3.10 Solutions 17r3l2v
3.10 Solutions 17r3l2v
3.10 Solutions 17r3l2v
d .f .x/g.x//0
ln f .x/g.x/ D :
dx f .x/g.x/
Thus,
.f .x/g.x//0 f 0 .x/g.x/ C f .x/g 0 .x/
D ;
f .x/g.x/ f .x/g.x/
or
d 1
logb x D
dx .ln b/x
d d ln x 1
SOLUTION logb x D D .
dx dx ln b .ln b/x
x 2 C 2xy C y 3 D 7
SOLUTION Using the product rule and the chain rule we see that
d dt
.x sin t/ D x cos t C sin t;
dx dx
so the correct answer is (b).
Exercises
dy
1. Show that if you differentiate both sides of x 2 C 2y 3 D 6, the result is 2x C 6y 2 dx D 0. Then solve for dy=dx and evaluate
it at the point .2; 1/.
SOLUTION
d 2 d
.x C 2y 3 / D 6
dx dx
dy
2x C 6y 2 D0
dx
dy
2x C 6y 2 D0
dx
dy
6y 2 D !2x
dx
dy !2x
D :
dx 6y 2
dy !4
At .2; 1/, dx
D 6 D ! 23 .
dy
2. Show that if you differentiate both sides of xy C 4x C 2y D 1, the result is .x C 2/ dx C y C 4 D 0. Then solve for dy=dx
and evaluate it at the point .1; !1/.
SOLUTION Applying the product rule
d d
.xy C 4x C 2y/ D 1
dx dx
dy dy
x CyC4C2 D0
dx dx
dy
.x C 2/ D !.y C 4/
dx
dy yC4
D! :
dx xC2
At .1; !1/, dy=dx D !3=3 D !1.
In Exercises 38, differentiate the expression with respect to x, assuming that y D f .x/.
3. x 2 y 3
SOLUTION Assuming that y depends on x, then
d ! 2 3"
x y D x 2 " 3y 2 y 0 C y 3 " 2x D 3x 2 y 2 y 0 C 2xy 3 :
dx
x3
4.
y2
SOLUTION Assuming that y depends on x, then
!
d x3 y 2 .3x 2 / ! x 3 2yy 0 3x 2 2x 3 y 0
2
D 4
D 2 ! :
dx y y y y3
5. .x 2 C y 2 /3=2
SOLUTION Assuming that y depends on x, then
# "3=2 $
d ! 2 3! 2 "1=2 % & % &q
x C y2 D x C y2 2x C 2yy 0 D 3 x C yy 0 x2 C y2:
dx 2
302 CHAPTER 3 DIFFERENTIATION
6. tan.xy/
d % &
SOLUTION Assuming that y depends on x, then .tan .xy// D xy 0 C y sec2 .xy/.
dx
y
7.
yC1
d y .y C 1/y 0 ! yy 0 y0
SOLUTION Assuming that y depends on x, then D 2
D .
dx y C 1 .y C 1/ .y C 1/2
8. e y=x
SOLUTION Assuming that y depends on x, then
# $
d y=x xy 0 ! y
e D e y=x :
dx x2
9. 3y 3 C x 2 D 5
2x
SOLUTION Let 3y 3 C x 2 D 5. Then 9y 2 y 0 C 2x D 0, and y 0 D ! .
9y 2
10. y 4 ! 2y D 4x 3 C x
SOLUTION Let y 4 ! 2y D 4x 3 C x. Then
d d
.y 4 ! 2y/ D .4x 3 C x/
dx dx
4y 3 y 0 ! 2y 0 D 12x 2 C 1
y 0 .4y 3 ! 2/ D 12x 2 C 1
12x 2 C 1
y0 D
4y 3 ! 2
11. x 2 y C 2x 3 y D x C y
SOLUTION Let x 2 y C 2x 3 y D x C y. Then
x 2 y 0 C 2xy C 2x 3 y 0 C 6x 2 y D 1 C y 0
x 2 y 0 C 2x 3 y 0 ! y 0 D 1 ! 2xy ! 6x 2 y
1 ! 2xy ! 6x 2 y
y0 D :
x 2 C 2x 3 ! 1
12. xy 2 C x 2 y 5 ! x 3 D 3
SOLUTION Let xy 2 C x 2 y 5 ! x 3 D 3. Then
2xyy 0 C y 2 C 5x 2 y 4 y 0 C 2xy 5 ! 3x 2 D 0
.2xy C 5x 2 y 4 /y 0 D 3x 2 ! y 2 ! 2xy 5
3x 2 ! y 2 ! 2xy 5
y0 D
2xy C 5x 2 y 4
13. x 3 R5 D 1
3x 2 R5 3R
SOLUTION Let x 3 R5 D 1. Then x 3 " 5R4 R0 C R5 " 3x 2 D 0, and R0 D ! D! .
5x 3 R4 5x
14. x 4 C z 4 D 1
SOLUTION Let x 4 C z 4 D 1. Then 4x 3 C 4z 3 z 0 D 0, and z 0 D !x 3 =z 3 .
y x
15. C D 2y
x y
S E C T I O N 3.10 Implicit Differentiation 303
SOLUTION Let
y x
C D 2y:
x y
Then
xy 0 ! y y ! xy 0
2
C D 2y 0
x y2
# $
1 x y 1
! 2 ! 2 y0 D 2 !
x y x y
y 2 ! x 2 ! 2xy 2 0 y2 ! x2
y D
xy 2 x2y
y.y 2 ! x 2 /
y0 D :
x.y 2 ! x 2 ! 2xy 2 /
p 1 1
16. xCs D C
x s
SOLUTION Let .x C s/1=2 D x !1 C s !1 . Then
1 % &
.x C s/!1=2 1 C s 0 D !x !2 ! s !2 s 0 :
2
p
Multiplying by 2x 2 s 2 x C s and then solving for s 0 gives
% & p p
x 2 s 2 1 C s 0 D !2s 2 x C s ! 2x 2 s 0 x C s
p p
x 2 s 2 s 0 C 2x 2 s 0 x C s D !2s 2 x C s ! x 2 s 2
! p " ! p "
x 2 s 2 C 2 x C s s 0 D !s 2 x 2 C 2 x C s
% p &
s2 x2 C 2 x C s
s0 D ! % p &:
x2 s2 C 2 x C s
17. y !2=3 C x 3=2 D 1
SOLUTION Let y !2=3 C x 3=2 D 1. Then
2 3 9 1=2 5=3
! y !5=3 y 0 C x 1=2 D 0 or y0 D x y :
3 2 4
18. x 1=2 C y 2=3 D !4y
SOLUTION Let x 1=2 C y 2=3 D y !4 . Then 12 x !1=2 C 23 y !1=3 y 0 D !4y !5 y 0 , and
1 !1=2
2x
y0 D ! 2 :
3 y !1=3 C 4y !5
1
19. y C D x 2 C x
y
1
SOLUTION Let y C y D x 2 C x. Then
1 0 2x C 1 .2x C 1/y 2
y0 ! y D 2x C 1 or y0 D D :
y2 1 ! y !2 y2 ! 1
20. sin.xt/ D t
dt
SOLUTION In what follows, t 0 D dx
. Applying the chain rule and the product rule, we get:
d d
sin.xt/ D t
dx dx
cos.xt/.xt 0 C t/ D t 0
x cos.xt/t 0 C t cos.xt/ D t 0
x cos.xt/t 0 ! t 0 D !t cos.xt/
t 0 .x cos.xt/ ! 1/ D !t cos.xt/
!t cos.xt/
t0 D :
x cos.xt/ ! 1
304 CHAPTER 3 DIFFERENTIATION
.1 C y 0 / cos.x C y/ D 1 ! y 0 sin y
cos.x C y/ C y 0 cos.x C y/ D 1 ! y 0 sin y
.cos.x C y/ C sin y/ y 0 D 1 ! cos.x C y/
1 ! cos.x C y/
y0 D :
cos.x C y/ C sin y
22. tan.x 2 y/ D .x C y/3
% &
SOLUTION Let tan x 2 y D .x C y/3 . Then
e y ! 2y
y0 D :
2x C 3y 2 ! xe y
24. e xy D sin.y 2 /
% &
SOLUTION Let e xy D sin.y 2 /. Then e xy xy 0 C y D 2y cos.y 2 /y 0 , whence
ye xy
y0 D :
2y cos.y 2 / ! xe xy
25. ln x C ln y D x ! y
SOLUTION Let ln x C ln y D x ! y. Then
1
1 y0 1! xy ! y
C D 1 ! y0 or y0 D x
1
D :
x y 1C y
xy C x
26. ln.x 2 C y 2 / D x C 4
SOLUTION Let ln.x 2 C y 2 / D x C 4. Then
2x C 2yy 0 x 2 C y 2 ! 2x
D 1 or y0 D :
x2 C y2 2y
27. Show that x C yx !1 D 1 and y D x ! x 2 define the same curve (except that .0; 0/ is not a solution of the first equation) and
that implicit differentiation yields y 0 D yx !1 ! x and y 0 D 1 ! 2x. Explain why these formulas produce the same values for the
derivative.
SOLUTION Multiply the first equation by x and then isolate the y term to obtain
x2 C y D x ) y D x ! x2:
1 ! yx !2 C x !1 y 0 D 0 or y 0 D yx !1 ! x:
From the first equation, we find yx !1 D 1 ! x; upon substituting this expression into the previous derivative, we find
y 0 D 1 ! x ! x D 1 ! 2x;
10 ! 3x 2 y 2 ! 4x 3 y 3
3x 2 y 2 C 2x 3 yy 0 C 4x 3 y 3 C 3x 4 y 2 y 0 ! 10 C y 0 D 0 or y0 D :
2x 3 y C 3x 4 y 2 C 1
Thus, at P D .2; 1/,
2.3/ ! 24.1/y 0 D 0:
so that 24y 0 D 6, or y 0 D 14 :
# $
2!! !
30. sin2 .3y/ D x C y, ;
4 4
SOLUTION Taking the derivative of both sides of sin2 .3y/ D x C y yields
2 sin.3y/ cos.3y/.3y 0 / D 1 C y 0 :
2!! !
If x D 4 and y D 4, we get
# $ # $
3! 3!
6 sin cos y0 D 1 C y0:
4 4
Using
# $ p # $ p
3! 2 3! 2
sin D and cos D!
4 2 4 2
we find
p ! p !
2 2
!6 y0 D 1 C y0
2 2
!3y 0 D 1 C y 0
1
y0 D ! :
4
In Exercises 3138, find an equation of the tangent line at the given point.
31. xy C x 2 y 2 D 5, .2; 1/
SOLUTION Taking the derivative of both sides of xy C x 2 y 2 D 5 yields
xy 0 C y C 2xy 2 C 2x 2 yy 0 D 0:
Substituting x D 2; y D 1, we find
1
2y 0 C 1 C 4 C 8y 0 D 0 or y0 D ! :
2
Hence, the equation of the tangent line at .2; 1/ is y ! 1 D ! 12 .x ! 2/ or y D ! 12 x C 2.
32. x 2=3 C y 2=3 D 2, .1; 1/
SOLUTION Taking the derivative of both sides of x 2=3 C y 2=3 D 2 yields
2 !1=3 2 !1=3 0
x C y y D 0:
3 3
Substituting x D 1, y D 1 yields 23 C 23 y 0 D 0, so that 1 C y 0 D 0, or y 0 D !1. Hence, the equation of the tangent line at .1; 1/ is
y ! 1 D !.x ! 1/, or y D 2 ! x.
306 CHAPTER 3 DIFFERENTIATION
2x C cos yy 0 D y 2 C 2xyy 0 :
Substituting x D 1; y D 0, we find
2 C y 0 D 0 or y 0 D !2:
% !& % !& 0
cos.x ! y/.1 ! y 0 / D cos y C ! x sin y C y:
4 4
! !
Substituting x D 4 ;y D 4, we find
! 0 4
1.1 ! y 0 / D 0 ! y or y0 D :
4 4C!
Hence, the equation of the tangent line is
! 4 ! !"
y! D x! :
4 4C! 4
35. 2x 1=2 C 4y !1=2 D xy, .1; 4/
SOLUTION Taking the derivative of both sides of 2x 1=2 C 4y !1=2 D xy yields
x !1=2 ! 2y !3=2 y 0 D xy 0 C y:
Substituting x D 1; y D 4, we find
# $
1 12
1!2 y 0 D y 0 C 4 or y0 D ! :
8 5
x 2 e y y 0 C 2xe y C ye x C e x y 0 D 0:
Substituting x D 2; y D 0, we find
4
4y 0 C 4 C 0 C e 2 y 0 D 0 or y0 D ! :
4 C e2
Hence, the equation of the tangent line is
4
yD! .x ! 2/:
4 C e2
x2
37. e 2x!y D , .2; 4/
y
x2
SOLUTION taking the derivative of both sides of e 2x!y D yields
y
2xy ! x 2 y 0
e 2x!y .2 ! y 0 / D :
y2
Substituting x D 2; y D 4, we find
16 ! 4y 0 4
e 0 .2 ! y 0 / D or y0 D :
16 3
Hence, the equation of the tangent line is y ! 4 D 43 .x ! 2/ or y D 4
3x C 43 .
S E C T I O N 3.10 Implicit Differentiation 307
2 !16
38. y 2 e x ! xy !1 D 2, .4; 2/
2 !16
SOLUTION Taking the derivative of both sides of y 2 e x ! xy !1 D 2 yields
2 !16 2 !16
2xy 2 e x C 2yy 0 e x C xy !2 y 0 ! y !1 D 0:
Substituting x D 4; y D 2, we find
1 63
32e 0 C 4y 0 e 0 C y 0 ! D 0 or y0 D ! :
2 10
Hence, the equation of the tangent line is y ! 2 D ! 63 63
10 .x ! 4/ or y D ! 10 x C
136
5 .
39. Find the points on the graph of y2 D x3! 3x C 1 (Figure 1) where the tangent line is horizontal.
(a) First show that 2yy 0 D 3x 2 ! 3, where y 0 D dy=dx.
(b) Do not solve for y 0 . Rather, set y 0 D 0 and solve for x. This yields two values of x where the slope may be zero.
(c) Show that the positive value of x does not correspond to a point on the graph.
(d) The negative value corresponds to the two points on the graph where the tangent line is horizontal. Find their coordinates.
y
x
2 1 1 2
FIGURE 1 Graph of y 2 D x 3 ! 3x C 1.
SOLUTION
(a) Applying implicit differentiation to y 2 D x 3 ! 3x C 1, we have
dy
2y D 3x 2 ! 3:
dx
(b) Setting y 0 D 0 we have 0 D 3x 2 ! 3, so x D 1 or x D !1.
(c) If we return to the equation y 2 D x 3 ! 3x C 1 and substitute x D 1, we obtain the equation y 2 D !1, which has no real
solutions.
(d) Substituting x D !1 into y 2 D x 3 ! 3x C 1 yields
y 2 D .!1/3 ! 3.!1/ C 1 D !1 C 3 C 1 D 3;
p p p p
so y D 3 or ! 3. The tangent is horizontal at the points .!1; 3/ and .!1; ! 3/.
40. Show, by differentiating the equation, that if the tangent line at a point .x; y/ on the curve x 2 y ! 2x C 8y D 2 is horizontal,
% &
then xy D 1. Then substitute y D x !1 in x 2 y ! 2x C 8y D 2 to show that the tangent line is horizontal at the points 2; 12 and
% &
! 4; ! 14 .
SOLUTION Taking the derivative on both sides of the equation x 2 y ! 2x C 8y D 2 yields
2.1 ! xy/
x 2 y 0 C 2xy ! 2 C 8y 0 D 0 or y0 D :
x2 C 8
Thus, if the tangent line to the given curve is horizontal, it must be that 1 ! xy D 0, or xy D 1. Substituting y D x !1 into
x 2 y ! 2x C 8y D 2 then yields
8
x ! 2x C D 2 or x 2 C 2x ! 8 D .x C 4/.x ! 2/ D 0:
x
Hence,
% the& given% curve has
& a horizontal tangent line when x D 2 and when x D !4. The corresponding points on the curve are
thus 2; 12 and ! 4; ! 14 .
41. Find all points on the graph of 3x 2 C 4y 2 C 3xy D 24 where the tangent line is horizontal (Figure 2).
y
2x ! 3xy 0 ! 3y C 2yy 0 D 0;
so
2x ! 3y
y0 D :
3x ! 2y
Setting y 0 D 0 leads to y D 32 x. Substituting y D 23 x into the equation of the implicit curve gives
# $ # $2
2 2
x 2 ! 3x x C x D 1;
3 3
or ! 59 x 2 D 1, which has no real solutions. Accordingly, there are no points on the implicit curve where the tangent line has slope
zero.
43. Figure 1 shows the graph of y 4 C xy D x 3 ! x C 2. Find dy=dx at the two points on the graph with x-coordinate 0 and find
an equation of the tangent line at .1; 1/.
SOLUTION Consider the equation y 4 C xy D x 3 ! x C 2. Then 4y 3 y 0 C xy 0 C y D 3x 2 ! 1, and
3x 2 ! y ! 1
y0 D :
x C 4y 3
" Substituting x D 0 into y 4 C xy D x 3 ! x C 2 gives y 4 D 2, which has two real solutions, y D 21=4 . When y D 21=4 ,
we have
p p
!21=4 ! 1 2C 4 2
y0 D % & D! # !:3254:
4 23=4 8
" At the point .1; 1/, we have y 0 D 15 . At this point the tangent line is y ! 1 D 15 .x ! 1/ or y D 15 x C 45 .
44. Folium of Descartes The curve x 3 C y 3 D 3xy (Figure 3) was first discussed in 1638 by the French philosopher-mathematician
Rene Descartes, who called it the folium (meaning leaf). Descartess scientific colleague Gilles de Roberval called it the jasmine
flower. Both men believed incorrectly that the leaf shape in the first quadrant
% & was repeated in each quadrant, giving the appearance
of petals of a flower. Find an equation of the tangent line at the point 32 ; 43 .
y
2
x
2 2
x2 ! y ! "
SOLUTION Let x 3 C y 3 D 3xy. Then 3x 2 C 3y 2 y 0 D 3xy 0 C 3y, and y 0 D 2
. At the point 23 ; 43 , we have
x!y
4 4
9 ! 3 ! 89 4
y0 D 2 16
D D :
3 ! 9 ! 10
9
5
! "
4 4 2
The tangent line at P is thus y ! 3 D 5 x! 3 or y D 45 x C 45 .
45. Find a point on the folium x 3 C y 3 D 3xy other than the origin at which the tangent line is horizontal.
SOLUTION Using implicit differentiation, we find
d ! 3 " d
x C y3 D .3xy/
dx dx
3x 2 C 3y 2 y 0 D 3.xy 0 C y/
Setting y 0 D 0 in this equation yields 3x 2 D 3y or y D x 2 . If we substitute this expression into the original equation x 3 C y 3 D
3xy, we obtain:
x 3 C x 6 D 3x.x 2 / D 3x 3 or x 3 .x 3 ! 2/ D 0:
One solution of this equation is x D 0 and the other is x D 21=3 . Thus, the two points on the folium x 3 C y 3 D 3xy at which the
tangent line is horizontal are .0; 0/ and .21=3 ; 22=3 /.
46. Plot x 3 C y 3 D 3xy C b for several values of b and describe how the graph changes as b ! 0. Then compute
dy=dx at the point .b 1=3 ; 0/. How does this value change as b ! 1? Do your plots confirm this conclusion?
SOLUTION Consider the first row of figures below. When b < 0, the graph of x 3 C y 3 D 3xy C b consists of two pieces.
As b ! 0!, the two pieces move closer to intersecting at the origin. From the second row of figures, we see that the graph of
x 3 C y 3 D 3xy C b when b > 0 consists of a single piece that has a loop in the first quadrant. As b ! 0C, the loop comes
closer to pinching off at the origin.
b = 0.1 b = 0.01 b = 0.001
y y y
1.5 1.5 1.5
1 1 1
x x x
0.5 0.5 1 1.5 0.5 0.5 1 1.5 0.5 0.5 1 1.5
0.5 0.5 0.5
1 1 1
x x x
0.5 0.5 1 1.5 0.5 0.5 1 1.5 0.5 0.5 1 1.5
0.5 0.5 0.5
y ! x2
y0 D :
y2 ! x
0 ! x2 p
3
y0 D 2
D x D b:
0 !x
Consequently, as b ! 1, y 0 ! 1 at the point on the graph where y D 0. This conclusion is supported by the figures shown
below, which correspond to b D 1, b D 10, and b D 100.
310 CHAPTER 3 DIFFERENTIATION
b = 100
b = 01 b = 10 y
y y
4 4 4
2 2 2
x x x
4 2 2 4 4 2 2 4 4 2 2 4
2 2 2
4 4 4
47. Find the x-coordinates of the points where the tangent line is horizontal on the trident curve xy D x 3 ! 5x 2 C 2x ! 1, so
named by Isaac Newton in his treatise on curves published in 1710 (Figure 4).
Hint: 2x 3 ! 5x 2 C 1 D .2x ! 1/.x 2 ! 2x ! 1/.
20
4
x
2 2 6 8
20
xy D x 3 ! 5x 2 C 2x ! 1
to obtain
xy 0 C y D 3x 2 ! 10x C 2:
Setting y 0 D 0 gives y D 3x 2 ! 10x C 2. Substituting this into the equation of the trident, we have
xy D x.3x 2 ! 10x C 2/ D x 3 ! 5x 2 C 2x ! 1
or
3x 3 ! 10x 2 C 2x D x 3 ! 5x 2 C 2x ! 1
x
1 3 5
SOLUTION Plugging x D 1 into the equation for the limacon and solving for y, we find that the points on the curve where x D 1
p p
are: .1; 1/, .1; !1/, .1; 7/, .1; ! 7/. Using implicit differentiation, we obtain
or
!2 C y 2
y0 D :
y 3 ! 4y
1
At the point .1; 1/ the slope of the tangent is 3 and the tangent line is
1 1 2
y!1D .x ! 1/ or yD xC :
3 3 3
At the point .1; !1/ the slope of the tangent is ! 13 and the tangent line is
1 1 2
y C 1 D ! .x ! 1/ or y D ! x ! :
3 3 3
p p
At the point .1; 7/ the slope of the tangent is 5=3 7 and the tangent line is
p 5 5 p 5
y! 7 D p .x ! 1/ or y D p x C 7 ! p :
3 7 3 7 3 7
p p
At the point .1; ! 7/ the slope of the tangent is !5=3 7 and the tangent line is
p 5 5 5 p
yC 7 D ! p .x ! 1/ or y D ! p x C p ! 7:
3 7 3 7 3 7
49. Find the derivative at the points where x D 1 on the folium .x 2 C y 2 /2 D 25 2
4 xy . See Figure 6.
y
2
x
1
2
25 2
FIGURE 6 Folium curve: .x 2 C y 2 /2 D xy
4
25
SOLUTION First, find the points .1; y/ on the curve. Setting x D 1 in the equation .x 2 C y 2 /2 D 4 xy
2 yields
25 2
.1 C y 2 /2 D y
4
25 2
y 4 C 2y 2 C 1 D y
4
4y 4 C 8y 2 C 4 D 25y 2
4y 4 ! 17y 2 C 4 D 0
.4y 2 ! 1/.y 2 ! 4/ D 0
1
y2 D or y 2 D 4
4
Hence y D 12 or y D 2. Taking d
dx
of both sides of the original equation yields
25 2 25
2.x 2 C y 2 /.2x C 2yy 0 / D y C xyy 0
4 2
25 25
4.x 2 C y 2 /x C 4.x 2 C y 2 /yy 0 D y 2 C xyy 0
4 2
25 25 2
.4.x 2 C y 2 / ! x/yy 0 D y ! 4.x 2 C y 2 /x
2 4
25 2
4 y ! 4.x 2 C y 2 /x
y0 D 25
y.4.x 2 C y 2 / ! 2 x/
312 CHAPTER 3 DIFFERENTIATION
x
0.5 1 1.5 2
1
50. Plot .x 2 C y 2 /2 D 12.x 2 ! y 2 / C 2 for !4 $ x $ 4, 4 $ y $ 4 using a computer algebra system. How many
horizontal tangent lines does the curve appear to have? Find the points where these occur.
SOLUTION A plot of the curve .x 2 C y 2 /2 D 12.x 2 ! y 2 / C 2 is shown below. From this plot, it appears that the curve has a
horizontal tangent line at six different locations.
y
x
3 2 1 1 2 3
so
x.6 ! x 2 ! y 2 /
y0 D :
y.x 2 C y 2 C 6/
p p ! p p ! p p ! p p !
159 57 159 57 159 57 159 57
; ; ;! ; ! ; ; ! ;!
6 6 6 6 6 6 6 6
Exercises 5153: If the derivative dx=dy (instead of dy=dx D 0) exists at a point and dx=dy D 0, then the tangent line at that
point is vertical.
51. Calculate dx=dy for the equation y 4 C 1 D y 2 C x 2 and find the points on the graph where the tangent line is vertical.
SOLUTION Let y 4 C 1 D y 2 C x 2 . Differentiating this equation with respect to y yields
dx
4y 3 D 2y C 2x ;
dy
so
dx 4y 3 ! 2y y.2y 2 ! 1/
D D :
dy 2x x
p
dx 2
Thus, D 0 when y D 0 and when y D . Substituting y D 0 into the equation y 4 C 1 D y 2 C x 2 gives 1 D x 2 , so
dy p 2 p
2 2 3
x D 1. Substituting y D , gives x D 3=4, so x D . Thus, there are six points on the graph of y 4 C 1 D y 2 C x 2
2 2
where the tangent line is vertical:
p p ! p p ! p p ! p p !
3 2 3 2 3 2 3 2
.1; 0/; .!1; 0/; ; ; ! ; ; ;! ; ! ;! :
2 2 2 2 2 2 2 2
p
52. Show that the tangent lines at x D 1 2 to the conchoid with equation .x ! 1/2 .x 2 C y 2 / D 2x 2 are vertical (Figure 7).
2
1
x
1 2
1
2
dx .x ! 1/2 y
D % & :
dy 2x C .1 ! x/ x 2 C y 2 ! x .x ! 1/2
x
2 1 1 2 3
y Tangent line
x
O R
FIGURE 8 Graph of x 2 ! y 2 D a2 .
SOLUTION Because of the symmetry of the graph, we may restrict attention to any point P in the first quadrant. Suppose P has
p
coordinates .p; p 2 ! a2 /. Taking the derivative of both sides of the equation x 2 ! y 2 D a2 yields 2x ! 2yy 0 D 0, or y 0 D x=y.
It follows that the slope of the line tangent to the graph at P has slope
p
p
p ! a2
2
and the coordinates of the point R are .2p; 0/. Finally, the length of the line segment OP is
q q
p 2 C p 2 ! a2 D 2p 2 ! a2 ;
y 2 ! 2xyy 0
y 00 D
y4
(b) Substituting the expression for y 0 into the result for y 00 gives
% &
00 y 2 ! 2xy x=y 2 y 3 ! 2x 2
y D D :
y4 y5
56. Use the method of the previous exercise to show that y 00 D !y !3 on the circle x 2 C y 2 D 1.
x
SOLUTION Let x 2 C y 2 D 1. Then 2x C 2yy 0 D 0, and y 0 D ! . Thus
y
! "
y " 1 ! xy 0 y ! x ! xy y2 C x2 1
y 00 D ! 2
D ! 2
D! D ! 3 D !y !3 :
y y y3 y
57. Calculate y 00 at the point .1; 1/ on the curve xy 2 C y ! 2 D 0 by the following steps:
(a) Find y 0 by implicit differentiation and calculate y 0 at the point .1; 1/.
(b) Differentiate the expression for y 0 found in (a). Then compute y 00 at .1; 1/ by substituting x D 1, y D 1, and the value of y 0
found in (a).
SOLUTION Let xy 2 C y ! 2 D 0.
y2 1
(a) Then x " 2yy 0 C y 2 " 1 C y 0 D 0, and y 0 D ! . At .x; y/ D .1; 1/, we have y 0 D ! .
2xy C 1 3
(b) Therefore,
! " ! "
% & % &
.2xy C 1/ 2yy 0 ! y 2 2xy 0 C 2y .3/ ! 23 ! .1/ ! 23 C 2 !6 C 2 ! 6 10
y 00 D ! 2
D! D! D
.2xy C 1/ 32 27 27
In Exercises 5961, x and y are functions of a variable t and use implicit differentiation to relate dy=dt and dx=dt .
dy y dx
59. Differentiate xy D 1 with respect to t and derive the relation
D! .
dt x dt
dy dx dy y dx
SOLUTION Let xy D 1. Then x Cy D 0, and D! .
dt dt dt x dt
316 CHAPTER 3 DIFFERENTIATION
60. Differentiate x 3 C 3xy 2 D 1 with respect to t and express dy=dt in terms of dx=dt , as in Exercise 59.
SOLUTION Let x 3 C 3xy 2 D 1. Then
dx dy dx
3x 2 C 6xy C 3y 2 D 0;
dt dt dt
and
dy x 2 C y 2 dx
D! :
dt 2xy dt
61. Calculate dy=dt in terms of dx=dt .
(a) x 3 ! y 3 D 1 (b) y 4 C 2xy C x 2 D 0
SOLUTION
(a) Taking the derivative of both sides of the equation x 3 ! y 3 D 1 with respect to t yields
dx dy dy x 2 dx
3x 2 ! 3y 2 D 0 or D 2 :
dt dt dt y dt
(b) Taking the derivative of both sides of the equation y 4 C 2xy C x 2 D 0 with respect to t yields
dy dy dx dx
4y 3 C 2x C 2y C 2x D 0;
dt dt dt dt
or
dy x C y dx
D! 3 :
dt 2y C x dt
62. The volume V and pressure P of gas in a piston (which vary in time t) satisfy P V 3=2 D C , where C is a constant.
Prove that
dP =dt 3 P
D!
dV =dt 2 V
The ratio of the derivatives is negative. Could you have predicted this from the relation P V 3=2 D C ?
SOLUTION Let P V 3=2 D C , where C is a constant. Then
3 dV dP dP =dt 3 P
P " V 1=2 C V 3=2 D 0; so D! :
2 dt dt dV =dt 2 V
If P is increasing (respectively, decreasing), then V D .C =P /2=3 is decreasing (respectively, increasing). Hence the ratio of the
derivatives (C=! or !=C) is negative.
reciprocals of one another, hence the tangents to the two curves are perpendicular.
64. The lemniscate curve .x 2 C y 2 /2 D 4.x 2 ! y 2 / was discovered by Jacob Bernoulli in 1694, who noted that it is shaped like
a figure 8, or a knot, or the bow of a ribbon. Find the coordinates of the four points at which the tangent line is horizontal (Figure
9).
x
1 1
% &2 % &
SOLUTION Consider the equation of a lemniscate curve: x 2 C y 2 D 4 x 2 ! y 2 . Taking the derivative of both sides of this
equation, we have
! "% & % &
2 x 2 C y 2 2x C 2yy 0 D 4 2x ! 2yy 0 :
Therefore,
% & % 2 &
8x ! 4x x 2 C y 2 x C y2 ! 2 x
y0 D % & D !% & :
8y C 4y x 2 C y 2 x2 C y2 C 2 y
If y 0 D 0, then either x D 0 or x 2 C y 2 D 2.
% &
" If x D 0 in the lemniscate curve, then y 4 D !4y 2 or y 2 y 2 C 4 D 0. If y is real, then y D 0. The formula for y 0 in (a) is
not defined at the origin (0=0). An alternative parametric analysis shows that the slopes of the tangent lines to the curve at the
origin are 1.
% &
" If x 2 C y 2 D 2 or y 2 D 2 ! x 2 , then plugging this into the lemniscate equation gives 4 D 4 2x 2 ! 2 which yields
q p q p
x D 32 D 26 . Thus y D 12 D 22 . Accordingly, the four points at which the tangent lines to the lemniscate
! p p " ! p p " !p p " !p p "
curve are horizontal are ! 26 ; ! 22 , ! 26 ; 22 , 26 ; ! 22 , and 26 ; 22 .
65. Divide the curve in Figure 10 into five branches, each of which is the graph of a function. Sketch the branches.
x
4 2 2 4
FIGURE 10 Graph of y 5 ! y D x 2 y C x C 1.
x
4 2 2 4
2
x
4 3 2 1
1
x
4 3 2 1
1
1
1 2 3 4
x
1
1 2 3 4
x
In Questions 3 and 4, water pours into a cylindrical glass of radius 4 cm. Let V and h denote the volume and water level respectively,
at time t.
3. Restate this question in terms of dV =dt and dh=dt : How fast is the water level rising if water pours in at a rate of 2 cm3 /min?
dh dV
SOLUTION Determine dt
if dt
D 2 cm3 /min.
4. Restate this question in terms of dV =dt and dh=dt : At what rate is water pouring in if the water level rises at a rate of
1 cm/min?
dV dh
SOLUTION Determine dt
if dt
D 1 cm/min.
Exercises
In Exercises 1 and 2, consider a rectangular bathtub whose base is 18 ft2 .
1. How fast is the water level rising if water is filling the tub at a rate of 0:7 ft3 /min?
dV dh
SOLUTION Let h be the height of the water in the tub and V be the volume of the water. Then V D 18h and D 18 . Thus
dt dt
dh 1 dV 1
D D .0:7/ # 0:039 ft=min:
dt 18 dt 18
2. At what rate is water pouring into the tub if the water level rises at a rate of 0:8 ft/min?
SOLUTION Let h be the height of the water in the tub and V its volume. Then V D 18h and
dV dh
D 18 D 18 .0:8/ D 14:4 ft3 =min:
dt dt
3. The radius of a circular oil slick expands at a rate of 2 m/min.
(a) How fast is the area of the oil slick increasing when the radius is 25 m?
(b) If the radius is 0 at time t D 0, how fast is the area increasing after 3 min?