
gy fn;k gS fd yx + xy + xx = ab
u = yx, v = xy rFkk w = xx j[kus ij gesa u + v + w = ab izkIr gksrk gSA

2018-19
lkarR; rFkk vodyuh;rk 193

du dv dw
blfy, + + =0 ... (1)
dx dx dx
vc u = yx gSA nksuksa i{kksa dk y?kqx.kd ysus ij
log u = x log y
nksuksa i{kksa dk x osQ lkis{k vodyu djus ij
1 du d d
⋅ = x (log y ) + log y ( x)
u dx dx dx
1 dy
= x ⋅ + log y ⋅ 1 izkIr gksrk gSA
y dx

du  x dy   x dy 
blfy, = u + log y  = y x  + log y  ... (2)
dx  y dx   y dx 
blh izdkj v=x y

nksuksa i{kksa dk y?kqx.kd ysus ij


log v = y log x
nksuksa i{kksa dk x osQ lkis{k vodyu djus ij
1 dv d dy
. = y (log x) + log x
v dx dx dx
1 dy
= y ⋅ + log x ⋅ izkIr gksrk gSA
x dx
dv y dy 
vr,o = v  + log x 
dx  x dx 

y y dy 
= x  + log x  ... (3)
x dx 
iqu% w=x x

nksuksa i{kksa dk y?kqx.ku djus ij


log w = x log x
nksuksa i{kksa dk x osQ lkis{k vodyu djus ij
1 dw d d
⋅ = x (log x ) + log x . ( x )
w dx dx dx
1
= x ⋅ + log x ⋅ 1 izkIr gksrk gSA
x

2018-19
194 xf.kr

dw
vFkkZr~ = w (1 + log x)
dx
= xx (1 + log x) ... (4)
(1), (2), (3) rFkk (4), }kjk

 x dy  y dy 
yx  + log y  + x y  + log x  + xx (1 + log x) = 0
 y dx   x dx 

dy
;k (x . yx – 1 + xy . log x) = – xx (1 + log x) – y . xy–1 – yx log y
dx

dy − [ y x log y + y . x y −1 + x x (1 + log x)]


vr% =
x . y x −1 + x y log x
dx

iz'ukoyh 5-5
1 ls 11 rd osQ iz'uksa esa iznÙk iQyuksa dk x osQ lkis{k vodyu dhft,%
( x − 1) ( x − 2)
1. cos x . cos 2x . cos 3x 2.
( x − 3) ( x − 4) ( x − 5)
3. (log x)cos x 4. xx – 2sin x
x  1
 1 1+ 
2 3
5. (x + 3) . (x + 4) . (x + 5) 4
6.  x +  + x  x 
 x
7. (log x)x + xlog x 8. (sin x)x + sin–1 x
x2 + 1
9. xsin x + (sin x)cos x 10. x x cos x +
x2 − 1
1
11. (x cos x) + x
( x sin x) x
dy
12 ls 15 rd osQ iz'uksa esa iznÙk iQyuksa osQ fy, Kkr dhft,%
dx
12. xy + yx = 1 13. yx = xy
14. (cos x)y = (cos y)x 15. xy = e(x – y)
16. f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) }kjk iznÙk iQyu dk vodyt Kkr dhft, vkSj
bl izdkj f ′(1) Kkr dhft,A

2018-19
lkarR; rFkk vodyuh;rk 195

17. (x2 – 5x + 8) (x3 + 7x + 9) dk vodyu fuEufyf[kr rhu izdkj ls dhft,%


(i) xq.kuiQy fu;e dk iz;ksx djosQ
(ii) xq.kuiQy osQ foLrkj.k }kjk ,d ,dy cgqin izkIr djosQ
(iii) y?kqx.kdh; vodyu }kjk
;g Hkh lR;kfir dhft, fd bl izdkj izkIr rhuksa mÙkj leku gSaA
18. ;fn u, v rFkk w , x osQ iQyu gaS, rks nks fof/;ksa vFkkZr~ izFke&xq.kuiQy fu;e dh iqujko`fÙk
}kjk] f}rh; & y?kqx.kdh; vodyu }kjk n'kkZb, fd
d du dv dw
(u. v. w) = v. w + u . .w+u.v
dx dx dx dx

5.6 iQyuksa osQ izkpfyd :iksa osQ vodyt (Derivatives of Functions in


Parametric Forms)
dHkh&dHkh nks pj jkf'k;ksa osQ chp dk laca/ u rks Li"V gksrk gS vkSj u vLi"V] fdarq ,d vU;
(rhljh) pj jkf'k ls i`Fko~Q&i`Fko~Q laca/ksa }kjk izFke nks jkf'k;ksa osQ eè; ,d laca/ LFkkfir gks tkrk
gS ,slh fLFkfr esa ge dgrs gSa fd mu nksuksa osQ chp dk laca/ ,d rhljh pj jkf'k osQ ekè;e ls
of.kZr gSA ;g rhljh pj jkf'k izkpy (Parameter) dgykrh gSA vf/d lqLi"V rjhosQ ls nks pj
jkf'k;ksa x rFkk y osQ chp] x = f (t), y = g (t) osQ :i esa O;Dr laca/] dks izkpfyd :i esa O;Dr
laca/ dgrs gSa] tgk¡ t ,d izkpy gSA
bl :i osQ iQyuksa osQ vodyt Kkr djus gsrq] Ük`a[kyk fu;e }kjk
dy dy dx
= ⋅
dt dx dt
dy
dy dt  dx 
;k = dx  tc dHkh ≠ 0 izkIr gksrk gSA

dx dt
dt
dy g ′ (t )  dy dx 
bl izdkj =  D;ksa fd = g ′ (t ) rFkk = f ′ (t ) [c'krsZ f ′(t) ≠ 0]
dx f ′ (t )  dt dt 
dy
mnkgj.k 34 ;fn x = a cos θ, y = a sin θ, rks Kkr dhft,A
dx
gy fn;k gS fd
x = a cos θ, y = a sin θ
dx dy
blfy, = – a sin θ, = a cos θ
dθ dθ

2018-19
196 xf.kr

dy
dy d θ = a cos θ = − cot θ
vr% =
dx − a sin θ
dx

mnkgj.k 35 ;fn x = at2, y = 2at gS rks dy Kkr dhft,A


dx
gy fn;k gS fd 2
x = at , y = 2at
dx dy
blfy, = 2at rFkk = 2a
dt dt
dy
dy dt = 2a = 1
vr% =
dx
dx 2at t
dt

mnkgj.k 36 ;fn x = a (θ + sin θ), y = a (1 – cos θ) gS rks dy Kkr dhft, A


dx
dx dy
gy ;gk¡ = a(1 + cos θ), = a (sin θ)
dθ dθ
dy
dy d θ = a sin θ = tan θ
vr% =
dx a (1 + cos θ)
dx 2

dy
A fVIi.kh ;gk¡] ;g è;ku nhft, fd dks eq[; pj jkf'k;ksa x vkSj y dks lfEefyr fd,
dx
fcuk gh] osQoy izkpy osQ inksa esa O;Dr djrs gSaA
2 2 2
dy
mnkgj.k 37 ;fn x3 + y3 = a3 gS rks Kkr dhft,A
dx
gy eku yhft, fd x = a cos3 θ, y = a sin3 θ gS rc
2 3 2 2
x3 + y2 = (a cos
3
θ) 3 + ( a sin 3
θ) 3
2 2

= a 3 (cos θ + (sin θ) = a 3
2 2

2018-19
lkarR; rFkk vodyuh;rk 197

2 2 2
vr% x = a cos3 θ, y = a sin3 θ, x 3 + y 3 = a 3 dk izkpfyd lehdj.k gSA
dx dy
bl izdkj] = – 3a cos2 θ sin θ vkSj = 3a sin2 θ cos θ
dθ dθ

dy
d θ = 3a sin θ cos θ = − tan θ = − 3 y
2
dy
blfy,] =
dx − 3a cos 2 θ sin θ
dx x

iz'ukoyh 5-6
;fn iz'u la[;k 1 ls 10 rd esa x rFkk y fn, lehdj.kksa }kjk] ,d nwljs ls izkpfyd :i esa
dy
lacaf/r gksa] rks izkpyksa dk foyksiu fd, fcuk] Kkr dhft,%
dx
1. x = 2at2, y = at4 2. x = a cos θ, y = b cos θ
4
3. x = sin t, y = cos 2t 4. x = 4t, y =
t
5. x = cos θ – cos 2θ, y = sin θ – sin 2θ
sin 3 t cos3 t
6. x = a (θ – sin θ), y = a (1 + cos θ) 7. x = , y=
cos 2t cos 2t

 t
8.x = a  cos t + log tan  y = a sin t 9. x = a sec θ, y = b tan θ
 2
10. x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
−1 −1 dy y
11. ;fn x = asin t , y = a cos t , rks n'kkZb, fd =−
dx x
5.7 f}rh; dksfV dk vodyt (Second Order Derivative)
eku yhft, fd y = f (x) gS rks
dy
= f ′(x) ... (1)
dx

2018-19
198 xf.kr

;fn f ′(x) vodyuh; gS rks ge x osQ lkis{k (1) dk iqu% vodyu dj ldrs gSaA bl izdkj
d  dy 
ck;k¡ i{k   gks tkrk gS] ftls f}rh; dksfV dk vodyt (Second Order Derviative)
dx  dx 
d2y
dgrs gSa vkSj ls fu:fir djrs gSaA f (x) osQ f}rh; dksfV osQ vodyt dks f ″(x) ls Hkh
dx 2
fu:fir djrs gSaA ;fn y = f (x) gks rks bls D2(y) ;k y″ ;k y2 ls Hkh fu:fir djrs gSaA ge fVIi.kh
djrs gSa fd mPp Øe osQ vodyu Hkh blh izdkj fd, tkrs gSaA
d2y
mnkgj.k 38 ;fn y = x3 + tan x gS rks Kkr dhft,A
dx 2
gy fn;k gS fd y = x3 + tan x gSA vc
dy
= 3x2 + sec2 x
dx
d2y d ( 2
blfy, 2 =
3x + sec 2 x )
dx dx
= 6x + 2 sec x . sec x tan x = 6x + 2 sec2 x tan x
d2y
mnkgj.k 39 ;fn y = A sin x + B cos x gS rks fl¼ dhft, fd + y = 0 gSA
dx 2
gy ;gk¡ ij
dy
= A cos x – B sin x
dx
d2y d
vkSj 2 = (A cos x – B sin x)
dx dx
= – A sin x – B cos x = – y
d2y
bl izdkj +y=0
dx 2
d2y dy
mnkgj.k 40 ;fn y = 3e2x + 2e3x gS rks fl¼ dhft, fd 2
−5 + 6y = 0
dx dx
gy ;gk¡ y = 3e2x + 2e3x gSA vc
dy
= 6e2x + 6e3x = 6 (e2x + e3x)
dx

2018-19
lkarR; rFkk vodyuh;rk 199

d2y
blfy, = 12e2x + 18e3x = 6 (2e2x + 3e3x)
dx 2
d2y dy
vr% 2
−5 + 6y = 6 (2e2x + 3e3x)
dx dx
– 30 (e2x + e3x) + 6 (3e2x + 2e3x) = 0
d2y dy
mnkgj.k 41 ;fn y = sin–1 x gS rks n'kkZb, fd (1 – x2) 2
− x = 0 gSA
dx dx
gy ;gk¡ y = sin–1 x gS rks
dy 1
=
dx (1 − x 2 )
dy
;k (1 − x 2 ) =1
dx
d  dy 
 (1 − x ) ⋅  = 0
2
;k dx dx

;k (1 − x 2 ) ⋅
d 2 y dy d
+ ⋅
dx 2 dx dx
( )
(1 − x 2 ) = 0

d 2 y dy 2x
;k (1 − x 2 ) ⋅ 2
− ⋅ =0
dx dx 2 1 − x 2

d2y dy
vr% (1 − x 2 ) 2
−x =0
dx dx
fodYir% fn;k gS fd y = sin–1 x gS rks
1
y1 = , vFkkZr~ (1 − x 2 ) y 2 = 1
1 − x2 1

vr,o (1 − x 2 ) ⋅ 2 y1 y2 + y12 (0 − 2 x ) = 0
vr% (1 – x2) y2 – xy1 = 0

iz'ukoyh 5-7
iz'u la[;k 1 ls 10 rd esa fn, iQyuksa osQ f}rh; dksfV osQ vodyt Kkr dhft,%
1. x2 + 3x + 2 2. x 20 3. x . cos x
4. log x 5. x3 log x 6. ex sin 5x

2018-19
200 xf.kr

7. e6x cos 3x 8. tan–1 x 9. log (log x)


d2y
10. sin (log x) 11. ;fn y = 5 cos x – 3 sin x gS rks fl¼ dhft, fd + y=0
dx 2
d2y
12. ;fn y = cos–1 x gS rks dks osQoy y osQ inksa esa Kkr dhft,A
dx 2
13. ;fn y = 3 cos (log x) + 4 sin (log x) gS rks n'kkZb, fd x2 y2 + xy1 + y = 0
d2y dy
14. ;fn y = Aemx + Benx gS rks n'kkZb, fd 2
− (m + n) + mny = 0
dx dx
d2y
15. ;fn y = 500e7x + 600e– 7x gS rks n'kkZb, fd = 49 y gSA
dx2
2
d 2 y  dy 
16. ;fn e (x + 1) = 1 gS rks n'kkZb, fd
y =   gSA
dx 2  dx 
17. ;fn y = (tan–1 x)2 gS rks n'kkZb, fd (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2 gSA
5.8 ekè;eku izes; (Mean Value Theorem)
bl vuqPNsn esa ge vody xf.kr osQ nks vk/kjHkwr ifj.kkeksa dks] fcuk fl¼ fd,] O;Dr djsaxsA
ge bu izes;ksa dh T;kferh; O;k[;k (geometric interpretation) dk Hkh Kku izkIr djsaxsA
izes; 6 jksys dk izes; (Rolle's Theorem) eku yhft, fd f : [a, b] → R lao`r varjky
[a, b] esa larr rFkk foo`r varjky (a, b) esa vodyuh; gS vkSj f(a) = f(b) gS tgk¡ a vkSj b dksbZ
okLrfod la[;k,¡ gSaA rc foo`r varjky (a, b) esa fdlh ,sls c dk vfLrRo gS fd f ′(c) = 0 gSA
vko`Qfr 5-12 vkSj 5-13 esa oqQN ,sls fof'k"V iQyuksa osQ vkys[k fn, x, gSa] tks jksys osQ izes;
dh ifjdYiuk dks larq"V djrs gSaA

vko`Qfr 5-12 vko`Qfr 5-13

2018-19
lkarR; rFkk vodyuh;rk 201

è;ku nhft, fd a vkSj b osQ eè; fLFkr oØ osQ ¯cnqvksa ij Li'kZ js[kk dh izo.krk ij D;k
?kfVr gksrk gSA buesa ls izR;sd vkys[k esa de ls de ,d ¯cnq ij izo.krk 'kwU; gks tkrh gSA
jksys osQ izes; dk ;FkkrF; ;gh nkok gS] D;ksafd y = f (x) osQ vkys[k osQ fdlh ¯cnq ij Li'kZ
js[kk dh izo.krk oqQN vU; ugha vfirq ml ¯cnq ij f (x) dk vodyt gksrk gSA
izes; 7 ekè;eku izes; (Mean Value Theorem) eku yhft, fd f : [a, b] → R varjky
[a, b] esa larr rFkk varjky (a, b) esa vodyuh; gSA rc varjky (a, b) esa fdlh ,sls c dk
vfLrRo gS fd
f (b) − f (a )
f ′(c) = gSA
b−a
è;ku nhft, fd ekè;eku izes; (MVT), jksys osQ izes; dk ,d foLrkj.k (extension) gSA
vkb, vc ge ekè;eku izes; dh T;kferh; O;k[;k le>saA iQyu y = f (x) dk vkys[k vko`Qfr
5-13 esa fn;k gSA ge igys gh f ′(c) dh O;k[;k oØ y = f (x) osQ ¯cnq (c, f (c)) ij [khaph xbZ
Li'kZ js[kk dh izo.krk osQ :i esa dj pqosQ gSaA vko`Qfr 5-14 ls Li"V gS fd f (b) − f (a) ¯cnqvksa
b−a
(a, f (a)) vkSj (b, f (b)) osQ eè; [khaph xbZ Nsnd js[kk (Secant) dh izo.krk gSA ekè;eku izes;
esa dgk x;k gS fd varjky (a, b) esa fLFkr ,d ¯cnq c bl izdkj gS ¯cnq (c, f(c)) ij [khaph xbZ
Li'kZ js[kk] (a, f (a)) rFkk (b, f (b)) ¯cnqvksa osQ chp [khaph xbZ Nsnd js[kk osQ lekarj gksrh gSA nwljs
'kCnksa esa] (a, b) esa ,d ¯cnq c ,slk gS tks (c, f (c)) ij Li'kZ js[kk] (a, f (a)) rFkk (b, f (b))
dks feykus okyh js[kk [kaM osQ leakrj gSA

vko`Qfr 5-14
mnkgj.k 42 iQyu y = x2 + 2 osQ fy, jksys osQ izes; dks lR;kfir dhft,] tc a = – 2 rFkk
b = 2 gSA

2018-19
202 xf.kr

gy iQyu y = x2 + 2, varjky [– 2, 2] esa larr rFkk varjky (– 2, 2) esa vodyuh; gSA lkFk gh
f (– 2) = f ( 2) = 6 gS vr,o f (x) dk eku – 2 rFkk 2 ij leku gSaA jksys osQ izes; osQ vuqlkj ,d
¯cnq c ∈ (– 2, 2) dk vfLrRo gksxk] tgk¡ f′ (c) = 0 gSA pw¡fd f′ (x) = 2x gS blfy, c = 0 ij
f ′ (c) = 0 vkSj c = 0 ∈ (– 2, 2)
mnkgj.k 43 varjky [2, 4] esa iQyu f (x) = x2 osQ fy, ekè;eku izes; dks lR;kfir dhft,A
gy iQyu f (x) = x2 varjky [2, 4] esa larr vkSj varjky (2, 4) esa vodyuh; gS] D;ksafd bldk
vodyt f ′ (x) = 2x varjky (2, 4) esa ifjHkkf"kr gSA
vc f (2) = 4 vkSj f (4) = 16 gSaA blfy,
f (b) − f (a ) 16 − 4
= =6
b−a 4−2
ekè;eku izes; osQ vuqlkj ,d ¯cnq c ∈ (2, 4) ,slk gksuk pkfg, rkfd f ′ (c) = 6 gksA ;gk¡
f ′ (x) = 2x vr,o c = 3 gSA vr% c = 3 ∈ (2, 4), ij f ′ (c) = 6 gSA

iz'ukoyh 5-8
1. iQyu f (x) = x2 + 2x – 8, x ∈ [– 4, 2] osQ fy, jksys osQ izes; dks lR;kfir dhft,A
2. tk¡p dhft, fd D;k jksys dk izes; fuEufyf[kr iQyuksa esa ls fdu&fdu ij ykxw gksrk gSA
bu mnkgj.kksa ls D;k vki jksys osQ izes; osQ foykse osQ ckjs esa oqQN dg ldrs gSa\
(i) f (x) = [x] osQ fy, x ∈ [5, 9] (ii) f (x) = [x] osQ fy, x ∈ [– 2, 2]
(iii) f (x) = x2 – 1 osQ fy, x ∈ [1, 2]
3. ;fn f : [– 5, 5] → R ,d larr iQyu gS vkSj ;fn f ′(x) fdlh Hkh ¯cnq ij 'kwU; ugha gksrk
gS rks fl¼ dhft, fd f (– 5) ≠ f (5)
4. ekè;eku izes; lR;kfir dhft,] ;fn varjky [a, b] esa f (x) = x2 – 4x – 3, tgk¡ a = 1
vkSj b = 4 gSA
5. ekè;eku izes; lR;kfir dhft, ;fn varjky [a, b] esa f (x) = x3– 5x2 – 3x, tgk¡ a = 1
vkSj b = 3 gSA f ′(c) = 0 osQ fy, c ∈ (1, 3) dks Kkr dhft,A
6. iz'u la[;k 2 esa mijksDr fn, rhuksa iQyuksa osQ fy, ekè;eku ize;s dh vuqi;ksfxrk dh tk¡p dhft,A

fofo/ mnkgj.k
mnkgj.k 44 x osQ lkis{k fuEufyf[kr dk vodyu dhft,%
1 2
(i) 3x + 2 + (ii) esec x + 3cos –1 x (iii) log7 (log x)
2 x2 + 4

2018-19
lkarR; rFkk vodyuh;rk 203

gy
1 1
1 −
(i) eku yhft, fd y = 3x + 2 + = (3x + 2) 2 + (2 x + 4)
2 2
gSA
2 x2 + 4

2
è;ku nhft, fd ;g iQyu lHkh okLrfod la[;kvksa x > − osQ fy, ifjHkkf"kr gSA blfy,
3
1 1
dy 1 −1 d  1 − −1 d
= (3x + 2) 2 ⋅ (3x + 2) +  −  ( 2 x + 4) 2 ⋅ ( 2 x 2 + 4)
2
dx 2 dx 2 dx
1 3
1 −  1 −
= (3x + 2) 2 ⋅ (3) −   (2 x + 4) 2 ⋅ 4 x
2
2 2
3 2x
= −
2 3x + 2 3
( 2x2 + 4) 2
2
;g lHkh okLrfod la[;kvksa x > − osQ fy, ifjHkkf"kr gSA
3
+ 3cos−1 x gSA ;g [ −1, 1] osQ izR;sd ¯cnq osQ fy, ifjHkkf"kr
2
(ii) eku yhft, fd y = e
sec x

gSA blfy,
dy sec2 x d  1 
= e ⋅ (sec 2 x ) + 3  −
dx dx  1 − x 2 

sec2 x  d  3
= e ⋅  2 sec x (sec x ) −
 dx  1 − x2
2 3
= 2sec x (sec x tan x ) e
sec x

1 − x2
2 3
2
= 2sec x tan x e
sec x

1 − x2
è;ku nhft, fd iznÙk iQyu dk vodyt osQoy [ −1, 1] esa gh ekU; gS] D;ksafd
cos – 1 x osQ vodyt dk vfLrRo osQoy (– 1, 1) esa gSA

2018-19
204 xf.kr

log (log x)
(iii) eku yhft, fd y = log 7 (log x) = (vk/kj ifjorZu osQ lw=k }kjk)
log 7
leLr okLrfod la[;kvksa x > 1 osQ fy, iQyu ifjHkkf"kr gSA blfy,
dy 1 d
= (log (log x))
dx log 7 dx
1 1 d
= ⋅ (log x )
log 7 log x dx
1
=
x log 7 log x
mnkgj.k 45 x osQ lkis{k fuEufyf[kr dk vodyu dhft,%
 sin x   2 x +1 
(i) cos – 1 (sin x) (ii) tan −1   (iii) sin −1  
 1 + cos x   1 + 4x 
gy
(i) eku yhft, fd f (x) = cos – 1 (sin x) gSA è;ku nhft, fd ;g iQyu lHkh okLrfod
la[;kvksa osQ fy, ifjHkkf"kr gSA ge bls fuEufyf[kr :i esa fy[k ldrs gSaA
f (x) = cos–1 (sin x)
−1  π  π
= cos  cos  − x  , since − x ∈ [0.π]
 2  2
π
= −x
2
vr% f ′(x) = – 1 gSA
 sin x 
(ii) eku yhft, fd f (x) = tan – 1   gSA è;ku nhft, fd ;g iQyu mu lHkh
 1 + cos x 
okLrfod la[;kvksa osQ fy, ifjHkkf"kr gS ftuosQ fy, cos x ≠ – 1, vFkkZr~ π osQ leLr
fo"ke xq.ktksa osQ vfrfjDr vU; lHkh okLrfod la[;kvksa osQ fy, ge bl iQyu dks
fuEufyf[kr izdkj ls iqu% O;Dr dj ldrs gSa%
−1  sin x 
f (x) = tan  
 1 + cos x 
 x  x 
 2 sin   cos   
−1 2 2 −1   x  x
= tan   = tan  tan    =
 2cos 2
x    2  2
 2 

2018-19
lkarR; rFkk vodyuh;rk 205

x
è;ku nhft, fd ge va'k rFkk gj esa cos   dks dkV losQ] D;ksafd ;g 'kwU; osQ cjkcj
2
1
ugha gSA vr% f ′(x) = gSA
2
 2x + 1  .
(iii) eku yhft, fd f (x) = sin – 1   gSA bl iQyu dk izkar Kkr djus osQ fy, gesa mu
 1 + 4x 

2 x +1 2 x +1
lHkh x dks Kkr djus dh vko';drk gS ftuosQ fy, −1 ≤ ≤ 1 gS
A D;ks
f
a d lnSo
1 + 4x 1 + 4x

2 x +1
/u jkf'k gS] blfy, gesa mu lHkh x dks Kkr djuk gS ftuosQ fy, ≤ 1 , vFkkZr~ os
1 + 4x
1
lHkh x ftuosQ fy, 2x + 1 ≤ 1 + 4x gSA ge bldks 2 ≤ + 2x izdkj Hkh fy[k ldrs gSa]
2x
tks lHkh x osQ fy, lR; gSA vr% iQyu izR;sd okLrfod la[;k osQ fy, ifjHkkf"kr gSA vc
2x = tan θ j[kus ij ;g iQyu fuEufyf[kr izdkj ls iqu% fy[kk tk ldrk gS%
x +1
−1  2 
f (x) = sin  x 
1 + 4 

−1  2 ⋅ 2 
x

= sin  2
1 + ( 2 x ) 

−1  2 tan θ 
= sin 
1 + tan 2 θ 
= sin –1 [sin 2θ] = 2θ = 2 tan – 1 (2x)
1 d
vr% f ′(x) = 2 ⋅ ⋅ (2 x )
1 + (2 )
x 2 dx

2
= ⋅ (2 x )log 2
1 + 4x

2 x + 1 log 2
=
1 + 4x

2018-19
206 xf.kr

mnkgj.k 46 ;fn lHkh 0 < x < π osQ fy, f (x) = (sin x)sin x gS rks f ′(x) Kkr dhft,A
gy ;gk¡ iQyu y = (sin x)sin x lHkh /u okLrfod la[;kvksa osQ fy, ifjHkkf"kr gSA y?kqx.kd
ysus ij
log y = log (sin x)sin x = sin x log (sin x)
1 dy d
vc = (sin x log (sin x))
y dx dx
1 d
= cos x log (sin x) + sin x . ⋅ (sin x)
sin x dx
= cos x log (sin x) + cos x
= (1 + log (sin x)) cos x
dy
vc = y((1 + log (sin x)) cos x) = (1 + log (sin x)) ( sin x)sin x cos x
dx
dy
mnkgj.k 47 /ukRed vpj a osQ fy, , Kkr dhft,] tgk¡
dx
1 a
rFkk x =  t +  gSA
t+ 1
y=a t,
t
gy è;ku nhft, fd nksuksa y rFkk x, leLr okLrfod la[;k t ≠ 0 osQ fy, ifjHkkf"kr gSaA Li"Vr%

( )
1
dy d t +1 t+ d  1
= a t = a t  t +  . log a
dt dt dt  t 
1
t+  1
 1 − 2  log a
t
= a
 t 
a −1
dx  1 d  1
blh izdkj = a t +  ⋅ t + 
dt  t dt  t 
a −1
 1  1
= a t +  ⋅ 1 − 2 
 t  t 
dx
≠ 0 osQoy ;fn t ≠ ± 1 gSA vr% t ≠ ± 1 osQ fy,
dt
1
dy t+  1 1
a t  1 − 2  log a t+
dy dt  t  a t log a
= = a −1 = a −1
dx dx  1  1  1
a t +  ⋅  1 − 2  at + 
dt  t  t   t

2018-19
lkarR; rFkk vodyuh;rk 207

mnkgj.k 48 e cos x osQ lkis{k sin2 x dk vodyu dhft,A

gy eku yhft, fd u (x) = sin2 x rFkk v (x) = e cos x gSA ;gk¡ gesa du = du / dx Kkr djuk gSA Li"Vr%
dv dv / dx
du dv
= 2 sin x cos x vkSj = e cos x (– sin x) = – (sin x) e cos x gSA
dx dx
du 2sin x cos x 2cos x
vr% = = − cos x
dv − sin x e cos x
e

vè;k; 5 ij fofo/ iz'ukoyh


iz'u la[;k 1 ls 11 rd iznÙk iQyuksa dk] x osQ lkis{k vodyu dhft,%
1. (3x2 – 9x + 5)9 2. sin3 x + cos6 x
3. (5x)3 cos x 2x 4. sin–1(x x ), 0 ≤ x ≤ 1.
x
cos −1
5. 2 , – 2 < x < 2.
2x + 7
 1 + sin x + 1 − sin x  π
6. cot −1  ,0<x<
 1 + sin x − 1 − sin x  2
log x
7. (log x) , x > 1
8. cos (a cos x + b sin x), fdUghaa vpj a rFkk b osQ fy,
π 3π
9. (sin x – cos x) <x<
(sin x – cos x)
,
4 4
10. x + x + a + a , fdlh fu;r a > 0 rFkk x > 0 osQ fy,
x a x a

x2
−3
+ ( x − 3) , x > 3 osQ fy,
2
11. xx
π π
12. ;fn y = 12 (1 – cos t), x = 10 (t – sin t), − < t < rks dy Kkr dhft,A
2 2 dx
dy
13. ;fn y = sin–1 x + sin–1 1 − x 2 , 0 < x < 1 gS rks Kkr dhft,A
dx
14. ;fn – 1 < x < 1 osQ fy, x 1 + y + y 1 + x = 0 gS rks fl¼ dhft, fd
dy 1
=−
dx (1 + x )2

2018-19
208 xf.kr

15. ;fn fdlh c > 0 osQ fy, (x – a)2 + (y – b)2 = c2 gS rks fl¼ dhft, fd

3
  dy 2  2
1 +   
  dx   , a vkSj b ls Lora=k ,d fLFkj jkf'k gSA
d2y
dx 2
dy cos 2 ( a + y )
16. ;fn cos y = x cos (a + y), rFkk cos a ≠ ± 1, rks fl¼ dhft, fd =
dx sin a
d2y
17. ;fn x = a (cos t + t sin t) vkSj y = a (sin t – t cos t), rks Kkr dhft,A
dx 2
18. ;fn f (x) = | x |3, rks izekf.kr dhft, fd f ″(x) dk vfLrRo gS vkSj bls Kkr Hkh dhft,A
19. xf.krh; vkxeu osQ fl¼kar osQ iz;ksx }kjk] fl¼ dhft, fd lHkh /u iw.kk±d n osQ fy,
d ( n)
x = nx n−1 gSA
dx
20. sin (A + B) = sin A cos B + cos A sin B dk iz;ksx djrs gq, vodyu }kjk cosines
osQ fy, ;ksx lw=k Kkr dhft,A
21. D;k ,d ,sls iQyu dk vfLrRo gS] tks izR;sd ¯cnq ij larr gks fdarq osQoy nks ¯cnqvksa ij
vodyuh; u gks\ vius mÙkj dk vkSfpR; Hkh crykb,A
f ( x ) g ( x) h( x ) f ′( x ) g ′( x) h′( x)
dy
22. ;fn y = l m n gS rks fl¼ dhft, fd = l m n
dx
a b c a b c
23. ;fn y = ea cos , – 1 ≤ x ≤ 1, rks n'kkZb, fd
−1
x

2
(1 − x2 ) d 2y − x dy − a 2 y = 0
dx dx

lkjka'k
® ,d okLrfod ekuh; iQyu vius izkar osQ fdlh ¯cnq ij larr gksrk gS ;fn ml ¯cnq
ij iQyu dh lhek] ml ¯cnq ij iQyu osQ eku osQ cjkcj gksrh gSA
® larr iQyuksa osQ ;ksx] varj] xq.kuiQy vkSj HkkxiQy larr gksrs gSa] vFkkZr~] ;fn f rFkk
g larr iQyu gSa] rks
(f ± g) (x) = f (x) ± g (x) larr gksrk gSA

2018-19
lkarR; rFkk vodyuh;rk 209

(f . g) (x) = f (x) . g (x) larr gksrk gSA


f  f ( x)
 g  ( x) = g ( x) (tgk¡ g (x) ≠ 0) larr gksrk gSA
 
® izR;sd vodyuh; iQyu larr gksrk gS fdarq bldk foykse lR; ugha gSA
® Ük`a[kyk&fu;e iQyuksa osQ la;kstu dk vodyu djus osQ fy, ,d fu;e gSA ;fn
dt dv
f = v o u, t = u (x) vkSj ;fn rFkk dk vfLrRo gS rks
dx dt
df dv dt
= ⋅
dx dt dx
® oqQN ekud vodyt (ifjHkkf"kr izkarksa esa) fuEufyf[kr gSa%
d ( −1 ) 1 d ( −1
sin x = cos − 1 x ) =
dx 1 − x2 dx 1 − x2
d ( −1 ) 1 d ( −1 ) −1
tan x = cot x =
dx 1 + x2 dx 1 + x2
d ( −1 ) 1 d ( −1
sec x = cosec −1 x ) =
dx x x 2 −1 dx x x 2 −1
d ( x) x d 1
e =e ( log x ) =
dx dx x
® y?kqx.kdh; vodyu] f (x) = [u (x)]v (x) osQ :i osQ iQyuksa osQ vodyu djus osQ fy,
,d l'kDr rduhd gSA bl rduhd osQ vFkZiw.kZ gksus osQ fy, vko';d gS fd f (x)
rFkk u (x) nksuksa gh /ukRed gksaA
® jksys dk izes;% ;fn f : [a, b] → R varjky [a, b] esa larr rFkk varjky (a, b) esa
vodyuh; gks] rFkk f (a) = f (b) gks rks (a, b) esa ,d ,sls c dk vfLrRo gS ftlosQ
fy, f ′(c) = 0.
® ekè;eku izes;% ;fn f : [a, b] → R varjky [a, b] esa larr rFkk varjky (a, b) esa
vodyuh; gks rks varjky (a, b) esa ,d ,sls c dk vfLrRo gS ftlosQ fy,
f (b) − f (a )
f ′(c) =
b−a

—v—

2018-19
210 xf.kr

vè;k; 6
vodyt osQ vuqiz;ksx
(Application of Derivatives)

vWith the Calculus as a key, Mathematics can be successfully applied


to the explanation of the course of Nature — WHITEHEAD v

6.1 Hkwfedk (Introduction)


vè;k; 5 esa geus la;Dq r iQyuks]a izfrykse f=kdks.kferh; iQyuks]a vLi"V iQyuks]a pj?kkrkadh; iQyuksa
vkSj y?kq?kkrkadh; iQyuksa dk vodyt Kkr djuk lh[kk gSA izLrqr vè;k; esa] ge xf.kr dh
fofHkUu 'kk[kkvksa esa vodyt osQ vuqiz;ksx dk vè;;u djsaxs ;Fkk baftfu;fjax] foKku] lkekftd
foKku vkSj dbZ nwljs {ks=kA mnkgj.k osQ fy, ge lh[ksaxs fd fdl izdkj vodyt dk mi;ksx
(i) jkf'k;ksa osQ ifjorZu dh nj Kkr djus esa] (ii) fdlh ¯cnq ij Li'kZ js[kk rFkk vfHkyac dh
lehdj.k Kkr djus esa] (iii) ,d iQyu osQ vkys[k ij orZu ¯cnq Kkr djus esa] tks gesa mu ¯cnqvksa
dks Kkr djus esa lgk;d gksrk gS ftu ij iQyu dk vf/dre ;k U;wure eku gksrk gSA ge mu
varjkyksa dks Kkr djus esa Hkh vodyt dk mi;ksx djsaxs] ftuesa ,d iQyu o/Zeku ;k ßkleku
gksrk gSA varr% ge oqQN jkf'k;ksa osQ lfUudV eku izkIr djus esa vodyt iz;qDr djsaxsA
6.2 jkf'k;ksa osQ ifjorZu dh nj (Rate of Change of Quantities)
ds
iqu% Lej.k dhft, fd vodyt ls gekjk rkRi;Z le; varjky t osQ lkis{k nwjh s osQ ifjorZu
dt
dh nj ls gSA blh izdkj] ;fn ,d jkf'k y ,d nwljh jkf'k x osQ lkis{k fdlh fu;e y = f ( x)
dy
dks larq"V djrs gq, ifjofrZr gksrh gS rks (;k f ′(x)), x osQ lkis{k y osQ ifjorZu dh nj dks
dx
dy 
iznf'kZr djrk gS vkSj (;k f ′(x0)) x = x0 ij) x osQ lkis{k y dh ifjorZu dh nj dks
dx  x = x0
iznf'kZr djrk gSA

2018-19
vodyt osQ vuqiz;ksx 211

blosQ vfrfjDr] ;fn nks jkf'k;k¡ x vkSj y, t osQ lkis{k ifjofrZr gks jgh gksa vFkkZr~
x = f (t ) vkSj y = g (t ) gS rc Ük`a[kyk fu;e ls
dy dy dx dx
= , ;fn ≠ 0 izkIr gksrk gSA
dx dt dt dt
bl izdkj] x osQ lkis{k y osQ ifjorZu dh nj dk ifjdyu t osQ lkis{k y vkSj x osQ ifjorZu
dh nj dk iz;ksx djosQ fd;k tk ldrk gS A
vkb, ge oqQN mnkgj.kksa ij fopkj djsaA
mnkgj.k 1 o`Ùk osQ {ks=kiQy osQ ifjorZu dh nj bldh f=kT;k r osQ lkis{k Kkr dhft, tc
r = 5 cm gSA
gy f=kT;k r okys o`Ùk dk {ks=kiQy A = π r2 ls fn;k tkrk gSA blfy,] r osQ lkis{k A osQ ifjorZu
dA d dA
dh nj = ( π r 2 ) = 2π r ls izkIr gSA tc r = 5 cm rks = 10π gSA vr% o`Ùk dk
dr dr dr
{ks=kiQy 10π cm2/cm dh nj ls cny jgk gSA
mnkgj.k 2 ,d ?ku dk vk;ru 9 cm3/s dh nj ls c<+ jgk gSA ;fn blosQ dksj dh yack;ha
10 cm gS rks blosQ i`"B dk {ks=kiQy fdl nj ls c<+ jgk gSA
gy eku yhft, fd ?ku dh ,d dksj dh yack;ha x cm gSA ?ku dk vk;ru V rFkk ?ku osQ i`"B
dk {ks=kiQy S gSA rc] V = x3 vkSj S = 6x2, tgk¡ x le; t dk iQyu gSA
dV
vc = 9 cm3/s (fn;k gS)
dt
dV d 3 d dx
blfy, 9= = ( x ) = ( x3 ) ⋅ ( Ük`a[kyk fu;e ls)
dt dt dx dt
2 dx
= 3x ⋅
dt
dx 3
;k = 2 ... (1)
dt x
dS d d dx
vc = (6 x 2 ) = (6 x 2 ) ⋅ ( Ük`a[kyk fu;e ls)
dt dt dx dt
 3  36
= 12x ⋅  2  = ((1) osQ iz;ksx ls)
x  x
dS
vr%] tc x = 10 cm, = 3.6 cm2/s
dt

2018-19
212 xf.kr

mnkgj.k 3 ,d fLFkj >hy esa ,d iRFkj Mkyk tkrk gS vkSj rjaxsa o`Ùkksa esa 4 cm/s dh xfr ls
pyrh gSaA tc o`Ùkkdkj rjax dh f=kT;k 10 cm gS] rks ml {k.k] f?kjk gqvk {ks=kiQy fdruh rsth
ls c<+ jgk gS\
gy f=kT;k r okys o`Ùk dk {ks=kiQy A = πr2 ls fn;k tkrk gSA blfy, le; t osQ lkis{k {ks=kiQy
A osQ ifjorZu dh nj gS
dA d d dr dr
= (π r 2 ) = (π r 2 ) ⋅ = 2π r ( Üka`[kyk fu;e ls)
dt dt dr dt dt
dr
;g fn;k x;k gS fd = 4 cm
dt
blfy, tc r = 10 cm
dA
= 2π (10) (4) = 80π
dt
vr% tc r = 10 cm rc o`Ùk ls f?kjs {ks=k dk {ks=kiQy 80π cm2/s dh nj ls c<+ jgk gSA
dy
A fVIi.kh x dk eku c<+us ls ;fn y dk eku c<+rk gS rks /ukRed gksrk gS vkSj x
dx
dy
dk eku c<+us ls ;fn y dk eku ?kVrk gS] rks Í.kkRed gksrk gSA
dx

mnkgj.k 4 fdlh vk;r dh yack;ha x, 3 cm/min dh nj ls ?kV jgh gS vkSj pkSMk+ bZ


y, 2 cm/min dh nj ls c<+ jgh gSA tc x = 10 cm vkSj y = 6 cm gS rc vk;r osQ (a) ifjeki vkSj
(b) {ks=kiQy esa ifjorZu dh nj Kkr dhft,A
gy D;ksafd le; osQ lkis{k yack;ha x ?kV jgh gS vkSj pkSM+kbZ y c<+ jgh gS rks ge ikrs gSa fd
dx dy
= – 3 cm/min vkSj = 2 cm/min
dt dt
(a) vk;r dk ifjeki P ls iznÙk gS] vFkkZr~
P = 2(x + y)

dP  dx dy 
blfy, = 2  +  = 2( −3 + 2) = −2 cm/min
dt  dt dt 
(b) vk;r dk {ks=kiQy A ls iznÙk gS ;Fkk
A=x . y

2018-19
vodyt osQ vuqiz;ksx 213

dA dx dy
blfy, = ⋅ y + x⋅
dt dt dt
= – 3(6) + 10(2) (D;ksfa d x = 10 cm vkSj y = 6 cm)
= 2 cm2/min
mnkgj.k 5 fdlh oLrq dh x bdkb;ksa osQ mRiknu esa oqQy ykxr C(x) #i;s esa
C (x) = 0.005 x3 – 0.02 x2 + 30x + 5000
ls iznÙk gSA lhekar ykxr Kkr dhft, tc 3 bdkbZ mRikfnr dh tkrh gSA tgk¡ lhekar ykxr
(marginal cost ;k MC) ls gekjk vfHkizk; fdlh Lrj ij mRiknu osQ laiw.kZ ykxr esa rkRdkfyd
ifjorZu dh nj ls gSA
gy D;ksafd lhekar ykxr mRiknu osQ fdlh Lrj ij x bdkbZ osQ lkis{k laiw.kZ ykxr osQ ifjorZu
dh nj gSA ge ikrs gSa fd
dC
lhekar ykxr MC = = 0.005(3x 2 ) − 0.02(2 x) + 30
dx
MC = 0.015(3 ) − 0.04(3) + 30
2
tc x = 3 gS rc
= 0.135 – 0.12 + 30 = 30.015
vr% vHkh"V lhekar ykxr vFkkZr ykxr izfr bdkbZ Rs 30.02 (yxHkx) gSA
mnkgj.k 6 fdlh mRikn dh x bdkb;ksa osQ foØ; ls izkIr oqQy vk; #i;s esa R(x) = 3x2 + 36x
+ 5 ls iznÙk gSA tc x = 5 gks rks lhekar vk; Kkr dhft,A tgk¡ lhekar vk; (marginal revenue
or MR) ls gekjk vfHkizk; fdlh {k.k foØ; dh xbZ oLrqvksa osQ lkis{k laiw.kZ vk; osQ ifjorZu
dh nj ls gSA
gy D;ksafd lhekar vk; fdlh {k.k foØ; dh xbZ oLrqvksa osQ lkis{k vk; ifjorZu dh nj gksrh
gSA ge tkurs gaS fd
dR
lhekar vk; MR = = 6 x + 36
dx
tc x = 5 gS rc MR = 6(5) + 36 = 66
vr% vHkh"V lhekar vk; vFkkZr vk; izfr bdkbZ Rs 66 gSA
iz'ukoyh 6-1
1. o`Ùk osQ {ks=kiQy osQ ifjorZu dh nj bldh f=kT;k r osQ lkis{k Kkr dhft, tcfd
(a) r = 3 cm gSA (b) r = 4 cm gSA

2018-19
214 xf.kr

2. ,d ?ku dk vk;ru 8 cm3/s dh nj ls c<+ jgk gSA i`"B {ks=kiQy fdl nj ls c<+ jgk gS
tcfd blosQ fdukjs dh yack;ha 12 cm gSA
3. ,d o`Ùk dh f=kT;k leku :i ls 3 cm/s dh nj ls c<+ jgh gSA Kkr dhft, fd o`Ùk dk
{ks=kiQy fdl nj ls c<+ jgk gS tc f=kT;k 10 cm gSA
4. ,d ifjorZu'khy ?ku dk fdukjk 3 cm/s dh nj ls c<+ jgk gSA ?ku dk vk;ru fdl nj
ls c<+ jgk gS tcfd fdukjk 10 cm yack gS\
5. ,d fLFkj >hy esa ,d iRFkj Mkyk tkrk gS vksj rjaxsa o`Ùkksa esa 5 cm/s dh xfr ls pyrh
gSaA tc o`Ùkkdkj rjax dh f=kT;k 8 cm gS rks ml {k.k] f?kjk gqvk {ks=kiQy fdl nj ls c<+
jgk gS\
6. ,d o`Ùk dh f=kT;k 0-7 cm/s dh nj ls c<+ jgh gSA bldh ifjf/ dh o`f¼ dh nj D;k
gS tc r = 4.9 cm gS\
7. ,d vk;r dh yack;ha x, 5 cm/min dh nj ls ?kV jgh gS vkSj pkSM+kbZ y, 4 cm/min dh
nj ls c<+ jgh gSA tc x = 8 cm vkSj y = 6 cm gSa rc vk;r osQ (a) ifjeki (b) {ks=kiQy
osQ ifjorZu dh nj Kkr dhft,A
8. ,d xqCckjk tks lnSo xksykdkj jgrk gS] ,d iai }kjk 900 cm3 xSl izfr lsdaM Hkj dj
iqQyk;k tkrk gSA xqCckjs dh f=kT;k osQ ifjorZu dh nj Kkr dhft, tc f=kT;k 15 cm gSA
9. ,d xqCckjk tks lnSo xksykdkj jgrk gS] dh f=kT;k ifjorZu'khy gSA f=kT;k osQ lkis{k vk;ru
osQ ifjorZu dh nj Kkr dhft, tc f=kT;k 10 cm gSA
10. ,d 5 m yach lh<+h nhokj osQ lgkjs >qdh gSA lh<+h dk uhps dk fljk] tehu osQ vuqfn'k]
nhokj ls nwj 2 cm/s dh nj ls [khapk tkrk gSA nhokj ij bldh Å¡pkbZ fdl nj ls ?kV
jgh gS tcfd lh<+h osQ uhps dk fljk nhokj ls 4 m nwj gS?
11. ,d d.k oØ 6y = x3 +2 osQ vuqxr xfr dj jgk gSaA oØ ij mu ¯cnqvksa dks Kkr dhft,
tcfd x-funsZ'kkad dh rqyuk esa y-funsZ'kkad 8 xquk rhozrk ls cny jgk gSA
1
12. gok osQ ,d cqycqys dh f=kT;k cm/s dh nj ls c<+ jgh gSA cqycqys dk vk;ru fdl
2
nj ls c<+ jgk gS tcfd f=kT;k 1 cm gS\
3
13. ,d xqCckjk] tks lnSo xksykdkj jgrk gS] dk ifjorZu'khy O;kl (2 x + 1) gSA x osQ lkis{k
2
vk;ru osQ ifjorZu dh nj Kkr dhft,A
14. ,d ikbi ls jsr 12 cm3/s dh nj ls fxj jgh gSA fxjrh jsr tehu ij ,d ,slk 'kaoqQ cukrh
gS ftldh Å¡pkbZ lnSo vk/kj dh f=kT;k dk NBk Hkkx gSA jsr ls cus osQ 'kaoqQ dh Å¡pkbZ
fdl nj ls c<+ jgh gS tcfd Å¡pkbZ 4 cm gS\

2018-19
vodyt osQ vuqiz;ksx 215

15. ,d oLrq dh x bdkb;ksa osQ mRiknu ls laca/ oqQy ykxr C (x) (#i;s esa)
C (x) = 0.007x3 – 0.003x2 + 15x + 4000
ls iznÙk gSA lhekar ykxr Kkr dhft, tcfd 17 bdkb;ksa dk mRiknu fd;k x;k gSA
16. fdlh mRikn dh x bdkb;ksa osQ foØ; ls izkIr oqQy vk; R (x) #i;ksa esa
R (x) = 13x2 + 26x + 15
ls iznÙk gSA lhekar vk; Kkr dhft, tc x = 7 gSA
iz'u 17 rFkk 18 esa lgh mÙkj dk p;u dhft,%
17. ,d o`Ùk dh f=kT;k r = 6 cm ij r osQ lkis{k {ks=kiQy esa ifjorZu dh nj gS%
(A) 10π (B) 12π (C) 8π (D) 11π
18. ,d mRikn dh x bdkb;ksa osQ foØ; ls izkIr oqQy vk; #i;ksa esa
R(x) = 3x2 + 36x + 5 ls iznÙk gSA tc x = 15 gS rks lhekar vk; gS%
(A) 116 (B) 96 (C) 90 (D) 126
6.3 o/Zeku (Increasing) vkSj ßkleku (Decreasing ) iQyu
bl vuqPNsn esa ge vodyu dk iz;ksx djosQ ;g Kkr djsaxs fd iQyu o/Zeku gS ;k ßkleku ;k
buesa ls dksbZ ugha gSA
f (x) = x2, x ∈ R }kjk iznÙk iQyu f ij fopkj dhft,A bl iQyu dk vkys[k vko`Qfr
6-1 esa fn;k x;k gSA

ewy ¯cnq osQ ck;ha vksj dk eku ewy ¯cnq osQ nk;ha vksj dk eku
x f (x) = x2 x f (x) = x2

–2 4 0 0
3 9 1 1

2 4 2 4
–1 1 1 1
1 1 3 9

2 4 2 4
0 0 2 4
tSls tSls ge ck¡, ls nk¡, vksj c<+rs vko`Qfr 6-1 tSls tSls ge ck¡, ls nk¡, vksj c<+rs
tkrs gaS rks vkys[k dh Å¡pkbZ ?kVrh tkrs gS rks vkys[k dh Å¡pkbZ c<+rh
tkrh gSA tkrh gSA

2018-19
216 xf.kr

loZizFke ewy ¯cnq osQ nk;ha vksj osQ vkys[k (vko`Qfr 6-1) ij fopkj djrs gSaA ;g nsf[k, fd
vkys[k osQ vuqfn'k tSls tSls ck,¡ ls nk,¡ vksj tkrs gSa] vkys[k dh Å¡pkbZ yxkrkj c<+rh tkrh gSA
blh dkj.k okLrfod la[;kvksa x > 0 osQ fy, iQyu o/Zeku dgykrk gSA
vc ewy ¯cnq osQ ck;ha vksj osQ vkys[k ij fopkj djrs gSaA ;gk¡ ge ns[krs gSa fd tSls tSls
vkys[k osQ vuqfn'k ck,¡ ls nk,¡ dh vksj tkrs gSa] vkys[k dh Å¡pkbZ yxkrkj ?kVrh tkrh gSA
iQyLo:i okLrfod la[;kvksa x < 0 osQ fy, iQyu ßkleku dgykrk gSA
ge vc ,d varjky esa o/Zeku ;k ßkleku iQyuksa dh fuEufyf[kr fo'ys"k.kkRed ifjHkk"kk nsaxsA
ifjHkk"kk 1 eku yhft, okLrfod eku iQyu f osQ izkar esa I ,d varjky gSA rc f
(i) varjky I esa o/Zeku gS] ;fn I esa x1 < x2 ⇒ f (x1) < f (x2) lHkh x1, x2 ∈ I osQ fy,
(ii) varjky I esa ßkleku gS] ;fn I esa x1 < x2 ⇒ f (x1) > f (x2) lHkh x1, x2 ∈ I osQ fy,
(iii) varjky I esa vpj gS] ;fn f (x) = c, x ∈ I tgk¡ c ,d vpj gSA
bl izdkj osQ iQyuksa dk vkys[kh; fu:i.k vko`Qfr 6-2 esa nsf[k,A

vko`Qfr 6-2

2018-19
vodyt osQ vuqiz;ksx 217

vc ge ,d ¯cnq ij o/Zeku ;k ßkleku iQyu dks ifjHkkf"kr djsaxsA


ifjHkk"kk 2 eku yhft, fd okLrfod ekuksa osQ ifjHkkf"kr iQyu f osQ izkar esa ,d ¯cnq x0 gS rc
x0 ij f o/Zeku vkSj ßkleku dgykrk gS ;fn x0 dks varfoZ"V djus okys ,d ,sls foo`Ùk varjky
I dk vfLrRo bl izdkj gS fd I esa] f Øe'k% o/Zeku vkSj ßkleku gS
vkb, bl ifjHkk"kk dks o/Zeku iQyu osQ fy, Li"V djrs gSaA
mnkgj.k 7 fn[kkb, fd iznÙk iQyu f (x) = 7x – 3, R ij ,d o/Zeku iQyu gSA
gy eku yhft, R esa x1 vkSj x2 dksbZ nks la[;k,¡ gSa] rc
x1 < x2 ⇒ 7x1 < 7x2
⇒ 7x1 – 3 < 7x2 – 3
⇒ f (x1) < f (x2)
bl izdkj] ifjHkk"kk 1 ls ifj.kke fudyrk gS fd R ij f ,d o/Zeku iQyu gSA
vc ge o/Zeku vkSj ßkleku iQyuksa osQ fy, izFke vodyt ijh{k.k izLrqr djsxa As bl ijh{k.k
dh miifÙk esa vè;k; 5 esa vè;;u dh xbZ eè;eku izes; dk iz;ksx djrs gSaA
izes; 1 eku yhft, fd f varjky [a,b] ij larr vkSj foo`Ùk varjky (a,b) ij vodyuh; gSA rc
(a) [a,b] esa f o/Zeku gS ;fn izR;sd x ∈ (a, b) osQ fy, f ′(x) > 0 gSA
(b) [a,b] esa f ßkleku gS ;fn izR;sd x ∈ (a, b) osQ fy, f ′(x) < 0 gSA
(c) [a,b] esa f ,d vpj iQyu gS ;fn izR;sd x ∈ (a, b) osQ fy, f ′(x) = 0 gSA
miifÙk (a) eku yhft, x1, x2 ∈ [a, b] bl izdkj gSa fd x1 < x2 rc eè; eku izes; ls x1 vkSj
x2 osQ eè; ,d ¯cnq c dk vfLrRo bl izdkj gS fd
f (x2) – f (x1) = f ′(c) (x2 – x1)
vFkkZr~ f (x2) – f (x1) > 0 ( D;ksafd f ′(c) > 0 )
vFkkZr~ f (x2) > f (x 1)
bl izdkj] ge ns[krs gSa] fd
[ a, b] oQs lHkh x1 , x2 oQs fy, x1 < x2 f ( x1 ) f ( x2 )
vr% [a,b] esa f ,d o/Zeku iQyu gSA
Hkkx (b) vkSj (c) dh miifÙk blh izdkj gSA ikBdksa osQ fy, bls vH;kl gsrq NksM+k tkrk gSA

2018-19
218 xf.kr

fVIi.kh
bl lnaHkZ esa ,d vU; lkekU; izes; osQ vuqlkj ;fn fdlh varjky osQ vaR; fcanqvksa osQ
vfrfjDr f ' (x) > 0 tgk¡ x, varjky esa dksbZ vo;o gS vkSj f ml varjky esa larr gS rc
f dks oèkZeku dgrs gSaA blh izdkj ;fn fdlh varjky osQ vaR; fcanqvksa osQ flok; f1 (x)
< 0 tgk¡ x varjky dk dksbZ vo;o gS vkSj f ml varjky esa larr gS rc f dks ßkleku
dgrs gSaA
mnkgj.k 8 fn[kkb, fd iznÙk iQyu f ,
f (x) = x3 – 3x2 + 4x, x ∈ R
R ij o/Zeku iQyu gSA
gy è;ku nhft, fd
f ′(x) = 3x2 – 6x + 4
= 3(x2 – 2x + 1) + 1
= 3(x – 1)2 + 1 > 0, lHkh x ∈ R osQ fy,
blfy, iQyu f , R ij o/Zeku gSA
mnkgj.k 9 fl¼ dhft, fd iznÙk iQyu f (x) = cos x
(a) (0, π) esa ßkleku gS
(b) (π, 2π), esa o/Zeku gS
(c) (0, 2π) esa u rks o/Zeku vkSj u gh ßkleku gSA
gy è;ku nhft, fd f ′(x) = – sin x
(a) pw¡fd izR;sd x ∈ (0, π) osQ fy, sin x > 0, ge ikrs gSa fd f ′(x) < 0 vkSj blfy,
(0, π) esa f ßkleku gSA
(b) pw¡fd izR;sd x ∈ (π, 2π) osQ fy, sin x < 0, ge ikrs gSa fd f ′(x) > 0 vkSj blfy,
(π, 2π) esa f o/Zeku gSA
(c) mijksDr (a) vkSj (b) ls Li"V gS fd (0, 2π) esa f u rks o/Zeku gS vkSj u gh ßkleku gSA
mnkgj.k 10 varjky Kkr dhft, ftuesa f (x) = x2 – 4x + 6 ls iznÙk iQyu f
(a) o/Zeku gS (b) ßkleku gS

2018-19
vodyt osQ vuqiz;ksx 219

gy ;gk¡
f (x) = x2 – 4x + 6

;k f ′(x) = 2x – 4

blfy,] f ′(x) = 0 ls x = 2 izkIr gksrk gSA vc


¯cnq x = 2 okLrfod js[kk dks nks vla;qDr varjkyksa]
uker% (– ∞, 2) vkSj (2, ∞) (vko`Qfr 6-3) esa foHkDr vko`Qfr 6-3
djrk gSA varjky (– ∞, 2) esa f ′(x) = 2x – 4 < 0 gSA
blfy,] bl varjky esa] f ßkleku gSA varjky (2, ∞) , esa f ′ ( x) > 0 gS] blfy, bl varjky
esa iQyu f o/Zeku gSA
mnkgj.k 11 os varjky Kkr dhft, ftuesa f (x) = 4x3 – 6x2 – 72x + 30 }kjk iznÙk iQyu f,
(a) o/Zeku (b) ßkleku gSA
gy ;gk¡
f (x) = 4x3 – 6x2 – 72x + 30
;k f ′(x) = 12x2 – 12x – 72
= 12(x2 – x – 6) vko`Qfr 6-4
= 12(x – 3) (x + 2)
blfy, f ′(x) = 0 ls x = – 2, 3 izkIr gksrs gSaA x = – 2 vkSj x = 3 okLrfod js[kk dks rhu
vla;qDr varjkyksa] uker% (– ∞, – 2), (– 2, 3) vkSj (3, ∞) esa foHkDr djrk gS (vko`Qfr 6-4)A
varjkyksa (– ∞, – 2) vkSj (3, ∞) esa f ′(x) /ukRed gS tcfd varjky (– 2, 3) esa f ′(x)
½.kkRed gSA iQyLo:i iQyu f varjkyksa (– ∞, – 2) vkSj (3, ∞) esa o/Zeku gS tcfd varjky
(– 2, 3) esa iQyu ßkleku gSA rFkkfi f, R ij u rks o/Zeku gS vkSj u gh ßkleku gSA

varjky f ′(x) dk fpÉ iQyu f dh izo`Qfr


(– ∞, – 2) (–) (–) > 0 f o/Zeku gS

(– 2, 3) (–) (+) < 0 f ßkleku gS

(3, ∞) (+) (+) > 0 f o/Zeku gS

2018-19
220 xf.kr

  π
mnkgj.k 12 varjky Kkr dhft, ftuesa iznÙk iQyu f (x) = sin 3x, x ∈ 0,  esa (a) o/Zeku
 2
gSA (b) ßkleku gSA
gy Kkr gS fd
f (x) = sin 3x vko`Qfr 6-5
;k f ′(x) = 3cos 3x

π 3π  π
blfy,, f ′(x) = 0 ls feyrk gS cos 3x = 0 ftlls 3 x = , (D;ksafd x ∈  0, 
2 2  2

 3π  π π π  π
⇒ 3 x ∈ 0,  ) izkIr gksrk gSA blfy,] x = vkSj gSA vc ¯cnq x = , varjky  0, 2 
 2 6 2 6

 π  π π
dks nks vla;qDr varjkyksa 0, 6  vkSj  6 , 2  esa foHkkftr djrk gSA
  

 π  π π
iqu% lHkh x ∈ 0, 6  osQ fy, f ′ ( x) > 0 D;ksafd 0 ≤ x < ⇒ 0 ≤ 3x < vkSj lHkh
  6 2
 π π
x ∈  ,  osQ fy, f ′ ( x) < 0 D;ksafd π < x ≤ π ⇒ π < 3x ≤ 3π
6 2 6 2 2 2
 π  π π
blfy,] varjky 0, 6  esa f o/Zeku gS vkSj varjky  ,  esa ßkleku gSA blosQ vfrfjDr
 6 2
π  π
fn;k x;k iQyu x = 0 rFkk x = ij larr Hkh gSA blfy, izes; 1 osQ }kjk, f, 0, 6  esa
6  
π π
o/Zeku vkSj  6 , 2  esa ßkleku gSA
 
mnkgj.k 13 varjky Kkr dhft, ftuesa f (x) = sin x + cos x, 0 ≤ x ≤ 2π }kjk iznÙk iQyu f,
o/Zeku ;k ßkleku gSA
gy Kkr gS fd
f (x) = sin x + cos x, 0 ≤ x ≤ 2π
;k f ′(x) = cos x – sin x
π 5π
vc f ′ ( x ) = 0 ls sin x = cos x ftlls gesa x = , izkIr gksrs gSaA D;ksafd 0 ≤ x ≤ 2π ,
4 4

2018-19
vodyt osQ vuqiz;ksx 221

π 5π  π
¯cnq x = vkSj x = varjky [0, 2π] dks rhu vla;qDr varjkyksa] uker% 0, 4  ,
4 4 

 π 5π   5π 
 ,  vkSj  , 2π  esa foHkDr djrs gSaA
4 4 4 
vko`Qfr 6-6
 π   5π 
è;ku nhft, fd f ′ ( x ) > 0 ;fn x ∈ 0,  ∪  , 2π 
 4  4 

 π  5π
 
vr% varjkyksa  0, 4  vkSj  4 , 2π  esa iQyu f o/Zeku gSA
  

 π 5π 
vkSj f ′ ( x ) < 0, ;fn x ∈ , 
4 4

 π 5π 
vr% f varjky  ,  esa ßkleku gSA
4 4

varjky f ′ ( x) dk fpÉ iQyu dh izo`Qfr


 π
 0, 4  >0 f o/Zeku gS

 π 5π 
 ,  <0 f ßkleku gS
4 4

 5π 
 , 2π  >0 f o/Zeku gS
4 

iz'ukoyh 6-2
1. fl¼ dhft, R ij f (x) = 3x + 17 ls iznÙk iQyu o/Zeku gSA
2. fl¼ dhft, fd R ij f (x) = e2x ls iznÙk iQyu o/Zeku gSA
3. fl¼ dhft, f (x) = sin x ls iznÙk iQyu
 π π 
(a)  0,  esa o/Zeku gS (b)  , π  esa ßkleku gS
 2 2 
(c) (0, π) esa u rks o/Zeku gS vkSj u gh ßkleku gSA

2018-19
222 xf.kr

4. varjky Kkr dhft, ftuesa f (x) = 2x2 – 3x ls iznÙk iQyu f


(a) o/Zeku (b) ßkleku
5. varjky Kkr dhft, ftuesa f (x) = 2x3 – 3x2 – 36x + 7 ls iznÙk iQyu f
(a) o/Zeku (b) ßkleku
6. varjky Kkr dhft, ftuesa fuEufyf[kr iQyu f o/Zeku ;k ßkleku gS%
(a) f (x) x2 + 2x + 5 (b) f (x)10 – 6x – 2x2
(c) f (x) –2x3 – 9x2 – 12x + 1 (d) f (x) 6 – 9x – x2
(e) f (x) (x + 1)3 (x – 3)3
2x
7. fl¼ dhft, fd y = log(1 + x ) − , x > – 1, vius lai.w kZ izkra esa ,d o/Zeku iQyu gSA
2+ x
8. x osQ mu ekuksa dks Kkr dhft, ftuosQ fy, y = [x(x – 2)]2 ,d o/Zeku iQyu gSA
 π 4sin θ
9. fl¼ dhft, fd  0,  esa y = − θ , θ dk ,d o/Zeku iQyu gSA
 2 (2 + cos θ)
10. fl¼ dhft, fd y?kqx.kdh; iQyu (0, ∞) esa o/Zeku iQyu gSA
11. fl¼ dhft, fd (– 1, 1) esa f (x) = x2 – x + 1 ls iznÙk iQyu u rks o/Zeku gS vkSj u gh
ßkleku gSA
π
12. fuEufyf[kr esa dkSu ls iQyu  0,  esa ßkleku gS ?
 2
(A) cos x (B) cos 2x (C) cos 3x (D) tan x
13. fuEufyf[kr varjkyksa esa ls fdl varjky esa f (x) = x100 + sin x –1 }kjk iznÙk iQyu f
ßkleku gS\
π   π
(A) (0,1) (B)  , π (C)  0,  (D) buesa ls dksbZ ugh
2   2
14. a dk og U;wure eku Kkr dhft, ftlosQ fy, varjky [1, 2] esa f (x) = x2 + ax + 1 ls
iznÙk iQyu o/Zeku gSA
1
15. eku yhft, [–1, 1] ls vla;qDr ,d varjky I gks rks fl¼ dhft, fd I esa f ( x ) = x +
x
ls iznÙk iQyu f] o/Zeku gSA
 π π 
16. fl¼ dhft, fd iQyu f (x) = log sin x ,  0,  esa o/Zeku vkSj  , π esa ßkleku gSA
 2 2 

2018-19
vodyt osQ vuqiz;ksx 223

 π  3π 
17. fl¼ dhft, fd iQyu f (x) = log cos x  0,  esa o/Zeku vkSj  , 2π  esa
 2  2 
ßkleku gSA
18. fl¼ dhft, fd R esa fn;k x;k iQyu f (x) = x3 – 3x2 + 3x – 100 o/Zeku gSA
19. fuEufyf[kr esa ls fdl varjky esa y = x2 e–x o/Zeku gS\
(A) (– ∞, ∞) (B) (– 2, 0) (C) (2, ∞) (D) (0, 2)
6.4 Li'kZ js[kk,¡ vkSj vfHkyac (Tangents and Normals)
bl vuqPNsn esa ge vodyu osQ iz;ksx ls fdlh oØ osQ ,d fn, gq, ¯cnq ij Li'kZ js[kk vkSj
vfHkyac osQ lehdj.k Kkr djsaxsA
Lej.k dhft, fd ,d fn, gq, ¯cnq (x0, y0) ls tkus okyh rFkk ifjfer izo.krk (slope) m
okyh js[kk dk lehdj.k
y – y0 = m (x – x0) ls izkIr gksrk gSA
è;ku nhft, fd oØ y = f (x) osQ ¯cnq (x0, y0) ij Li'kZ js[kk dh

dy
izo.krk dx  [ = f ′ ( x0 )] ls n'kkZbZ tkrh gSA blfy,
(x , y )
0 0

(x0, y0) ij oØ y = f (x) dh Li'kZ js[kk dk lehdj.k


y – y0 = f ′(x0)(x – x0) gksrk gSA
blosQ vfrfjDr] D;ksafd vfHkyac Li'kZ js[kk ij yac gksrk gS
−1
blfy, y = f (x) osQ (x0, y0) ij vfHkyac dh izo.krk gSA
f ′ ( x0 ) vko`Qfr 6-7
pw¡fd f ′ ( x0 ) ≠ 0 gS] blfy, oØ y = f (x) osQ ¯cnq (x0, y0) ij vfHkyac dk lehdj.k
fuEufyf[kr gS%
−1
y – y0 = ( x − x0 )
f ′ ( x0 )
vFkkZr~ ( y − y0 ) f ′( x0 ) + ( x − x0 ) = 0

AfVIi.kh ;fn y = f (x) dh dksbZ Li'kZ js[kk x-v{k dh /u fn'kk ls θ dks.k cuk,¡] rc
dy
= Li'kZ js[kk dh io
z .krk = tan θ
dx

2018-19
224 xf.kr

fo'ks"k fLFkfr;k¡ (Particular cases)


(i) ;fn Li'kZ js[kk dh izo.krk 'kwU; gS] rc tanθ = 0 vkSj bl izdkj θ = 0 ftldk vFkZ gS fd
Li'kZ js[kk x-v{k osQ lekarj gSA bl fLFkfr esa] (x0, y0) ij Li'kZ js[kk dk lehdj.k y = y0
gks tkrk gSA
π
(ii) ;fn θ → , rc tanθ → ∞, ftldk vFkZ gS fd Li'kZ js[kk x-v{k ij yac gS vFkkZr~ y-v{k
2
osQ lekarj gSA bl fLFkfr esa (x0, y0) ij Li'kZ js[kk dk lehdj.k x = x0 gksrk gS (D;ks\a )A
mnkgj.k 14 x = 2 ij oØ y = x3 – x dh Li'kZ js[kk dh izo.krk Kkr dhft,A
gy fn, oØ dh x = 2 ij Li'kZ js[kk dh izo.krk
dy 
= 3 x − 1 x = 2 = 11 gSA
2

dx  x = 2

mnkgj.k 15 oØ y = 4 x − 3 − 1 ij mu ¯cnqvksa dks Kkr dhft, ftu ij Li'kZ js[kk dh


2
izo.krk gSA
3
gy fn, x, oØ osQ fdlh ¯cnq (x, y) ij Li'kZ js[kk dh izo.krk
−1
dy 1 2
= (4 x − 3) 2 ⋅ 4 = gSA
dx 2 4x − 3
2
D;ksafd izo.krk fn;k gSA blfy,
3
2 2
=
4x − 3 3
;k 4x – 3 = 9
;k x=3
vc y = 4 x − 3 − 1 gSA blfy, tc x = 3, y = 4(3) − 3 − 1 = 2 gSA
blfy,] vfHk"V ¯cnq (3, 2) gSA
2
mnkgj.k 16 izo.krk 2 okyh lHkh js[kkvksa dk lehdj.k Kkr dhft, tks oØ y + ( x − 3) = 0
dks Li'kZ djrh gSA
gy fn, oØ osQ ¯cnq (x,y) ij Li'kZ js[kk dh izo.krk
dy 2
= gSA
dx ( x − 3) 2
D;ksafd izo.krk 2 fn;k x;k gS blfy,]

2018-19
vodyt osQ vuqiz;ksx 225

2
=2
( x − 3) 2
;k (x – 3)2 = 1
;k x –3=±1
;k x = 2, 4
vc x = 2 ls y = 2 vkSj x = 4 ls y = – 2 izkIr gksrk gSA bl izdkj] fn, oØ dh izo.krk
2 okyh nks Li'kZ js[kk,¡ gSa tks Øe'k% ¯cnqvksa (2] 2) vkSj (4] &2) ls tkrh gSA vr% (2] 2)
ls tkus okyh Li'kZ js[kk dk lehdj.k%
y – 2 = 2(x – 2) gSA
;k y – 2x + 2 = 0
rFkk (4] &2) ls tkus okyh Li'kZ js[kk dk lehdj.k
y – (– 2) = 2(x – 4)
;k y – 2x + 10 = 0 gSA

x2 y2
mnkgj.k 17 oØ + = 1 ij mu ¯cnqvksa dks Kkr dhft, ftu ij Li'kZ js[kk,¡ (i) x-v{k
4 25
osQ lekarj gksa (ii) y-v{k osQ lekarj gksaA

x2 y2
gy + = 1 dk x, osQ lkis{k vodyu djus ij ge izkIr djrs gSa%
4 25

x 2 y dy
+ =0
2 25 dx

dy −25 x
;k =
dx 4 y
(i) vc] Li'kZ js [ kk x-v{k os Q leka r j gS ;fn mldh iz o .krk 'kw U ; gS ] ftlls
dy −25 x x2 y2
=0⇒ = 0 izkIr gksrk gSA ;g rHkh laHko gS tc x = 0 gksA rc + =1
dx 4 y 4 25
ls x = 0 ij y2 = 25, vFkkZr~ y = ± 5 feyrk gSA vr% ¯cnq (0, 5) vkSj (0, – 5) ,sls gSa tgk¡
ij Li'kZ js[kk,¡ x&v{k osQ lekarj gSaA

2018-19
226 xf.kr

4y
(ii) Li'kZ js[kk y-v{k osQ lekarj gS ;fn blosQ vfHkyac dh izo.krk 'kwU; gS ftlls = 0,
25 x
x2 y2
;k y = 0 feyrk gSA bl izdkj] + = 1 ls y = 0 ij x = ± 2 feyrk gSA vr% os ¯cnq
4 25
(2] 0) vkSj (&2] 0) gSa] tgk¡ ij Li'kZ js[kk,¡ y-v{k osQ lekarj gSaA
x−7
mnkgj.k 18 oØ y = osQ mu ¯cnqvksa ij Li'kZ js[kk,¡ Kkr dhft, tgk¡ ;g
( x − 2)( x − 3)
x-v{k dks dkVrh gSA

gy è;ku nhft, fd x-v{k ij y = 0 gksrk gSA blfy, tc y = 0 rc oØ osQ lehdj.k ls

x = 7 izkIr gksrk gSA bl izdkj oØ x-v{k dks (7, 0) ij dkVrk gSA vc oØ osQ lehdj.k dks x

osQ lkis{k vodyu djus ij


dy 1 − y (2 x − 5)
= ( x − 2)( x − 3) (D;ksa)
dx

dy  1− 0 1
;k =

dx  (7,0)
=
(5) (4) 20 izkIr gksrk gSA

1
blfy,] Li'kZ js[kk dh (7, 0) ij izo.krk gSA vr% (7, 0) ij Li'kZ js[kk dk lehdj.k gS%
20
1
y−0= ( x − 7) ;k 20 y − x + 7 = 0 gSA
20
2 2
mnkgj.k 19 oØ x 3 + y 3 = 2 osQ ¯cnq (1, 1) ij Li'kZ js[kk rFkk vfHkyac osQ lehdj.k Kkr dhft,A
2 2
gy x 3 + y 3 = 2 dk x, osQ lkis{k vodyu djus ij]
−1 −1
2 3 2 3 dy
x + y =0
3 3 dx
1
dy  y 3
;k = − 
dx  x

2018-19
vodyt osQ vuqiz;ksx 227

dy 
blfy,] (1, 1) ij Li'kZ js[kk dh izo.krk = −1 gSA
dx  (1, 1)
blfy, (1]1) ij Li'kZ js[kk dk lehdj.k
y – 1 = – 1 (x – 1) ;k y + x – 2 = 0 gS
rFkk (1] 1) ij vfHkyac dh izo.krk
−1
= 1 gSA
(1]1)ij Li'khZ dh ioz.krk
blfy,] (1] 1) ij vfHkyac dk lehdj.k
y – 1 = 1 (x – 1) ;k y – x = 0 gSA
mnkgj.k 20 fn, x, oØ
x = a sin3 t , y = b cos3 t ... (1)
π
osQ ,d ¯cnq] tgk¡ t = gS] ij Li'kZ js[kk dk lehdj.k Kkr dhft,A
2
gy (1) dk t osQ lkis{k vodyu djus ij
dx dy
= 3a sin 2 t cos t rFkk = −3b cos2 t sin t
dt dt
dy
dy dt −3b cos 2 t sin t −b cos t
;k = = =
dx dx 3a sin 2 t cos t a sin t
dt
π
dy  −b cos
π 2 =0
tc t = rc  π =
2 dx  t= π
2 a sin
2
π
vkSj tc t = , rc x = a rFkk y = 0 gS vr% t = π ij vFkkZr~ (a, 0) ij fn, x, oØ dh Li'kZ
2 2
js[kk dk lehdj.k y – 0 = 0 (x – a) vFkkZr~ y = 0 gSA

iz'ukoyh 6-3
1. oØ y = 3x4 – 4x osQ x = 4 ij Li'kZ js[kk dh izo.krk Kkr dhft,A
x −1
2. oØ y = , x ≠ 2 osQ x = 10 ij Li'kZ js[kk dh izo.krk Kkr dhft,A
x−2

2018-19
228 xf.kr

3. oØ y = x3 – x + 1 dh Li'kZ js[kk dh izo.krk ml ¯cnq ij Kkr dhft, ftldk


x-funsZ'kkad 2 gSA
4. oØ y = x3 –3x +2 dh Li'kZ js[kk dh izo.krk ml ¯cnq ij Kkr dhft, ftldk
x-funsZ'kkad 3 gSA
π
5. oØ x = a cos3 θ, y = a sin 3 θ osQ θ = ij vfHkyac dh izo.krk Kkr dhft,A
4
π
6. oØ x = 1 − a sin θ, y = b cos 2 θ osQ θ =
ij vfHkyac dh izo.krk Kkr dhft,A
2
7. oØ y = x3 – 3x2 – 9x + 7 ij mu ¯cnqvksa dks Kkr dhft, ftu ij Li'kZ js[kk,¡ x&v{k
osQ lekarj gSA
8. oØ y = (x – 2)2 ij ,d ¯cnq Kkr dhft, ftl ij Li'kZ js[kk] ¯cnqvksa (2] 0) vkSj
(4] 4) dks feykus okyh js[kk osQ lekarj gSA
9. oØ y = x3 – 11x + 5 ij ml ¯cnq dks Kkr dhft, ftl ij Li'kZ js[kk y = x – 11 gSA
1
10. izo.krk – 1 okyh lHkh js[kkvksa dk lehdj.k Kkr dhft, tks oØ y = , x ≠ – 1 dks
x −1
Li'kZ djrh gSA
1
11. izo.krk 2 okyh lHkh js[kkvksa dk lehdj.k Kkr dhft, tks oØ y = , x ≠ 3 dks Li'kZ
x−3
djrh gSA
1
12. izo.krk 0 okyh lHkh js[kkvksa dk lehdj.k Kkr dhft, tks oØ y = dks Li'kZ
x − 2x + 3
2

djrh gSA
x2 y2
13. oØ + = 1 ij mu ¯cnqvksa dks Kkr dhft, ftu ij Li'kZ js[kk,¡
9 16
(i) x-v{k osQ lekarj gS (ii) y-v{k osQ lekarj gS
14. fn, oØksa ij fufnZ"V ¯cnqvksa ij Li'kZ js[kk vkSj vfHkyac osQ lehdj.k Kkr dhft,%
(i) y = x4 – 6x3 + 13x2 – 10x + 5 osQ (0, 5) ij
(ii) y = x4 – 6x3 + 13x2 – 10x + 5 osQ (1, 3) ij
(iii) y = x3 osQ (1, 1) ij
(iv) y = x2 osQ (0, 0) ij
π
(v) x = cos t, y = sin t osQ t = ij
4

2018-19
vodyt osQ vuqiz;ksx 229

15. oØ y = x2 – 2x +7 dh Li'kZ js[kk dk lehdj.k Kkr dhft, tks


(a) js[kk 2x – y + 9 = 0 osQ lekarj gSA
(b) js[kk 5y – 15x = 13 ij yac gSA
16. fl¼ dhft, fd oØ y = 7x3 + 11 osQ mu ¯cnqvksa ij Li'kZ js[kk,¡ lekarj gS tgk¡ x = 2
rFkk x = – 2 gSA
17. oØ y = x3 ij mu ¯cnqvksa dks Kkr dhft, ftu ij Li'kZ js[kk dh izo.krk ¯cnq osQ
y-funsZ'kkad osQ cjkcj gSA
18. oØ y = 4x3 – 2x5, ij mu ¯cnqvksa dks Kkr dhft, ftu ij Li'kZ js[kk,¡ ewy ¯cnq ls gksdj
tkrh gSaA
19. oØ x2 + y2 – 2x – 3 = 0 osQ mu ¯cnqvksa ij Li'kZ js[kkvksa osQ lehdj.k Kkr dhft, tgk¡
ij os x-v{k osQ lekarj gSaA
20. oØ ay2 = x3 osQ ¯cnq (am2, am3) ij vfHkyac dk lehdj.k Kkr dhft,A
21. oØ y = x3 + 2x + 6 osQ mu vfHkyacks osQ lehdj.k Kkr dhft, tks js[kk x + 14y + 4 = 0
osQ lekarj gSA
22. ijoy; y2 = 4ax osQ ¯cnq (at2, 2at) ij Li'kZ js[kk vkSj vfHkyac osQ lehdj.k Kkr dhft,A
23. fl¼ dhft, fd oØ x = y2 vkSj xy = k ,d nwljs dks ledks.k* ij dkVrh gS] ;fn
8k2 = 1gSA

x2 y 2
24. vfrijoy; − = 1 osQ ¯cnq (x0, y0) ij Li'kZ js[kk rFkk vfHkyac osQ lehdj.k Kkr dhft,A
a 2 b2
25. oØ y = 3 x − 2 dh mu Li'kZ js[kkvksa osQ lehdj.k Kkr dhft, tks js[kk 4 x − 2 y + 5 = 0 osQ
lekarj gSA
iz'u 26 vkSj 27 esa lgh mÙkj dk pquko dhft,
26. oØ y = 2x2 + 3 sin x osQ x = 0 ij vfHkyac dh izo.krk gS%
1 1
(A) 3 (B) (C) –3 (D) −
3 3
27. fdl ¯cnq ij y = x + 1, oØ y2 = 4x dh Li'kZ js[kk gS\
(A) (1, 2) (B) (2, 1) (C) (1, – 2) (D) (– 1, 2) gSA
6.5 lfUudVu (Approximation)
bl vuqPNsn esa ge oqQN jkf'k;ksa osQ lfUudV eku dks Kkr djus osQ fy, vodyksa dk iz;ksx djsaxsA
* nks oØ ijLij ledks.k ij dkVrs gSa ;fn muosQ izfrPNsnu ¯cnq ij Li'kZ js[kk,¡ ijLij yac gksaA

2018-19
230 xf.kr

eku yhft, f : D → R, D ⊂ R, ,d iznÙk iQyu gS vkSj y = f (x) nh xbZ oØ gSA


eku yhft, x esa gksus okyh fdlh vYi o`f¼ dks izrhd ∆x ls izdV djrs gSaA Lej.k
dhft, fd x esa gqbZ vYi o`f¼ ∆x osQ laxr y esa gqbZ o`f¼ dks ∆y ls izdV djrs gS tgk¡
∆y = f (x + ∆x) – f (x) gSA ge vc fuEufyf[kr dks ifjHkkf"kr djrs gSa%
(i) x osQ vody dks dx ls izdV djrs gSa rFkk
dx = ∆x ls ifjHkkf"kr djrs gSA
(ii) y osQ vody dks dy ls izdV djrs gSa rFkk
 dy 
dy = f ′(x) dx vFkok dy =   ∆x ls
 dx 
ifjHkkf"kr djrs gSaA
bl n'kk esa x dh rqyuk esa dx = ∆x vis{kko`Qr
NksVk gksrk gS rFkk ∆y dk ,d mi;qDr lfUudVu dy
gksrk gS vkSj bl ckr dks ge dy ≈ ∆y }kjk izdV
djrs gSaA
vko`Qfr 6-8
∆x, ∆y, dx vkSj dy osQ T;kferh; O;k[;k osQ
fy, vko`Qfr 6-8 nsf[k,A

AfVIi.kh mi;ZqDr ifjppkZ rFkk vko`Qfr dks è;ku esa j[krs gq, ge ns[krs gSa fd ijra=k pj
(Dependent variable) dk vody pj dh o`f¼ osQ leku ugha gS tc fd Lora=k pj
(Independent variable) dk vody pj dh o`f¼ osQ leku gSA

mnkgj.k 21 36.6 dk lfUudVu djus osQ fy, vody dk iz;ksx dhft,A

gy y = x yhft, tgk¡ x = 36 vkSj eku yhft, ∆x = 0.6 gSA


rc ∆y = x + ∆x − x = 36.6 − 36 = 36.6 − 6

36.6 = 6 + ∆y
vc ∆y lfUudVr% dy osQ cjkcj gS vkSj fuEufyf[kr ls iznÙk gS%
 dy  1
dy =   ∆x = (0.6) ( D;ksafd y = x )
dx 2 x
1
= (0.6) = 0.05
2 36
bl izdkj] 36.6 dk lfUudV eku 6 + 0.05 = 6.05 gSA

2018-19
vodyt osQ vuqiz;ksx 231

mnkgj.k 22 (25) 3 dk lfUudVu djus osQ fy, vody dk iz;ksx dhft,A


1
gy eku yhft, y = x3 tgk¡ x = 27 vkSj ∆x = −2 gSA
1 1
rc ∆y = ( x + ∆x) 3 − x3
1 1 1
= (25) 3 − (27) 3 = (25) 3 −3
1
;k = 3 + ∆y
(25) 3
vc ∆y lfUudVr% dy osQ cjkcj gS vkSj
 dy 
dy =   ∆x
 dx 
1
1
= 2
( −2) (D;ksafd y= x3 )
3x 3
1 −2
= 1
( −2) = = − 0.074
27
3((27) 3 ) 2
1
bl izdkj] (25) 3 dk lfUudV eku gS%
3 + (– 0. 074) = 2.926
mnkgj.k 23 f (3.02) dk lfUudV eku Kkr dhft, tgk¡ f (x) = 3x2 + 5x + 3 gSA
gy eku yhft, x = 3 vkSj ∆x = 0.02 gSA
f (3. 02) = f (x + ∆x) = 3 (x + ∆x)2 + 5(x + ∆x) + 3
è;ku nhft, fd ∆y = f (x + ∆x) – f (x) gSA
blfy, f (x + ∆x) = f (x) + ∆y
≈ f (x) + f ′(x) ∆x (D;ksafd dx = ∆x)
≈ (3x + 5x + 3) + (6x + 5) ∆x
2

f (3.02) = (3(3)2 + 5(3) + 3) + (6(3) + 5) (0.02) (D;ksafd x =3, ∆x = 0.02)


= (27 + 15 + 3) + (18 + 5) (0.02)
= 45 + 0.46 = 45.46
vr% f (3.02) dk lfUudV eku 45-46 gSA

2018-19
232 xf.kr

mnkgj.k 24 x ehVj Hkqtk okys ?ku dh Hkqtk esa 2% dh o`f¼ osQ dkj.k ls ?ku osQ vk;ru esa
lfUudV ifjorZu Kkr dhft,A
gy è;ku nhft, fd
V = x3
 dV 
;k dV =   ∆x = (3x2) ∆x
 dx 
= (3x2) (0.02x) (D;ksafd x dk 2% = .02x)
3 3
= 0.06x m
bl izdkj] vk;ru esa lfUudV ifjorZu 0.06 x3 m3 gS
mnkgj.k 25 ,d xksys dh f=kT;k 9 cm ekih tkrh gS ftlesa 0-03 cm dh =kqfV gSA blosQ vk;ru
osQ ifjdyu esa lfUudV =kqfV Kkr dhft,A
gy eku yhft, fd xksys dh f=kT;k r gS vkSj blosQ ekiu esa =kqfV ∆r gSA bl izdkj r = 9 cm
vkSj ∆r = 0.03 cmgSA vc xksys dk vk;ru V
4 3
V= π r ls iznÙk gSA
3
dV
;k = 4π r2
dr
 dV 
blfy, dV =  ∆r = (4π r 2 ) ∆r
 dr 
= [4π(9)2] (0.03) = 9.72π cm3
vr% vk;ru osQ ifjdyu esa lfUudV =kqfV 9.72π cm3 gSA

iz'ukoyh 6-4
1. vody dk iz;ksx djosQ fuEufyf[kr esa ls izR;sd dk lfUudV eku n'keyo osQ rhu LFkkuksa
rd Kkr dhft,%
(i) 25.3 (ii) 49.5 (iii) 0.6
1 1 1
(iv) (0.009) 3 (v) (0.999)10 (vi) (15) 4
1 1 1
(vii) (26) 3 (viii) (255) 4 (ix) (82) 4

2018-19
vodyt osQ vuqiz;ksx 233

1 1 1
(x) (401) 4 (xi) (0.0037) 2 (xii) (26.57) 3
1 3 1
(xiii) (81.5) 4 (xiv) (3.968) 2 (xv) (32.15) 5
2. f (2.01) dk lfUudV eku Kkr dhft, tgk¡ f (x) = 4x2 + 5x + 2 gSA
3. f (5.001) dk lfUudV eku Kkr dhft, tgk¡ f (x) = x3 – 7x2 + 15 gSA
4. x m Hkqtk okys ?ku dh Hkqtk esa 1% o`f¼ osQ dkj.k ?ku osQ vk;ru esa gksus okyk lfUudV
ifjorZu Kkr dhft,A
5. x m Hkqtk okys ?ku dh Hkqtk esa 1% âkl osQ dkj.k ?ku osQ i`"B {ks=kiQy esa gksus okys lfUudV
ifjorZu Kkr dhft,A
6. ,d xksys dh f=kT;k 7 m ekih tkrh gS ftlesa 0-02 m dh =kqfV gSA blosQ vk;ru osQ
ifjdyu esa lfUudV =kqfV Kkr dhft,A
7. ,d xksys dh f=kT;k 9 m ekih tkrh gS ftlesa 0.03 cm dh =kqfV gSA blosQ i`"B {ks=kiQy
osQ ifjdyu esa lfUudV =kqfV Kkr dhft,A
8. ;fn f (x) = 3x2 + 15x + 5 gks] rks f (3.02) dk lfUudV eku gS%
(A) 47.66 (B) 57.66 (C) 67.66 (D) 77.66
9. Hkqtk esa 3% o`f¼ osQ dkj.k Hkqtk x osQ ?ku osQ vk;ru esa lfUudV ifjorZu gS%
(A) 0.06 x3 m3 (B) 0.6 x3 m3 (C) 0.09 x3 m3 (D) 0.9 x3 m3
6.6 mPpre vkSj fuEure (Maxima and Minima)
bl vuqPNsn esa] ge fofHkUu iQyuksa osQ mPpre vkSj fuEure ekuksa dh x.kuk djus esa vodyt
dh ladYiuk dk iz;ksx djsaxsA okLro esa ge ,d iQyu osQ vkys[k osQ orZu ¯cnqvksa (Turning
points) dks Kkr djsaxs vkSj bl izdkj mu ¯cnqvksa dks Kkr djsaxs ftu ij vkys[k LFkkuh; vf/dre
(;k U;wure) ij igq¡prk gSA bl izdkj osQ ¯cnqvksa dk Kku ,d iQyu dk vkys[k [khapus esa cgqr
mi;ksxh gksrk gSA blosQ vfrfjDr ge ,d iQyu dk fujis{k mPpre eku (Absolute maximum
value) vksj fujis{k U;wure eku (Absolute minimum value) Hkh Kkr djsaxs tks dbZ vuqiz;qDr
leL;kvksa osQ gy osQ fy, vko';d gSaA
vkb, ge nSfud thou dh fuEufyf[kr leL;kvksa ij fopkj djsa
(i) larjksa osQ o`{kksa osQ ,d ckx ls gksus okyk ykHk iQyu P(x) = ax + bx2 }kjk iznÙk gS tgk¡
a,b vpj gSa vkSj x izfr ,dM+ esa larjs osQ o`{kksa dh la[;k gSA izfr ,dM+ fdrus o`{k
vf/dre ykHk nsxsa\

2018-19
234 xf.kr

x2
(ii) ,d 60 m Å¡ps Hkou ls gok esa isaQdh xbZ ,d xsan h( x ) = 60 + x − osQ }kjk
60
fu/kZfjr iFk osQ vuqfn'k pyrh gS] tgk¡ x Hkou ls xsan dh {kSfrt nwjh vkSj h(x) mldh
Å¡pkbZ gSA xsan fdruh vf/dre Å¡pkbZ rd igq¡psxh\
(iii) 'k=kq dk ,d vikps gsfydkWIVj oØ f (x) = x2 + 7 }kjk iznÙk iFk osQ vuqfn'k mM+ jgk gSA
¯cnq (1] 2) ij fLFkr ,d lSfud ml gsfydkWIVj dks xksyh ekjuk pkgrk gS tc gsfydkWIVj
mlosQ fudVre gksA ;g fudVre nwjh fdruh gS\
mi;qZDr leL;kvksa esa oqQN loZlkekU; gS vFkkZr~ ge iznÙk iQyuksa osQ mPpre vFkok fuEure
eku Kkr djuk pkgrs gSaA bu leL;kvksa dks lqy>kus osQ fy, ge fof/or ,d iQyu dk
vf/dre eku ;k U;wure eku o LFkkuh; mPpre o LFkkuh; fuEure osQ ¯cnqvksa vkSj bu
¯cnqvksa dks fu/kZfjr djus osQ ijh{k.k dks ifjHkkf"kr djsaxsA
ifjHkk"kk 3 eku yhft, ,d varjky I esa ,d iQyu f ifjHkkf"kr gS] rc
(a) f dk mPpre eku I esa gksrk gS] ;fn I esa ,d ¯cnq c dk vfLrRo bl izdkj gS fd
f (c) ≥ f ( x ) , ∀ x ∈ I
la[;k f (c) dks I esa f dk mPpre eku dgrs gSa vkSj ¯cnq c dks I esa f osQ mPpre eku
okyk ¯cnq dgk tkrk gSA
(b) f dk fuEure eku I esa gksrk gS ;fn I esa ,d ¯cnq c dk vfLrRo gS bl izdkj fd
f (c) ≤ f (x), ∀ x ∈ I
la[;k f (c) dks I esa f dk fuEure eku dgrs gSa vkSj ¯cnq c dks I esa f osQ fuEure eku
okyk ¯cnq dgk tkrk gSA
(c) I esa f ,d pje eku (extreme value) j[kus okyk iQyu dgykrk gS ;fn I esa ,d ,sls ¯cnq
c dk vfLrRo bl izdkj gS fd f (c), f dk mPpre eku vFkok fuEure eku gSA
bl fLFkfr esa f (c), I esa f dk pje eku dgykrk gS vkSj ¯cnq c ,d pje ¯cnq dgykrk gSA

vko`Qfr 6-9

2018-19
vodyt osQ vuqiz;ksx 235

AfVIi.kh vko`Qfr 6.9 (a), (b) vkSj (c) esa geus oqQN fof'k"V iQyuksa osQ vkys[k iznf'kZr
fd, gSa ftuls gesa ,d ¯cnq ij mPpre eku vkSj fuEure eku Kkr djus esa lgk;rk feyrh
gSA okLro esa vkys[kksa ls ge mu iQyuksa osQ tks vodfyr ugha gksrs gSaA mPpre @ fuEure eku
Hkh Kkr dj ldrs gSa] (mnkgj.k 27)A
mnkgj.k 26 f (x) = x2, x ∈ R ls iznÙk iQyu f osQ mPpre
vkSj fuEure eku] ;fn dksbZ gksa rks] Kkr dhft,A
gy fn, x, iQyu osQ vkys[k (vko`Qfr 6-10) ls ge dg ldrs
gSa fd f (x) = 0 ;fn x = 0 gS vkSj
f (x) ≥ 0, lHkh x ∈ R osQ fy,A

blfy,] f dk fuEure eku 0 gS vkSj f osQ fuEure eku


dk ¯cnq x = 0 gSA blosQ vfrfjDr vkys[k ls ;g Hkh ns[kk tk
ldrk gS fd iQyu f dk dksbZ mPpre eku ugha gS] vr% R
vko`Qfr 6-10
esa f osQ mPpre eku dk ¯cnq ugha gSA

AfVIi.kh ;fn ge iQyu osQ izkar dks osQoy [– 2, 1] rd lhfer djsa rc x = – 2 ij f


dk mPpre eku (– 2)2 = 4 gSA
mnkgj.k 27 f (x) = | x |, x ∈ R }kjk iznÙk iQyu f osQ
mPpre vkSj fuEure eku] ;fn dksbZ gks rks] Kkr dhft,A
gy fn, x, iQyu osQ vkys[k (vko`Qfr 6-11) ls
f (x) ≥ 0, lHkh x ∈ R vkSj f (x) = 0 ;fn x = 0 gSA
blfy,] f dk fuEure eku 0 gS vkSj f osQ fuEure
eku dk ¯cnq x = 0 gSA vkSj vkys[k ls ;g Hkh Li"V gS R
esa f dk dksbZ mPpre eku ugha gSA vr% R esa dksbZ mPpre
eku dk ¯cnq ugha gSA
vko`Qfr 6-11
fVIi.kh
(i) ;fn ge iQyu osQ izkar dks osQoy [– 2, 1] rd lhfer djsa] rks f dk mPpre eku
| – 2| = 2 gksxkA
(ii) mnkgj.k 27 esa è;ku nsa fd iQyu f , x = 0 ij vodyuh; ugha gSA

2018-19
236 xf.kr

mnkgj.k 28 f (x) = x, x ∈ (0, 1) }kjk iznÙk iQyu osQ mPpre vkSj fuEure eku] ;fn dksbZ gks
rks] Kkr dhft,A
gy fn, varjky (0] 1) esa fn;k iQyu ,d fujarj o/Zeku
iQyu gSA iQyu f osQ vkys[k (vko`Qfr 6-12) ls ,slk
izrhr gksrk gS fd iQyu dk fuEure eku 0 osQ nk;ha vksj
osQ fudVre ¯cnq vkSj mPpre eku 1 osQ ck;ha vksj osQ
fudVre ¯cnq ij gksuk pkfg,A D;k ,sls ¯cnq miyC/ gSa\
,sls ¯cnqvksa dks vafdr djuk laHko ugha gSA okLro esa] ;fn
x0
0 dk fudVre ¯cnq x0 gks rks < x0 lHkh x0 ∈ (0,1)
2 vko`Qfr 6-12
x1 + 1
osQ fy, vkSj ;fn 1 dk fudVre ¯cnq x1 gks rks lHkh x1 ∈ (0,1) osQ fy, > x1 gSA
2
blfy, fn, x, iQyu dk varjky (0] 1) esa u rks dksbZ mPpre eku gS vkSj u gh dksbZ fuEure
eku gSA
fVIi.kh ikBd ns[k ldrs gSa fd mnkgj.k 28 esa ;fn f osQ izkar esa 0 vkSj 1 dks lfEefyr dj
fy;k tk, vFkkZr f osQ izkar dks c<+kdj [0, 1] dj fn;k tk, rks iQyu dk fuEure eku
x = 0 ij 0 vkSj mPpre eku x = 1 ij 1 gSA okLro esa ge fuEufyf[kr ifj.kke ikrs gSa (bu
ifj.kkeksa dh miifÙk bl iqLrd osQ {ks=k ls ckgj gS)A
izR;sd ,dfn"V (monotonic) iQyu vius ifjHkkf"kr izkra osQ vaR; ¯cnqvksa ij mPpre@fuEure
xzg.k djrk gSA
bl ifj.kke dk vf/d O;kid :i ;g gS fd laoÙ` k varjky ij izR;sd larr iQyu osQ mPpre
vkSj fuEu"B eku gksrs gSaA

AfVIi.kh fdlh varjky I esa ,dfn"V iQyu ls gekjk vfHkizk; gS fd I esa iQyu ;k rks
o/Zeku gS ;k ßkleku gSA
bl vuqPNsn esa ,d lao`Ùk varjky ij ifjHkkf"kr iQyu osQ mPpre vkSj fuEure ekuksa osQ ckjs
esa ckn esa fopkj djsaxsA
vkb, vc vko`Qfr 6-13 esa n'kkZ, x, fdlh iQyu osQ vkys[k dk vè;;u djsaA nsf[k, fd
iQyu dk vkys[k ¯cnqvksa A, B, C rFkk D ij o/Zeku ls ßkleku ;k foykser% ßkleku ls o/Zeku
gksrk gSA bu ¯cnqvksa dks iQyu osQ orZu ¯cnq dgrs gSaA iqu% è;ku nhft, fd orZu ¯cnqvksa ij vkys[k
esa ,d NksVh igkM+h ;k NksVh ?kkVh curh gSA eksVs rkSj ij ¯cnqvksa A rFkk C esa ls izR;sd osQ lkehI;
(Neighbourhood)esa iQyu dk fuEure eku gS] tks mudh viuh&viuh ?kkfV;ksa osQ v/ksHkkxksa

2018-19
vodyt osQ vuqiz;ksx 237

vko`Qfr 6-13

(Bottom) ij gSA blh izdkj ¯cnqvksa B rFkk D esa ls izR;sd osQ lkehI; esa iQyu dk mPpre eku
gS] tks mudh viuh&viuh igkfM+;ksa osQ 'kh"kks± ij gSA bl dkj.k ls ¯cnqvksa A rFkk C dks LFkkuh;
fuEure eku (;k lkis{k fuEure eku) dk ¯cnq rFkk B vkSj D dks LFkkuh; mPpre eku (;k lkis{k
mPpre eku) osQ ¯cnq le>k tk ldrk gSA iQyu osQ LFkkuh; mPpre eku vkSj LFkkuh; fuEure
ekuksa dks Øe'k% iQyu dk LFkkuh; mPpre vkSj LFkkuh; fuEure dgk tkrk gSA
vc ge vkSipkfjd :i ls fuEufyf[kr ifjHkk"kk nsrs gSaA
ifjHkk"kk 4 eku yhft, f ,d okLrfod ekuh; iQyu gS vkSj c iQyu f osQ izkar esa ,d vkarfjd
¯cnq gSA rc
(a) c dks LFkkuh; mPpre dk ¯cnq dgk tkrk gS ;fn ,d ,s l k h > 0 gS fd
(c – h, c + h) esa lHkh x osQ fy, f (c) ≥ f (x) gksA rc f (c), iQyu f dk LFkkuh; mPpre
eku dgykrk gSA
(b) c dks LFkkuh; fuEure dk ¯cnq dgk tkrk gS ;fn ,d ,slk h > 0 gS fd (c – h, c + h) esa lHkh
x osQ fy, f (c) ≤ f (x) gksA rc f (c), iQyu f dk LFkkuh; fuEure eku dgykrk gSA
T;kferh; n`f"Vdks.k ls] mi;qZDr ifjHkk"kk dk vFkZ gS fd ;fn x = c, iQyu f dk LFkkuh;
mPpre dk ¯cnq gS] rks c osQ vklikl dk vkys[k vko`Qfr 6-14(a) osQ vuqlkj gksxkA è;ku nhft,
fd varjky (c – h, c) esa iQyu f o/Zeku (vFkkZr~ f ′(x) > 0) vkSj varjky (c, c + h) esa iQyu
ßkleku (vFkkZr~ f ′(x) < 0) gSA
blls ;g fu"d"kZ fudyrk gS fd f ′(c) vo'; gh 'kwU; gksuk pkfg,A

vko`Qfr 6-14

2018-19
238 xf.kr

blh izdkj] ;fn c , iQyu f dk LFkkuh; fuEure ¯cnq gS rks c osQ vklikl dk vkys[k
vko`Qfr 6-14(b) osQ vuqlkj gksxkA ;gk¡ varjky (c – h, c) esa f ßkleku (vFkkZr~ f ′(x) < 0) gS
vkSj varjky (c, c + h) esa f o/Zeku (vFkkZr] f ′(x) > 0) gSA ;g iqu% lq>ko nsrk gS fd f ′(c)
vo'; gh 'kwU; gksuk pkfg,A
mi;qZDr ifjppkZ ls gesa fuEufyf[kr ifjHkk"kk izkIr gksrh gS (fcuk miifÙk)A
izes; 2 eku yhft, ,d foo`Ùk varjky I esa f ,d ifjHkkf"kr iQyu gSA eku yhft, c ∈ I dksbZ
¯cnq gSA ;fn f dk x = c ij ,d LFkkuh; mPpre ;k ,d LFkkuh; fuEure dk ¯cnq gS rks f ′(c)
= 0 gS ;k f ¯cnq c ij vodyuh; ugha gSA
fVIi.kh mijksDr izes; dk foykse vko';d ugha gS fd lR; gks tSls fd ,d ¯cnq ftl ij
vodyt 'kwU; gks tkrk gS rks ;g vko';d ugha gS fd og LFkkuh; mPpre ;k LFkkuh; fuEure
dk ¯cnq gSA mnkgj.kr;k ;fn f (x) = x3 gks rks f ′(x) = 3x2 vkSj blfy, f ′(0) = 0 gSA ijUrq 0
u rks LFkkuh; mPpre vkSj u gh LFkkuh; fuEure ¯cnq gSA vko`Qfr 6-15

AfVIi.kh iQyu f osQ izkar esa ,d ¯cnq c, ftl ij ;k rks f ′(c) = 0 gS ;k f vodyuh;
ugha gS] f dk Økafrd ¯cnq (Critical Point) dgykrk gSA è;ku nhft, fd ;fn f ¯cnq c ij
larr gS vkSj f ′(c) = 0 gS rks ;gk¡ ,d ,sls h > 0 dk vfLrRo gS fd varjky (c – h, c + h)
esa f vodyuh; gSA
vc ge osQoy izFke vodytksa dk iz;ksx djosQ LFkkuh; mPpre ¯cnq ;k LFkkuh; fuEure
¯cnqvksa dks Kkr djus dh fØ;kfof/ izLrqr djsaxsA
izes; 3 (izFke vodyt ijh{k.k) eku yhft, fd ,d iQyu f fdlh foo`Ùk varjky I ij
ifjHkkf"kr gSA eku yhft, fd f varjky I esa fLFkr Økafrd ¯cnq c ij larr gSA rc
(i) x osQ ¯cnq c ls gks dj c<+us osQ lkFk&lkFk] ;fn
f ′(x) dk fpß /u ls ½.k esa ifjofrZr gksrk gS
vFkkZr~ ;fn ¯cnq c osQ ck;ha vksj vkSj mlosQ i;kZIr
fudV osQ izR;sd ¯cnq ij f ′(x) > 0 rFkk c osQ
nk;ha vksj vkSj i;kZIr fudV osQ izR;sd ¯cnq ij
f ′(x) < 0 gks rks c LFkkuh; mPpre ,d ¯cnq gSA
(ii) x osQ ¯cnq c ls gks dj c<+us osQ lkFk&lkFk ;fn
f ′(x) dk fpÉ ½.k ls /u esa ifjofrZr gksrk gS]
vFkkZr~ ;fn ¯cnq c osQ ck;ha vksj vkSj mlosQ i;kZIr
fudV osQ izR;sd ¯cnq ij f ′(x) < 0 rFkk c osQ
nk;haa vksj vkSj mlosQ i;kZIr fudV osQ izR;sd ¯cnq
ij f ′(x) >0 gks rks c LFkkuh; fuEure ¯cnq gSA vko`Qfr 6-15

2018-19
vodyt osQ vuqiz;ksx 239

(iii) x osQ ¯cnq c ls gks dj c<+us osQ lkFk ;fn f ′(x) dk fpÉ ifjofrZr ugha gksrk gS] rks c u
rks LFkkuh; mPpre ¯cnq gS vkSj u LFkkuh; fuEure ¯cnqA okLro esa] bl izdkj osQ ¯cnq dks
ufr ifjorZu ¯cnq (Point of Inflection) (vko`Qfr 6-15) dgrs gSaA

AfVIi.kh ;fn c iQyu f dk ,d LFkkuh; mPpre ¯cnq gS rks f (c) iQyu f dk LFkkuh;
mPpre eku gSA blh izdkj] ;fn c iQyu f dk ,d LFkkuh; fuEure ¯cnq gS] rks f (c) iQyu f
dk LFkkuh; fuEure eku gSA vko`Qfr;k¡ 6-15 vkSj 6-16 ize;s 3 dh T;kferh; O;k[;k djrh gSA

vko`Qfr 6-16
mnkgj.k 29 f (x) = x3 – 3x + 3 }kjk iznÙk iQyu osQ fy, LFkkuh; mPpre vkSj LFkkuh; fuEure
osQ lHkh ¯cnqvksa dks Kkr dhft,A
gy ;gk¡ f (x) = x3 – 3x + 3

;k f ′(x) = 3x2 – 3 = 3 (x – 1) (x + 1)
;k f ′(x) = 0 ⇒ x = 1 vkSj x = – 1
bl izdkj] osQoy x = ± 1 gh ,sls Økafrd ¯cnq gSa tks f osQ LFkkuh; mPpre vkSj@;k LFkkuh;
fuEure laHkkfor ¯cnq gks ldrs gSaA igys ge x = 1 ij ijh{k.k djrs gSaA
è;ku nhft, fd 1 osQ fudV vkSj 1 osQ nk;haa vksj f ′(x) > 0 gS vkSj 1 osQ fudV vkSj 1 osQ
ck;haa vksj f ′(x) < 0 gSA blfy, izFke vodyt ijh{k.k }kjk x = 1] LFkkuh; fuEure ¯cnq gS vkSj
LFkkuh; fuEure eku f (1) = 1 gSA
x = – 1 dh n'kk esa] –1 osQ fudV vkSj –1 osQ ck;ha vksj f ′(x) > 0 vkSj &1 osQ fudV vkSj
&1 osQ nk;ha vksj f ′(x) < 0 gSA blfy, izFke vodyt ijh{k.k }kjk x = –1 LFkkuh; mPpre dk
¯cnq gS vkSj LFkkuh; mPpre eku f (–1) = 5 gSA

2018-19
240 xf.kr

x osQ eku f ′ ( x ) = 3( x − 1)( x + 1) dk fpÉ


nk;ha vksj (ekuk1-1) >0
1 osQ fudV
ck;ha vkjs (ekuk 0 - 9) <0

nk;ha vksj (ekuk – 0 - 9) <0


–1 osQ fudV
ck;ha vkjs (ekuk – 1-1) >0

mnkgj.k 30 f (x) = 2x3 – 6x2 + 6x +5 }kjk iznÙk iQyu f osQ LFkkuh; mPpre vkSj LFkkuh;
fuEure ¯cnq Kkr dhft,A
gy ;gk¡
f (x) = 2x3 – 6x2 + 6x + 5
;k f ′(x) = 6x2 – 12x + 6 = 6 (x – 1)2
;k f ′(x) = 0 ⇒ x = 1
bl izdkj osQoy x = 1 gh f dk Økafrd ¯cnq gSA vc ge bl ¯cnq ij f osQ LFkkuh; mPpre
;k LFkkuh; fuEure osQ fy, ijh{k.k djsaxsA nsf[k, fd lHkh x ∈ R osQ fy, f ′(x) ≥ 0 vkSj fo'ks"k
:i ls 1 osQ lehi vkSj 1 osQ ck;haa vksj vkSj nk;ha vksj osQ ekuksa osQ fy, f ′(x) > 0 gSA blfy,
izFke vodyt ijh{k.k ls ¯cnq x = 1 u rks LFkkuh; mPpre dk ¯cnq gS vkSj u gh LFkkuh; fuEure
dk ¯cnq gSA vr% x = 1 ,d ufr ifjorZu (inflection) ¯cnq gSA

AfVIi.kh è;ku nhft, fd mnkgj.k 30 esa f ′(x) dk fpÉ varjky R esa dHkh Hkh ugha
cnyrkA vr% f osQ vkys[k esa dksbZ Hkh orZu ¯cnq ugha gS vkSj blfy, LFkkuh; mPpre ;k
LFkkuh; fuEure dk dksbZ Hkh ¯cnq ugha gSA
vc ge fdlh iznÙk iQyu osQ LFkkuh; mPpre vkSj LFkkuh; fuEure osQ ijh{k.k osQ fy, ,d
nwljh fØ;kfof/ izLrqr djsaxsA ;g ijh{k.k izFke vodyt ijh{k.k dh rqyuk esa izk;% ljy gSA
izes; 4 eku yhft, fd f, fdlh varjky I esa ifjHkkf"kr ,d iQyu gS rFkk c ∈ I gSA eku yhft,
fd f, c ij nks ckj yxkrkj vodyuh; gSA rc
(i) ;fn f ′(c) = 0 vkSj f ″(c) < 0 rks x = c LFkkuh; mPpre dk ,d ¯cnq gSA
bl n'kk esa f dk LFkkuh; mPpre eku f (c) gSA
(ii) ;fn f ′ (c ) = 0 vkSj f ″(c) > 0 rks x = c LFkkuh; fuEure dk ,d ¯cnq gSA
bl n'kk esa f dk LFkkuh; fuEure eku f (c) gSA
(iii) ;fn f ′(c) = 0 vkSj f ″(c) = 0 gS rks ;g ijh{k.k vliQy gks tkrk gSA
bl fLFkfr esa ge iqu% izFke vodyt ijh{k.k ij okil tkdj ;g Kkr djrs gSa fd c
mPpre] fuEure ;k ufr ifjorZu dk ¯cnq gSA

2018-19
vodyt osQ vuqiz;ksx 241

AfVIi.kh ¯cnq c ij f nks ckj yxkrkj vodyuh; gS blls gekjk rkRi;Z fd c ij f osQ
f}rh; vodyt dk vfLrRo gSA
mnkgj.k 31 f (x) = 3 + | x |, x ∈ R }kjk iznÙk iQyu f dk LFkkuh; fuEure eku Kkr dhft,A
gy è;ku nhft, fd fn;k x;k x = 0 ij vodyuh; ugha gSA bl izdkj f}rh; vodyt ijh{k.k
vliQy gks tkrk gSA vc ge izFke vodyt ijh{k.k djrs gSaA uksV dhft, fd 0 iQyu f dk ,d
Økafrd ¯cnq gSA vc 0 osQ ck;ha vksj] f (x) = 3 – x vkSj blfy, f ′(x) = – 1 < 0 gS lkFk gh 0
osQ nk;ha vksj] f (x) = 3 + x gS vkSj blfy, f ′(x) = 1 > 0 gSA vr,o] izFke vodyt ijh{k.k
}kjk x = 0, f dk LFkkuh; fuEure ¯cnq gS rFkk f dk LFkkuh; U;wure eku f (0) = 3 gSA
mnkgj.k 32 f (x) = 3x4 + 4x3 – 12x2 + 12 }kjk iznÙk iQyu f osQ LFkkuh; mPpre vkSj LFkkuh;
fuEure eku Kkr dhft,A
gy ;gk¡
f (x) = 3x4 + 4x3 – 12x2 + 12
;k f ′(x) = 12x3 + 12x2 – 24x = 12x (x – 1) (x + 2)
;k x = 0, x = 1 vkSj x = – 2 ij f ′(x) = 0 gSA
vc f ″(x) = 36x2 + 24x – 24 = 12 (3x2 + 2x – 2)

 f ′′(0) = −24 < 0


 vko`Qfr 6-17
vr%  f ′′(1) = 36 > 0
 f ′′( −2) = 72 > 0

blfy,] f}rh; vodyt ijh{k.k }kjk x = 0 LFkkuh; mPpre ¯cnq gS vkSj f dk LFkkuh; mPpre
eku f (0) = 12 gSA tcfd x = 1 vkSj x = – 2 LFkkuh; fuEure ¯cnq gS vkSj LFkkuh; fuEure eku
f (1) = 7 vkSj f (–2) = –20 gSA
mnkgj.k 33 f (x) = 2x3 – 6x2 + 6x +5 }kjk iznÙk iQyu f osQ LFkkuh; mPpre vkSj LFkkuh;
fuEure osQ lHkh ¯cnq Kkr dhft,A
gy ;gk¡ ij
f (x) = 2x3 – 6x2 + 6x +5
 f ′( x) = 6 x 2 − 12 x + 6 = 6( x − 1) 2
;k 
 f ′′( x) = 12( x − 1)
vc f ′(x) = 0 ls x = –1 izkIr gksrk gSA rFkk f ″(1) = 0 gSA blfy, ;gk¡ f}rh; vodyt ijh{k.k
vliQy gSA vr% ge izFke vodyt ijh{k.k dh vksj okil tk,¡xsA

2018-19
242 xf.kr

geus igys gh (mnkgj.k 30) esa ns[kk gS fd izFke vodyt ijh{k.k dh n`f"V ls x =1 u rks LFkkuh;
mPpre dk ¯cnq gS vkSj u gh LFkkuh; fuEure dk ¯cnq gS vfirq ;g ufr ifjorZu dk ¯cnq gSA
mnkgj.k 34 ,slh nks /u la[;k,¡ Kkr dhft, ftudk ;ksx 15 gS vkSj ftuosQ oxks± dk ;ksx
U;wure gksA
gy eku yhft, igyh la[;k x gS rc nwljh la[;k 15 – x gSA eku yhft, bu la[;kvksa osQ oxks±
dk ;ksx S(x) ls O;Dr gksrk gSA rc
S(x) = x2 + (15 – x)2 = 2x2 – 30x + 225

S′( x ) = 4 x − 30
;k 
S′′( x) = 4

izkIr gksrk gS rFkk S′′   = 4 > 0 gSA blfy, f}rh; vodyt


15 15
vc S′(x) = 0 ls x =
2 2
15 15 15 15
ijh{k.k }kjk S osQ LFkkuh; fuEure dk ¯cnq x = gSA vr% tc la[;k,¡ vkSj 15 − = gks
2 2 2 2
rks la[;kvksa osQ oxks± dk ;ksx fuEure gksxkA
fVIi.kh mnkgj.k 34 dh Hkk¡fr ;g fl¼ fd;k tk ldrk gS fd ,slh nks ?ku la[;k,¡ ftudk ;ksx
k k
k gS vkSj ftuosQ oxks± dk ;ksx U;wure gks rks ;s la[;k,¡ , gksaxhA
2 2

1
mnkgj.k 35 ¯cnq (0, c) ls ijoy; y = x2 dh U;wure nwjh Kkr dhft, tgk¡ ≤ c ≤ 5 gSA
2

gy eku yhft, ijoy; y = x2 ij (h, k) dksbZ ¯cnq gSA eku yhft, (h, k) vkSj (0, c) osQ chp
nwjh D gSA rc
D = (h − 0) 2 + ( k − c) 2 = h 2 + ( k − c ) 2 ... (1)
D;ksafd (h, k) ijoy; y = x ij fLFkr gS vr% k = h gSA blfy, (1) ls
2 2

D ≡ D(k) = k + ( k − c) 2
1 + 2( k − c)
;k D′(k) =
k + ( k − c )2

2c − 1
vc D′(k) = 0 ls k = izkIr gksrk gS
2

2018-19
vodyt osQ vuqiz;ksx 243

2c − 1 2c − 1
è;ku nhft, fd tc k < , rc 2(k − c) + 1 < 0 , vFkkZr~ D′( k ) < 0 gS rFkk tc k >
2 2
2c − 1
rc 2(k − c) + 1 > 0 gS vFkkZr~ D′( k ) > 0 (bl izdkj izFke vodyt ijh{k.k ls k = ij
2
k fuEure gSA vr% vHkh"V U;wure nwjh

2
 2c − 1  2c − 1  2c − 1  4c − 1
D = + − c = gSA
 2  2  2  2

AfVIi.kh ikBd è;ku nsa fd mnkgj.k 35 esa geus f}rh; vodyt ijh{k.k osQ LFkku ij
izFke vodyt ijh{k.k dk iz;ksx fd;k gS D;ksafd ;g ljy ,oa NksVk gSA
mnkgj.k 36 eku yhft, ¯cnq A vkSj B ij Øe'k% AP rFkk BQ nks mèokZ/j LraHk gSA ;fn
AP = 16 m, BQ = 22 m vkSj AB = 20 m gksa rks AB ij ,d ,slk ¯cnq R Kkr dhft, rkfd
RP2 + RQ2 fuEure gksA

gy eku yhft, AB ij ,d ¯cnq R bl izdkj gS fd


AR = x m gSA rc RB = (20 – x) m (D;ksfa d AB = 20 m)
vko`Qfr 6-18 ls
RP2 = AR2 + AP2
vkSj RQ2 = RB2 + BQ2
blfy, RP2 + RQ2 = AR2 + AP2 + RB2 + BQ2
= x2 + (16)2 + (20 – x)2 + (22)2 vko`Qfr 6-18
2
= 2x – 40x + 1140
eku yhft, fd S ≡ S(x) = RP2 + RQ2 = 2x2 – 40x + 1140 gSA
vr% S′(x) = 4x – 40 gSA
vc S′(x) = 0 ls x = 10 izkIr gksrk gS vkSj lHkh x osQ fy, S″(x) = 4 > 0 gS vkSj blfy,
S″(10) > 0 gSA blfy, f}rh; vodyt ijh{k.k ls x = 10, S dk LFkkuh; fuEure dk ¯cnq gSA
vr% AB ij R dh A ls nwjh AR = x = 10 m gSA
mnkgj.k 37 ;fn ,d leyac prqHkqZt osQ vk/kj osQ vfrfjDr rhuksa Hkqtkvksa dh yack;ha 10 cm
gS rc leyac prqHkqZt dk vf/dre {ks=kiQy Kkr dhft,A

2018-19
244 xf.kr

gy vHkh"V leyac dks vko`Qfr 6.19 esa


n'kkZ;k x;k gSA AB ij DP rFkk CQ yac
[khafp,A eku yhft, AP = x cm gSA è;ku
nhft, fd ∆APD ≅ ∆BQC gS blfy,
QB = x cm gSA vkSj ikbFkkxksjl izes; ls]
DP = QC = 100 − x 2 gSA eku yhft,
leyac prqHkqZt dk {ks=kiQy A gSA vko`Qfr 6-19
vr% A ≡ A(x)
1
= (lekarj Hkqtkvksa dk ;ksx) (Å¡pkbZ)
2

(2 x + 10 + 10) ( 100 − x 2 )
1
=
2
= ( x + 10) ( 100 − x )
2

+ ( 100 − x 2 )
( −2 x )
;k A′(x) = ( x + 10)
100 − x 2

−2 x 2 − 10 x + 100
=
100 − x 2
vc A′(x) = 0 ls 2x2 + 10x – 100 = 0, ftlls x = 5 vkSj x = –10 izkIr gksrk gSA
D;ksafd x nwjh dks fu:fir djrk gS blfy, ;g ½.k ugha gks ldrk gSA blfy, x = 5 gSA vc
( −2 x)
100 − x 2 (−4 x − 10) − (−2 x 2 − 10 x + 100)
2
100 − x 2
A″(x) =
100 − x 2
2 x 3 − 300 x − 1000
= 3 (ljy djus ij)
(100 − 2 2
x )

2(5)3 − 300(5) − 1000 −2250 −30


vr% A″(5) = 3
= = <0
75 75 75
(100 − (5) 2 ) 2
bl izdkj] x = 5 ij leyac dk {ks=kiQy vf/dre gS vkSj vf/dre {ks=kiQy
A (5) = (5 + 10) 100 − (5) 2 = 15 75 = 75 3 cm2 gSA

2018-19
vodyt osQ vuqiz;ksx 245

mnkgj.k 38 fl¼ dhft, fd ,d 'kaoqQ osQ varxZr egÙke oØi`"B okys yac o`Ùkh; csyu dh
f=kT;k 'kaoqQ dh f=kT;k dh vk/h gksrh gSA
gy eku yhft, 'kaoqQ osQ vk/kj dh f=kT;k OC = r vkSj Å¡pkbZ
OA = h gSA eku yhft, fd fn, gq, 'kaoqQ osQ varxZr csyu osQ
vk/kj osQ o`Ùk dh f=kT;k OE = x gS (vko`Qfr 6-20)A csyu dh
Å¡pkbZ QE osQ fy,%
QE EC
= (D;ksafd ∆QEC ~∆AOC)
OA OC
QE r−x
;k =
h r
h (r − x)
;k QE =
r
eku yhft, csyu dk oØi`"B S gS A rc vko`Qfr 6-20
2πxh (r − x) 2πh
S ≡ S (x) = = ( rx − x 2 )
r r
 2πh
S′( x) = r ( r − 2 x )
;k 
S′′( x) = − 4πh
 r
r
vc S′(x) = 0 ls x = izkIr gksrk gSA D;ksafd lHkh x osQ fy, S″(x) < 0 gSA vr%
2
r r
S′′   < 0 gSA blfy, x = , S dk mPpre ¯cnq gSA vr% fn, 'kaoqQ osQ varxZr egÙke oØ i`"B
2 2
osQ csyu dh f=kT;k 'kaoqQ dh f=kT;k dh vk/h gksrh gSA
6.6.1 ,d lao`Ùk varjky esa fdlh iQyu dk mPpre vkSj fuEure eku (Maximum and
Minimum Values of a Function in a Closed Interval)
eku yhft, f (x) = x + 2, x ∈ (0, 1) }kjk iznÙk ,d izyu f gSA
è;ku nhft, fd (0] 1) ij iQyu larr gS vkSj bl varjky esa u rks bldk dksbZ mPpre eku
gS vkSj u gh bldk dksbZ fuEure eku gSA
rFkkfi] ;fn ge f osQ izkar dks lao`Ùk varjky [0, 1] rd c<+k nsa rc Hkh f dk 'kk;n dksbZ
LFkkuh; mPpre (fuEure) eku ugha gksxk ijarq bldk fuf'pr gh mPpre eku 3 = f (1) vkSj

2018-19
246 xf.kr

fuEure eku 2 = f (0) gSaA x = 1 ij f dk mPpre eku 3] [0, 1] ij f dk fujis{k mPpre


eku (egÙke eku) (absolute maximum value) ;k lkoZf=kd vf/dre eku (global
maximum or greatest value) dgykrk gSA blh izdkj] x = 0 ij f dk fuEure eku 2] [0, 1]
ij f dk fujis{k fuEure eku (U;wure eku) (absolute minimum value) ;k lkoZf=kd U;wure
eku (global minimum or least value) dgykrk gSA
,d lao`Ùk varjky [a, b] ij ifjHkkf"kr fdlh larr iQyu f osQ laxr vko`Qfr 6.21 esa iznf'kZr
vkys[k ij fopkj dhft, fd x = b ij iQyu f dk LFkkuh; fuEure gS rFkk LFkkuh; fuEure
eku f (b) gSA iQyu dk x = c ij LFkkuh; mPpre ¯cnq gS rFkk LFkkuh; mPpre eku f (c) gSA

vko`Qfr 6-21
lkFk gh vkys[k ls ;g Hkh Li"V gS fd f dk fujis{k mPpre eku f (a) rFkk fujis{k fuEure
eku f (d) gSA blosQ vfrfjDr è;ku nhft, fd f dk fujis{k mPpre (fuEure) eku LFkkuh;
mPpre (fuEure) eku ls fHkUu gSA
vc ge ,d lao`Ùk varjky I esa ,d iQyu osQ fujis{k mPpre vkSj fujis{k fuEure osQ fo"k;
esa nks ifj.kkeksa (fcuk miifÙk) osQ dFku crk,¡xsA
izes; 5 eku yhft, ,d varjky I = [a, b] ij f ,d larr iQyu gSA rc f dk fujis{k mPpre
eku gksrk gS vkSj I esa de ls de ,d ckj f ;g eku izkIr djrk gS rFkk f dk fujis{k fuEure
eku gksrk gS vkSj I esa de ls de ,d ckj f ;g eku izkIr djrk gSA
izes; 6 eku yhft, lao`Ùk varjky I ij f ,d vodyuh; iQyu gS vkSj eku yhft, fd I dk
dksbZ vkarfjd ¯cnq c gSA rc
(i) ;fn c ij f fujis{k mPpre eku izkIr djrk gS] rks f ′(c) = 0
(ii) ;fn c ij f fujis{k fuEure eku izkIr djrk gS] rks f ′(c) = 0
mi;ZqDr izes;ksa osQ fopkj ls] fn, x, lao`Ùk varjky esa fdlh iQyu osQ fujis{k mPpre eku
vkSj fujis{k fuEure eku Kkr djus osQ fy, fof/ fuEufyf[kr gSaA

2018-19
vodyt osQ vuqiz;ksx 247

O;kogkfjd fof/ (Working Rule)


pj.k 1: fn, x, varjky esa f osQ lHkh Økafrd ¯cnq Kkr dhft, vFkkZr~ x osQ og lHkh eku Kkr
dhft, tgk¡ ;k rks f ′ ( x ) = 0 ;k f vodyuh; ugha gSA
pj.k 2: varjky osQ vaR; ¯cnq yhft,A
pj.k 3: bu lHkh ¯cnqvksa ij (pj.k 1 o 2 esa lwphc¼) f osQ ekuksa dh x.kuk dhft,A
pj.k 4: pj.k 3 esa x.kuk ls izkIr f osQ ekuksa esa ls mPpre vkSj fuEure ekuksa dks yhft,A ;gh
mPpre eku] f dk fujis{k mPpre eku vkSj fuEure eku] f dk fujis{k fuEure eku gksaxsA
mnkgj.k 39 varjky [1, 5] esa f (x) = 2x3 – 15x2 + 36x +1 }kjk iznÙk iQyu osQ fujis{k mPpre
vkSj fujis{k fuEure ekuksa dks Kkr dhft,A
gy gesa Kkr gS
f (x) = 2x3 – 15x2 + 36x + 1
;k f ′(x) = 6x2 – 30x + 36 = 6 (x – 3) (x – 2)
è;ku nhft, f ′(x) = 0 ls x = 2 vkSj x = 3 izkIr gksrs gSaA
vc ge bu ¯cnqvksa vkSj varjky [1, 5] osQ vaR; ¯cnqvksa vFkkZr~ x = 1, x = 2, x = 3 vkSj
x = 5 ij f osQ eku dk ifjdyu djsaxsA vc%
f (1) = 2 (13) – 15 (12) + 36 (1) + 1 = 24
f (2) = 2 (23) – 15 (22) + 36 (2) + 1 = 29
f (3) = 2 (33) – 15 (32) + 36 (3) + 1 = 28
f (5) = 2 (53) – 15 (52) + 36 (5) + 1 = 56
bl izdkj] ge bl fu"d"kZ ij igq¡prs gSa fd varjky [1, 5] ij iQyu f osQ fy, x =5 ij fujis{k
mPpre eku 56 vkSj x = 1 ij fujis{k fuEure eku 24 gSA
4 1
mnkgj.k 40 f ( x) = 12 x 3 − 6x3 ,
x ∈ [−1, 1] }kjk iznÙk ,d iQyu f osQ fujis{k mPpre vkSj
fujis{k fuEure eku Kkr dhft,A
gy gesa Kkr gS fd
4 1
f (x) = 12 x 3 − 6x 3
1
2 2(8 x − 1)
;k f ′(x) = 16 x 3 − 2
= 2
x3 x3

2018-19
248 xf.kr

1
bl izdkj f ′(x) = 0 ls x = izkIr gksrk gSA vkSj è;ku nhft, fd x = 0 ij f ′(x) ifjHkkf"kr
8
1 1
ugha gSA blfy, Økafrd ¯cnq x = 0 vkSj x = gSaA vc Økafrd ¯cnqvksa x = 0, vkSj varjky osQ
8 8
vaR; ¯cnqvksa x = –1 o x = 1 ij iQyu f osQ eku dk ifjdyu djus ls
4 1
f (–1) = 12(−13 ) − 6( −13 ) = 18
f (0) = 12 (0) – 6 (0) = 0
4 1
1
f   = 12  1  − 6  1  = − 9
3 3

8  8  8 4
4 1
f (1) = 12(13 ) − 6(13 ) = 6
izkIr gksrs gSaA bl izdkj ge bl fu"d"kZ ij igq¡prs gS fd x = – 1 ij f dk fujis{k mPpre
1 −9
eku 18 gS vkSj x = ij f dk fujis{k fuEure eku gSA
8 4
mnkgj.k 41 'k=kq dk ,d vikps gsfydkWIVj oØ y = x + 7 osQ vuqfn'k iznÙk iFk ij mM+ jgk gSA
2

¯cnq (3] 7) ij fLFkr ,d lSfud viuh fLFkfr ls U;wure nwjh ij ml gsfydkWIVj dks xksyh ekjuk
pkgrk gSA U;wure nwjh Kkr dhft,A
gy x osQ izR;sd eku osQ fy, gsfydkWIVj dh fLFkfr ¯cnq (x, x2 + 7) gSA blfy, (3, 7) ij fLFkr
lSfud vkSj gsfydkWIVj osQ chp nwjh ( x − 3) 2 + ( x 2 + 7 − 7)2 , vFkkZr~ ( x − 3) 2 + x 4 gSA
eku yhft, fd f (x) = (x – 3)2 + x4
;k f ′(x) = 2(x – 3) + 4x3 = 2 (x – 1) (2x2 + 2x + 3)
blfy, f ′(x) = 0 ls x = 1 izkIr gksrk gS rFkk 2x2 + 2x + 3 = 0 ls dksbZ okLrfod ewy izkIr ugha
gksrk gSA iqu% varjky osQ vaR; ¯cnq Hkh ugha gS] ftUgsa ml leqPp; esa tksM+k tk, ftuosQ fy, f ′
dk eku 'kwU; gS vFkkZr~ osQoy ,d ¯cnq] uker% x = 1 gh ,slk gSA bl ¯cnq ij f dk eku
f (1) = (1 – 3)2 + (1)4 = 5 ls iznÙk gSA bl izdkj] lSfud ,oa gsfydkWIVj osQ chp dh nwjh
f (1) = 5 gSA
è;ku nhft, fd 5 ;k rks mPpre eku ;k fuEure eku gSA D;ksafd
f (0) = (0 − 3) 2 + (0) 4 = 3 > 5 gSA
blls ;g fu"d"kZ fudyk fd f ( x ) dk fuEure eku 5 gSA vr% lSfud vkSj gsfydkWIVj osQ
chp dh fuEure nwjh 5 gSA

2018-19
vodyt osQ vuqiz;ksx 249

iz'ukoyh 6-5
1. fuEufyf[kr fn, x, iQyuksa osQ mPpre ;k fuEure eku] ;fn dksbZ rks] Kkr dhft,%
(i) f (x) = (2x – 1)2 + 3 (ii) f (x) = 9x2 + 12x + 2
(iii) f (x) = – (x – 1)2 + 10 (iv) g (x) = x3 + 1
2. fuEufyf[kr fn, x, iQyuksa osQ mPpre ;k fuEure eku] ;fn dksbZ gksa] rks Kkr dhft,%
(i) f (x) = | x + 2 | – 1 (ii) g (x) = – | x + 1| + 3
(iii) h (x) = sin (2x) + 5 (iv) f (x) = | sin 4x + 3|
(v) h (x) = x + 1, x ∈ (– 1, 1)
3. fuEufyf[kr iQyuksa osQ LFkkuh; mPpre ;k fuEure] ;fn dksbZ gksa rks] Kkr dhft, rFkk
LFkkuh; mPpre ;k LFkkuh; fuEure eku] tSlh fLFkfr gks] Hkh Kkr dhft,A
(i) f (x) = x2 (ii) g (x) = x3 – 3x
π
(iii) h (x) = sin x + cos x, 0 < x <
2
(iv) f (x) = sin x – cos x, 0 < x < 2 π
x 2
(v) f (x) = x3 – 6x2 + 9x + 15 (vi) g ( x ) = + , x>0
2 x
1
(vii) g ( x) = (viii) f ( x ) = x 1 − x , 0 < x < 1
x +2
2

4. fl¼ dhft, fd fuEufyf[kr iQyuksa dk mPpre ;k fuEure eku ugha gS%


(i) f (x) = ex (ii) g (x) = log x
(iii) h (x) = x3 + x2 + x +1
5. iznÙk varjkyksa esa fuEufyf[kr iQyuksa osQ fujis{k mPpre eku vkSj fujis{k fuEure eku Kkr dhft,A
(i) f (x) = x3, x ∈ [– 2, 2] (ii) f (x) = sin x + cos x , x ∈ [0, π]
1  9
(iii) f (x) = 4 x − x 2 , x ∈  −2,  (iv) f ( x ) = ( x − 1) 2 + 3, x ∈[ −3,1]
2  2
6. ;fn ykHk iQyu p (x) =41 – 72x – 18x2 ls iznÙk gS rks fdlh daiuh }kjk vftZr mPpre
ykHk Kkr dhft,A
7. varjky [0, 3] ij 3x4 – 8x3 + 12x2 – 48x + 25 osQ mPpre eku vksj fuEure eku Kkr dhft,A
8. varjky [0, 2π] osQ fdu ¯cnqvksa ij iQyu sin 2x viuk mPpre eku izkIr djrk gS\
9. iQyu sin x + cos x dk mPpre eku D;k gS?

2018-19
250 xf.kr

10. varjky [1, 3] esa 2x3 – 24x + 107 dk egÙke eku Kkr dhft,A blh iQyu dk varjky
[–3, –1] esa Hkh egÙke eku Kkr dhft,A
11. ;fn fn;k gS fd varjky [0, 2] esa x = 1 ij iQyu x4 – 62x2 + ax + 9 mPpre eku izkIr
djrk gS] rks a dk eku Kkr dhft,A
12. [0, 2π] ij x + sin 2x dk mPpre vkSj fuEure eku Kkr dhft,A
13. ,slh nks la[;k,¡ Kkr dhft, ftudk ;ksx 24 gS vkSj ftudk xq.kuiQy mPpre gksA
14. ,slh nks /u la[;k,¡ x vkSj y Kkr dhft, rkfd x + y = 60 vkSj xy3 mPpre gksA
15. ,slh nks /u la[;k,¡ x vkSj y Kkr dhft, ftudk ;ksx 35 gks vkSj xq.kuiQy x2 y5 mPpre gksA
16. ,slh nks /u la[;k,¡ Kkr dhft, ftudk ;ksx 16 gks vkSj ftuosQ ?kuksa dk ;ksx fuEure gksA
17. 18 cm Hkqtk osQ fVu osQ fdlh oxkZdkj VqdM+s ls izR;sd dksus ij ,d oxZ dkVdj rFkk bl
izdkj cusa fVu osQ iQydksa dks eksM+ dj <Ddu jfgr ,d lanwd cukuk gSA dkVs tkus okys
oxZ dh Hkqtk fdruh gksxh ftlls lanwd dk vk;ru mPpre gks\
18. 45 cm × 24 cm dh fVu dh vk;rkdkj pknj osQ dksuksa ij oxZ dkVdj rFkk bl izdkj
cusa fVu osQ iQydksa dks eksM+dj <Ddu jfgr ,d lanwd cukuk gSA dkVs tkus okys oxZ dh
Hkqtk fdruh gksxh ftlls lanwd dk vk;ru mPpre gksA
19. fl¼ fdft, fd ,d fn, o`Ùk osQ varxZr lHkh vk;rksa esa oxZ dk {ks=kiQy mPpre gksrk gSA
20. fl¼ fdft, fd iznÙk i`"B ,oa egÙke vk;ru osQ csyu dh Å¡pkbZ] vk/kj osQ O;kl osQ
cjkcj gksrh gSA
21. 100 cm3 vk;ru okys fMCcs lHkh can csyukdkj (yac o`Ùkh;) fMCcksa esa ls U;wure i`"B
{ks=kiQy okys fMCcs dh foek,¡ Kkr fdft,A
22. ,d 28 cm yacs rkj dks nks VqdM+ksa esa foHkDr fd;k tkuk gSA ,d VqdM+s ls oxZ rFkk nwljs
os o`Ùk cuk;k tkuk gSA nksuksa VqdM+ksa dh yack;ha fdruh gksuh pkfg, ftlls oxZ ,oa o`Ùk dk
lfEefyr {ks=kiQy U;wure gks\
23. fl¼ dhft, fd R f=kT;k osQ xksys osQ varxZr fo'kkyre 'kaoqQ dk vk;ru] xksys osQ vk;ru
8
dk gksrk gSA
27
24. fl¼ dhft, fd U;wure i`"B dk fn, vk;ru osQ yac o`Ùkh; 'kaoqQ dh Å¡pkbZ] vk/kj dh
f=kT;k dh 2 xquh gksrh gSA
25. fl¼ dhft, fd nh gqbZ fr;Zd Å¡pkbZ vkSj egÙke vk;ru okys 'kaoqQ dk v/Z 'kh"kZ dks.k
tan −1 2 gksrk gSA

2018-19
vodyt osQ vuqiz;ksx 251

26. fl¼ dhft, fd fn, gq, i`"B vkSj egÙke vk;ru okys yac o`Ùkh; 'kaoqQ dk v/Z 'kh"kZ dks.k

 1
sin −1   gksrk gSA
 3

iz'u la[;k 27 ls 29 esa lgh mÙkj dk pquko dhft,A


27. oØ x2 = 2y ij (0, 5) ls U;wure nwjh ij fLFkr ¯cnq gS%
(A) (2 2,4) (B) (2 2,0) (C) (0, 0) (D) (2, 2)

1 − x + x2
28. x, osQ lHkh okLrfod ekuksa osQ fy, dk U;wure eku gS%
1 + x + x2
1
(A) 0 (B) 1 (C) 3 (D)
3
1

29. [ x( x − 1) + 1]3 , 0 ≤ x ≤ 1 dk mPpre eku gS%


1
 1 3 1
(A)   (B) (C) 1 (D) 0
 3 2

fofo/ mnkgj.k
mnkgj.k 42 ,d dkj le; t = 0 ij ¯cnq P ls pyuk izkjaHk djosQ ¯cnq Q ij #d tkrh gSA
dkj }kjk t lsoaQM esa r; dh nwjh] x ehVj esa
2 t
x = t  2 −  }kjk iznÙk gSA
 3

dkj dks Q rd ig¡qpus esa yxk le; Kkr dhft, vkSj P rFkk Q osQ chp dh nwjh Hkh Kkr dhft,A
gy eku yhft, t lsdaM esa dkj dk osx v gSA
 t
vc x = t2  2 − 
 3
dx
;k v= = 4t – t2 = t (4 – t)
dt
bl izdkj v = 0 ls t = 0 ;k t = 4 izkIr gksrs gSaA

2018-19
252 xf.kr

vc P vkSj Q ij dkj dk osx v = 0 gSA blfy, Q ij dkj 4 lsoaQMksa esa igq¡psxhA vc 4 lsoaQMksa
esa dkj }kjk r; dh xbZ nwjh fuEufyf[kr gS%
 4  2  32
x] t = 4 = 42  2 −  = 16   = m
 3  3 3
mnkgj.k 43 ikuh dh ,d Vadh dk vkdkj] mèokZ/j v{k okys ,d mYVs yac o`Ùkh; 'kaoQq gS ftldk
'kh"kZ uhps gSA bldk v¼Z 'kh"kZ dks.k tan–1 (0.5) gSA blesa 5 m3/min dh nj ls ikuh Hkjk tkrk gSA
ikuh osQ Lrj osQ c<+us dh nj ml {k.k Kkr dhft, tc Vadh esa ikuh
dh Å¡pkbZ 10 m gSA
gy eku yhft, fd r, h vkSj α vko`Qfr 6-22 osQ vuqlkj gSA rc
r
tan α = gSA
h

−1  r 
blfy, α = tan   = tan–1 (0.5) (fn;k gS)
 h
r h
vr% = 0.5 ;k r =
h 2 vko`Qfr 6-22
eku yhft, 'kaoqQ dk vk;ru V gSA rc
2
1 2 1  h πh3
V = π r h = π  h =
3 3  2 12

dV d  πh3  dh
vr% =  ⋅ ( Ük`a[kyk fu;e }kjk)
dt dh  12  dt
π 2 dh
= h
4 dt

vc vk;ru osQ ifjorZu dh nj vFkkZr~ dV = 5 cm3/min vkSj h = 4 m gSA


dt
π 2 dh
blfy, 5= (4) ⋅
4 dt
dh 5 35  22 
;k = = m/min  π = 
dt 4π 88  7
35
vr% ikuh osQ Lrj osQ mBus dh nj m/min gSA
88

2018-19
vodyt osQ vuqiz;ksx 253

mnkgj.k 44 2 m Å¡pkbZ dk vkneh 6 m Å¡ps fctyh osQ [kaHks ls nwj 5 km/h dh leku pky
ls pyrk gSA mldh Nk;k dh yack;ha dh o`f¼ nj Kkr dhft,A
gy vko`Qfr 6-23 esa] eku yhft,] AB ,d fctyh
dk [kaHkk gSA B ¯cnq ij cYc gS vkSj eku yhft, fd
,d fo'ks"k le; t ij vkneh MN gSA eku yhft,
AM = l m vkSj O;fDr dh Nk;k MS gSA vkSj eku
yhft, MS = s m gSA
è;ku nhft, fd ∆ASB ~ ∆MSN
MS MN
;k =
AS AB
vko`Qfr 6-23
;k AS = 3s
[(D;ksafd MN = 2 m vkSj AB = 6 m (fn;k gS)]
bl izdkj AM = 3s – s = 2s gSA ijUrq AM = l ehVj gSA
blfy, l = 2s
dl ds
vr% = 2
dt dt
dl 5
D;ksafd = 5 km/h gSA vr% Nk;k dh yack;ha esa o`f¼ km/h dh nj ls gksrh gSA
dt 2
mnkgj.k 45 oØ x2 = 4y osQ fdlh ¯cnq ij vfHkyac dk lehdj.k Kkr dhft, tks ¯cnq (1] 2) ls
gksdj tkrk gSA
gy x2 = 4y dk] x osQ lkis{k vodyu djus ij%
dy x
=
dx 2
eku yhft, oØ x2 = 4y osQ vfHkyac osQ laioZQ ¯cnq osQ funsZ'kkad (h, k) gSaA vc (h, k) ij Li'kZ
js[kk dh izo.krk
dy  h

dx  ( h, k ) =
2
−2
⇒ (h, k) ij vfHkyac dh izo.krk = gSA
h

2018-19
254 xf.kr

blfy, (h, k) ij vfHkyac dk lehdj.k gS


−2
y–k= ( x − h) ... (1)
h
ijarq ;g ¯cnq (1, 2) ls xqtjrk gSA ge ikrs gSa fd
−2 2
2−k = (1 − h) ;k k = 2 + (1 − h) ... (2)
h h
D;ksafd (h, k) oØ x2 = 4y ij fLFkr gSA blfy,
h2 = 4k ... (3)
vc (2) o (3), ls h = 2 vkSj k = 1 izkIr gksrk gSA h vkSj k osQ bu ekuksa dks (1) esa j[kus ij vfHkyac
dk vHkh"V lehdj.k fuEufyf[kr izkIr gksrk gSA
−2
y −1 = ( x − 2) ;k x + y = 3
2
mnkgj.k 46 oØ y = cos(x + y), – 2π ≤ x ≤ 2π dh Li'kZ js[kkvksa osQ lehdj.k Kkr dhft,
tks js[kk x + 2y = 0 osQ lekarj gS
gy y = cos(x + y) dk x, osQ lkis{k vodyu djus ij]
dy − sin ( x + y )
=
dx 1 + sin ( x + y )

− sin ( x + y )
;k (x, y) ij Li'kZ js[kk dh izo.krk =
1 + sin ( x + y )

−1
pw¡fd fn, x, oØ dh Li'kZ js[kk x + 2y = 0 osQ lekarj gS ftldh izo.krk gSA vr%
2
− sin( x + y ) −1
=
1 + sin( x + y ) 2
;k sin (x + y) = 1
π,
;k x + y = nπ + (– 1)n n ∈ Z,
2
 n π
rc y = cos (x + y) = cos  nπ + ( −1)  , n ∈ Z,
2
= 0 lHkh n ∈ Z osQ fy,

2018-19
vodyt osQ vuqiz;ksx 255

3π π
iqu% D;ksafd − 2π ≤ x ≤ 2π , blfy, x = − vkSj x = gSA vr% fn, x, oØ osQ osQoy
2 2
 3π  π 
¯cnqvksa  − 2 , 0 vkSj  2 , 0 ij Li'kZ js[kk,¡] js[kk x + 2y = 0 osQ lekarj gaSA blfy, vHkh"V
Li'kZ js[kkvksa osQ lehdj.k
−1  3π 
y–0= x+  ;k 2 x + 4 y + 3π = 0
2 2 
−1  π
vkSj y–0= x−  ;k 2 x + 4 y − π = 0 gSA
2 2
mnkgj.k 47 mu varjkyksa dks Kkr dhft, ftuesa iQyu
3 4 4 3 36
f (x) = x − x − 3x 2 + x + 11
10 5 5
(a) o/Zeku (b) ßkleku gSA
gy gesa Kkr gS fd
3 4 4 3 36
f (x) = x − x − 3x 2 + x + 11
10 5 5
3 4 36
;k f ′(x) = (4 x 3 ) − (3x 2 ) − 3(2 x) +
10 5 5
6
= ( x − 1) ( x + 2) ( x − 3) (ljy djus ij)
5
vc f ′(x) = 0 ls x = 1, x = – 2, vkSj x = 3 izkIr gksrs
gSaA x = 1, – 2, vkSj 3 okLrfod js[kk dks pkj vla;qDr
varjkyksa uker% (– ∞, – 2), (– 2, 1), (1, 3) vkSj (3, ∞) esa vko`Qfr 6-24
foHkDr djrk gSA (vko`Qfr 6.24)
varjky (– ∞, – 2) dks yhft, vFkkZr~ tc – ∞ < x < – 2 gSA
bl fLFkfr esa ge x – 1 < 0, x + 2 < 0 vkSj x – 3 < 0 izkIr djrs gSaA
(fo'ks"k :i ls x = –3 osQ fy, nsf[k, fd] f ′(x) = (x – 1) (x + 2) (x – 3)
= (– 4) (– 1) (– 6) < 0) blfy,] tc – ∞ < x < – 2 gS] rc f ′(x) < 0 gSA
vr% (– ∞, – 2) esa iQyu f ßkleku gSA
varjky (–2, 1), dks yhft, vFkkZr~ tc – 2 < x < 1 gSA
bl n'kk esa x – 1 < 0, x + 2 > 0 vkSj x – 3 < 0 gSA

2018-19
256 xf.kr

(fo'ks"k :i ls x = 0, osQ fy, è;ku nhft, fd] f ′(x) = (x – 1) (x + 2) (x – 3) = (–1)


(2) (–3) = 6 > 0)
blfy, tc – 2 < x < 1 gS] rc f ′(x) > 0 gSA
vr% (&2] 1) esa iQyu f o/Zeku gSA
vc varjky (1,3) dks yhft, vFkkZr~ tc 1 < x < 3 gSA bl n'kk esa fd x – 1 > 0, x + 2 > 0
vkSj x – 3 < 0 gSA
blfy,] tc 1 < x < 3 gS] rc f ′(x) < 0 gSA
vr% (1, 3) esa iQyu f ßkleku gSA var esa varjky (3, ∞), dks yhft, vFkkZr~ tc
3 < x < ∞ gSA bl n'kk esa x – 1 > 0, x + 2 > 0 vkSj x – 3 > 0 gSA blfy, tc
x > 3 gS rks f ′(x) > 0 gSA
vr% varjky (3, ∞) esa iQyu f o/Zeku gSA

mnkgj.k 48 fl¼ dhft, fd f (x) = tan–1(sin x + cos x), x > 0 ls iznÙk iQyu f ,  0, π  esa
 4
fujarj o/Zeku iQyu gSA
gy ;gk¡
f (x) = tan–1(sin x + cos x), x > 0
1
;k f ′(x) = (cos x − sin x )
1 + (sin x + cos x) 2
cos x − sin x
= (ljy djus ij)
2 + sin 2 x
 π
è;ku nhft, fd  0, 4  esa lHkh x osQ fy, 2 + sin 2x > 0 gSA
blfy, f ′(x) > 0 ;fn cos x – sin x > 0
;k f ′(x) > 0 ;fn cos x > sin x ;k cot x > 1
π
vc cot x > 1 ;fn tan x < 1, vFkkZr~] ;fn 0 < x <
4
  π
blfy, varjky  0, 4  esa f ′(x) > 0 gSA
π
vr%  0,  esa f ,d o/Zeku iQyu gSA
 4 

2018-19
vodyt osQ vuqiz;ksx 257

mnkgj.k 49 3 cm f=kT;k dh ,d o`Ùkkdkj fMLd dks xeZ fd;k tkrk gSA izlkj osQ dkj.k bldh
f=kT;k 0.05 cm/s dh nj ls c<+ jgh gSA og nj Kkr dhft, ftlls bldk {ks=kiQy c<+ jgk gS
tc bldh f=kT;k 3.2 cm gSA
gy eku yhft, fd nh xbZ r'rjh dh f=kT;k r vkSj bldk {ks=kiQy A gSA
rc A = π r2
dA dr
;k = 2πr ( Üak`[kyk fu;e }kjk)
dt dt
dr
vc f=kT;k dh o`f¼ dh lfUudV nj = dr = ∆t = 0.05 cm/s gSA
dt
blfy, {ks=kiQy esa o`f¼ dh lfUudV nj fuEukafdr gS
dA
dA = ( ∆t )
dt
 dr 
= 2πr  ∆t  = 2πr (dr)
 dt 
= 2π (3.2) (0.05) (r = 3.2 cm)
= 0.320π cm2/s
mnkgj.k 50 ,sY;wfefu;e dh 3 m × 8 m dh vk;rkdkj pknj osQ izR;sd dksus ls leku oxZ dkVus
ij cus ,Y;wfefu;e osQ iQydksa dks eksM+dj <Ddu jfgr ,d lanwd cukuk gSA bl izdkj cus lanwd
dk vf/dre vk;ru Kkr dhft,A
gy eku yhft, fd vyx fd, x, oxZ dh Hkqtk dh yack;ha x m gS] rc ckDl dh Å¡pkbZ x,
yack;ha 8 – 2x vkSj pkSM+kbZ 3 – 2x (vko`Qfr 6.25) gSA ;fn lanwd dk vk;ru V(x) gS rc

vko`Qfr 6-25
V (x) = x (3 2x) (8 – 2x)

V′( x ) = 12 x 2 − 44 x + 24 = 4( x − 3)(3x − 2)
= 4x3 – 22x2 + 24x,vr% 
V′′( x) = 24 x − 44

2018-19
258 xf.kr

2
vc V′(x) = 0 ls x = vkSj x = 3 izkIr gksrk gSA ijUrq x ≠ 3 (D;ksa?)
3
2
blfy, x=
3
 2  2
vc V ′′   = 24   − 44 = −28 < 0
 3  3
2 2
blfy, x = mPpre dk ¯cnq gS vFkkZr~ ;fn ge pknj osQ izR;sd fdukjs ls m Hkqtk osQ oxZ
3 3
gVk nsa vkSj 'ks"k pknj ls ,d land
w cuk, rks land
w dk vk;ru vf/dre gksxk tks fuEufyf[kr gS%
3 2
2
V   = 4   − 22   + 24   =
2 2 2 200 3
m
3 3 3 3 27
 x 
mnkgj.k 51 ,d fuekZrk Rs  5 − 100  izfr bdkbZ dh nj ls x bdkb;k¡ csp ldrk gSA
x 
x bdkb;ksa dk mRikn ewY; Rs  + 500 gSA bdkb;ksa dh og la[;k Kkr dhft, tks mls
5
vf/dre ykHk vftZr djus osQ fy, cspuh pkfg,A
gy eku yhft, x bdkb;ksa dk foØ; ewY; S (x) gS vkSj x bdkb;ksa dk mRikn ewY; C (x) gSA
rc ge ikrs gSa
 x  x2
S(x) =  5 −  x = 5x −
 100  100
x
vkSj C (x) = + 500
5
bl izdkj] ykHk iQyu P (x) fuEukafdr }kjk iznÙk gSA
x2 x
P(x) = S( x) − C( x ) = 5 x − − − 500
100 5
24 x2
vFkkZr~ x−
P(x) = − 500
5 100
24 x
;k P′(x) = −
5 50
−1 −1
vc P′(x) = 0 ls x = 240 izkIr gksrk gS vkSj P′′( x) = . blfy, P′′(240) = < 0 gSA
50 50

2018-19
vodyt osQ vuqiz;ksx 259

bl izdkj x = 240 mPpre dk ¯cnq gSA vr% fuekZrk vf/dre ykHk vftZr dj ldrk gS ;fn
og 240 bdkb;k¡ csprk gSA

vè;k; 6 ij fofo/ iz'ukoyh


1. vodyt dk iz;ksx djosQ fuEufyf[kr esa ls izR;sd dk lfUudV eku Kkr dhft,%
1
1
(a)  17  4 (b) (33)− 5
 
81

log x
2. fl¼ dhft, fd f ( x) = }kjk iznÙk iQyu x = e ij mPpre gSA
x
3. fdlh fuf'pr vk/kj b osQ ,d lef}ckgq f=kHkqt dh leku Hkqtk,¡ 3 cm/s dh nj ls ?kV
jgha gSA ml le; tc f=kHkqt dh leku Hkqtk,¡ vk/kj osQ cjkcj gSa] mldk {ks=kiQy fdruh
rsth ls ?kV jgk gSA
4. oØ x2 = 4y osQ ¯cnq (1] 2) ij vfHkyac dk lehdj.k Kkr dhft,A
5. fl¼ dhft, fd oØ x = a cosθ + aθ sinθ, y = a sinθ – aθ cosθ osQ fdlh ¯cnq θ
ij vfHkyac ewy ¯cnq ls vpj nwjh ij gSA
6. varjky Kkr dhft, ftu ij
4sin x − 2 x − x cos x
f ( x) =
2 + cos x
ls iznÙk iQyu f (i) fujarj o/Zeku (ii) fujarj ßkleku gSA
1
7. varjky Kkr dhft, ftu ij f ( x) = x3 + , x ≠ 0 ls iznÙk iQyu
x3

(i) o/Zeku (ii)ßkleku gSA


x2 y 2
8. nh?kZo`Ùk + = 1 osQ varxZr ml lef}ckgq f=kHkqt dk egÙke {ks=kiQy Kkr dhft,
a 2 b2
ftldk 'kh"kZ nh?kZ v{k dk ,d fljk gSA
9. vk;rkdkj vk/kj o vk;rkdkj nhokjksa dh 2 m xgjh vkSj 8 m3 vk;ru dh ,d fcuk
<Ddu dh Vadh dk fuekZ.k djuk gSA ;fn Vadh osQ fuekZ.k esa vk/kj osQ fy, Rs 70/m2
vkSj nhokjksa ij Rs 45/m2 O;; vkrk gS rks fuEure [kpZ ls cuh Vadh dh ykxr D;k gS\

2018-19
260 xf.kr

10. ,d o`Ùk vkSj ,d oxZ osQ ifjekiksa dk ;ksx k gS] tgk¡ k ,d vpj gSA fl¼ dhft, fd muosQ
{ks=kiQyksa dk ;ksx fuEure gS] tc oxZ dh Hkqtk o`Ùk dh f=kT;k dh nqxquh gSA
11. fdlh vk;r osQ Åij cus v/Zo`Ùk osQ vkdkj okyh f[kM+dh gSA f[kM+dh dk laiw.kZ ifjeki
10 m gSA iw.kZr;k [kqyh f[kM+dh ls vf/dre izdk'k vkus osQ fy, f[kM+dh dh foek,¡ Kkr
dhft,A
12. f=kHkqt dh Hkqtkvksa ls a vkSj b nwjh ij f=kHkqt osQ d.kZ ij fLFkr ,d ¯cnq gSA fl¼ dhft,
2 2 3
fd d.kZ dh U;wure yackbZ (a 3 + b 3 ) 2 gSA
13. mu ¯cnqvksa dks Kkr dhft, ftu ij f (x) = (x – 2)4 (x + 1)3 }kjk iznÙk iQyu f dk]
(i) LFkkuh; mPpre ¯cnq gS (ii) LFkkuh; fuEure ¯cnq gS
(iii) ur ifjorZu ¯cnq gSA
14. f (x) = cos2 x + sin x, x ∈ [0, π] }kjk iznÙk iQyu f dk fujis{k mPpre vkSj fuEure eku
Kkr dhft,A
15. fl¼ dhft, fd ,d r f=kT;k osQ xksys osQ varxZr mPpre vk;ru osQ yac o`Ùkh; 'kaoqQ dh
4r
Å¡pkbZ gSA
3
16. eku yhft, [a, b] ij ifjHkkf"kr ,d iQyu f gS bl izdkj fd lHkh x ∈ (a, b) osQ fy,
f ′(x) > 0 gS rks fl¼ dhft, fd (a, b) ij f ,d o/Zeku iQyu gSA
17. fl¼ dhft, fd ,d R f=kT;k osQ xksys osQ varxZr vf/dre vk;ru osQ csyu dh Å¡pkbZ
2R
gSA vf/dre vk;ru Hkh Kkr dhft,A
3
18. fl¼ dhft, fd v¼Z'kh"kZ dks.k α vkSj Å¡pkbZ h osQ yac o`Ùkh; 'kaoqQ osQ varxZr vf/dre
vk;ru osQ csyu dh Å¡pkbZ] 'kaoqQ osQ Å¡pkbZ dh ,d frgkbZ gS vkSj csyu dk vf/dre
4 3 2
vk;ru πh tan α gSA
27
19 ls 24 rd osQ iz'uksa osQ lgh mÙkj pqfu,A
19. ,d 10 m f=kT;k osQ csyukdkj Vadh esa 314 m3/h dh nj ls xsgw¡ Hkjk tkrk gSA Hkjs x,
xsgw¡ dh xgjkbZ dh o`f¼ nj gS%
(A) 1 m/h (B) 0.1 m/h
(C) 1.1 m/h (D) 0.5 m/h

2018-19
vodyt osQ vuqiz;ksx 261

20. oØ x = t2 + 3t – 8, y = 2t2 – 2t – 5 osQ ¯cnq (2,– 1) ij Li'kZ js[kk dh izo.krk gS%


22 6 7 −6
(A) (B) (C) (D)
7 7 6 7
21. js[kk y = mx + 1, oØ y = 4x dh ,d Li'kZ js[kk gS ;fn m dk eku gS%
2

1
(A) 1 (B) 2 (C) 3 (D)
2
22. oØ 2y + x2 = 3 osQ ¯cnq (1,1) ij vfHkyac dk lehdj.k gS%
(A) x + y = 0 (B) x – y = 0
(C) x + y +1 = 0 (D) x – y = 1
23. oØ x = 4y dk ¯cnq (1,2) ls gks dj tkus okyk vfHkyac gS%
2

(A) x + y = 3 (B) x – y = 3
(C) x + y = 1 (D) x – y = 1
24. oØ 9y2 = x3 ij os ¯cnq tgk¡ ij oØ dk vfHkyac v{kksa ls leku var% [kaM cukrk gS%
 8  −8 
(A)  4, ±  (B)  4, 
 3 3

 3  3
(C)  4, ±  (D)  ± 4, 
 8  8

lkjka'k
® ;fn ,d jkf'k y ,d nwljh jkf'k x osQ lkis{k fdlh fu;e y = f ( x ) dks larq"V djrs
dy
gq, ifjofrZr gksrh gS rks (;k f ′ ( x ) ) x osQ lkis{k y osQ ifjorZu dh nj dks fu:fir
dx
dy 
djrk gS vkSj dx  (;k f ′(x0 ) ) x = x0 ij) x osQ lkis{k y osQ fu:fir dh nj dks
x = x0

fu:fir djrk gSA


® ;fn nks jkf'k;k¡ x vkSj y, t osQ lkis{k ifjofrZr gks jgh gksa vFkkZr~ x = f (t ) vkSj y = g (t ) ,
rc Üka`[kyk fu;e ls
dy dy dx dx
= , ;fn ≠0
dx dt dt dt

2018-19
262 xf.kr

® ,d iQyu f
(a) varjky [a, b] eas o/Zeku gS ;fn
[a, b] eas x1 < x2 ⇒ f (x1) ≤ f (x2), lHkh x1, x2 ∈ (a, b) osQ fy,
fodYir% ;fn izR;sd x ∈ [a, b] osQ fy, f ′(x) ≥ 0, gSA
(b) varjky [a, b] esa ßkleku gS ;fn
[a, b] esa x1 < x2 ⇒ f (x1) ≥ f (x2), lHkh x1, x2 ∈ (a, b) osQ fy,
fodYir% ;fn izR;sd x ∈ [a, b] osQ fy, f ′(x) ≤ 0 gSA
® oØ y = f (x) osQ ¯cnq (x0, y0) ij Li'kZ js[kk dk lehdj.k
dy 
y − y0 = ( x − x0 ) gSA
dx  ( x0 , y0 )

dy
® ;fn ¯cnq ( x0 , y0 ) ij
dx
dk vfLrRo ugha gS] rks bl ¯cnq ij Li'kZ js[kk y-v{k osQ
lekarj gS vkSj bldk lehdj.k x = x0 gSA
dy 
® ;fn oØ y = f (x) dh Li'kZ js[kk x = x0 ij] x&v{k osQ lekarj gS] rks dx  = 0 gSA
x = x0

® oØ y = f (x) osQ ¯cnq ( x0 , y0 ) ij vfHkyac dk lehdj.k

−1
y − y0 = ( x − x0 ) gSA
dy 
dx  ( x0 , y0 )

dy
® ;fn ¯cnq ( x0 , y0 ) ij
dx
= 0 rc vfHkyac dk lehdj.k x = x0 gSA

dy
® ;fn ¯cnq ( x0 , y0 ) ij
dx
dk vfLrRo ugha gS rc bl ¯cnq ij vfHkyac x-v{k osQ
lekarj gS vkSj bldk lehdj.k y = y0 gSA
® eku yhft, y = f (x) vkSj ∆x, x esa NksVh o`f¼ gS vkSj x dh o`f¼ osQ laxr y esa o`f¼
∆y gS vFkkZr~ ∆y = f (x + ∆x) – f (x) rc
 dy 
dy = f ′ ( x )dx ;k dy =   ∆x
 dx 

2018-19
vodyt osQ vuqiz;ksx 263

tc dx = ∆x vis{kko`Qr cgqr NksVk gS rks ;g ∆y dk ,d vPNk lfUudVu gSA bls ge


dy ≈ ∆y osQ }kjk fu:fir djrs gSaA

® iQyu f osQ izkar esa ,d ¯cnq c ftl ij ;k rks f ′(c) = 0 ;k f vodyuh; ugha gS]
f dk Økafrd ¯cnq dgykrk gSA

® izFke vodyt ijh{k.k eku yhft, ,d foo`Ùk varjky I ij iQyu f ifjHkkf"kr gSA
eku yhft, I esa ,d Økafrd ¯cnq c ij iQyu f larr gS rc
(i) tc x ¯cnq c osQ ck;ha vksj ls nk;ha vksj c<+rk gS rc f ′(x) dk fpÉ /u ls ½.k
esa ifjofrZr gksrk gS vFkkZr~ c osQ ck;haa vksj vkSj i;kZIr fudV izR;sd ¯cnq ij ;fn
f ′(x) > 0 rFkk c osQ nk;haa vksj vkSj i;kZIr fudV izR;sd ¯cnq ij ;fn f ′(x) <
0 rc c LFkkuh; mPpre dk ,d ¯cnq gSA
(ii) tc x ¯cnq c osQ ck;ha vksj ls nk;ha vksj c<+rk gS rc f ′(x) dk fpÉ ½.k ls
/u esa ifjofrZr gksrk gS vFkkZr~ c osQ ck;haa vksj vkSj i;kZIr fudV izR;sd ¯cnq ij
;fn f ′(x) < 0 rFkk c osQ nk;haa vksj vkSj i;kZIr fudV izR;sd ¯cnq ij ;fn f ′(x) >
0 rc c LFkkuh; fuEure dk ,d ¯cnq gSA
(iii) tc x ¯cnq c osQ ck;ha vksj ls nk;ha vksj c<+rk gS rc f ′(x) ifjofrZr ugha gksrk
gS rc c u rks LFkkuh; mPpre dk ¯cnq gS vkSj u gh LFkkuh; fuEure dk ¯cnqA
okLro esa bl izdkj dk ¯cnq ,d ufr ifjorZu ¯cnq gSA
® f}rh; vodyt ijh{k.k eku yhft, ,d varjky I ij f ,d ifjHkkf"kr iQyu gS
vkSj c ∈ I gSA eku yhft, f, c ij yxkrkj nks ckj vodyuh; gSA rc
(i) ;fn f ′(c) = 0 vkSj f ″(c) < 0 rc x = c LFkkuh; mPpre dk ,d ¯cnq gSA
f dk LFkkuh; mPpre eku f (c) gSA
(ii) ;fn f ′(c) = 0 vkSj f ″(c) > 0 rc x = c LFkkuh; fuEure dk ,d ¯cnq gSA bl
fLFkfr esa f dk LFkkuh; fuEure eku f (c) gSA
(iii) ;fn f ′(c) = 0 vkSj f ″(c) = 0, rc ;g ijh{k.k vliQy jgrk gSA
bl fLFkfr esa ge iqu% okil izFke vodyt ijh{k.k dk iz;ksx djrs gSa vkSj ;g
Kkr djrs gSa fd c mPpre] fuEure ;k ufr ifjorZu dk ¯cnq gSA
® fujis{k mPpre vkSj fujis{k fuEure ekuksa dks Kkr djus dh O;kogkfjd fof/ gS%
pj.k 1: varjky esa f osQ lHkh Økafrd ¯cnq Kkr dhft, vFkkZr~ x osQ os lHkh eku Kkr
dhft, tgk¡ ;k rks f ′(x) = 0 ;k f vodyuh; ugha gSA

2018-19
264 xf.kr

pj.k 2: varjky osQ vaR; ¯cnq yhft,A


pj.k 3: (pj.k 1 o 2 ls izkIr) lHkh ¯cnqvksa ij f osQ ekuksa dh x.kuk dhft,A
pj.k 4: pj.k 3 esa x.kuk ls izkIr f osQ lHkh ekuksa esa ls mPpre vkSj fuEure ekuksa
dks yhft,A ;gh mPpre eku] f dk fujis{k mPpre eku vkSj fuEure eku] f dk
fujis{k fuEure eku gksaxsA

—v —

2018-19

You might also like