Subject: Mathematics Version: D4: Kcet Examination - 2024
Subject: Mathematics Version: D4: Kcet Examination - 2024
Subject: Mathematics Version: D4: Kcet Examination - 2024
f ' 5 2 3 6
KCET - 2024 (CODE – D4) 3
____________________________________________________________
5
1
7. x 6 log x 2
7 log x 2
dx 9. x 3 1 x dx
1
5
1 2 log x 1 (A) 12 (B) (C) 21 (D) 10
(A) log C 6
2 3 log x 2
Ans. A
2 log x 1 5
(B) log C
3 log x 2 Sol. x 3 x 1 dx
1
3 log x 2 3 5
(C) log C
2 log x 1 2dx 2x 4dx
1 3
1 3 log x 2 5
(D) log C 2 2 x 2 4x
2 2 log x 1 3
Ans. B 4 25 20 9 12 4 8 12
1
Sol. Put logx t dx dt
x n n n 1
1 10. lim 2 2 2 ........
n n 12 n 22
n 32
5n
I dt
3t 2 2t 1
(A) (B) tan1 3 (C) tan1 2 (D)
1 A B 4 2
3t 2 2t 1 3t 2 2t 1 Ans. C
2n
After solving A 3, B 2 n
Sol. lim 2 2
r 1 n r
n
3 2
I dt dt 2n
3t 2 2t 1 n
lim 2
n
r 1 r
log 3t 2 log 2t 1 C n2 1
n
2
5x 1
sin 2
dx tan 1 2
2 1 x
8. x dx 0
sin
2
11. The area of the region bounded by the line
(A) 2x sin x 2sin2x C
y 3x and the curve y x 2 in sq. units is
(B) x 2sin x 2sin2 x C
(A) 10
(C) x 2sin x sin2 x C
9
(D) 2x sin x sin2x C (B)
2
Ans. C
(C) 9
5x x (D) 5
2sin cos
2 2 Ans. B
Sol. dx
x x 3
2sin cos 3
x2 x3 9
2 2 Sol. A (3x x 2 )dx 3
sin3 x sin2 x 0
2
3 0 2
dx
sin x
3 4sin2 x 2cos xdx
1 2cos 2x 2cos x dx
x sin2x 2sin x C
KCET - 2024 (CODE – D4) 4
____________________________________________________________
12. The area of the region bounded by the line 15. The distance between the two planes
y x and the curve y x 3 is 2x 3y 4z 4 and 4x 6y 8z 12 is
(A) 0.2 sq. units (A) 2 units (B) 8 units
(B) 0.3 sq. units 2
(C) units (D) 4 units
(C) 0.4 sq. units 29
(D) 0.5 sq. units Ans. C
Ans. D 64 2
1 2 4 1 Sol. d
x x 4 9 16 29
Sol. A 2 (x x 3 )dx 2 0.5 sq.units
0 2 4 0
16. The sine of the angle between the straight line
x 2 y 3 4z
and the plane
3 4 5
2x 2y z 5 is
1 2 3 3
(A) (B) (C) (D)
5 2 5 2 50 50
Ans. A
3(2) 4(2) 5(1)
Sol. sin
9 16 25 4 4 1
21. A random variable X has the following 24. If x 2 5 x 6 0 , where [x] denotes the
probability distribution : greatest integer function, then
X 0 1 2 (A) x 3, 4 (B) x 2, 4
25 1
P X k (C) x 2,3 (D) x 2,3
36 36
Ans. B
1
If the mean of the random variable X is ,
3 Sol. x 2 x 3 0
then the variance is x 2 or x 3
1
(A) x 2, 4
18
5
(B) 25. If in two circles, arcs of the same length
18
subtend angles 300 and 780 at the centre,
7
(C) then the ratio of their radii is
18
5 13 13 4
11 (A) (B) (C) (D)
(D) 13 5 4 13
18
Ans. B
Ans. B
Sol. l1 l 2 , 1 300 , 2 780
1 2 1 1 1 5
Sol. pi x i 3 0 k 36 3 K 3 18 18 l1 r11 r 780 13
Then 1 2
4 l 2 r2 2 r2 1 300 5
2 06
2 2
p x
i i
36 14
p i 1 36
14 14 1 5
2 2
36 36 9 18
KCET - 2024 (CODE – D4) 6
____________________________________________________________
26. If ABC is right angled at C , then the value 29. The value of
49
of tanA tanB is C3 48 C3 47 C3 46 C3 45 C3 45 C4 is
a2 (A) 50
C4
(A) a b (B)
bc 50
(B) C3
c2 b2 50
(C) (D) (C) C2
ab ac
50
Ans. C (D) C1
A Ans. A
Sol. Since ncr ncr 1 (n 1)cr ,
b c
Sol.
49
C3 48 C3 47 C3 46 C3 45
C3 45 C4
B 49 C3 48 C3 47 C3 46 C3 46 C4 ……
C a
Since C is a right angle then 50 C4
a b a 2 b2 c 2
Tan A Tan B
b a ab ab 30. In the expansion of (1 x)n
C1 C C C
2 2 3 3 n n is equal to
1 isin C0 C1 C2 Cn 1
27. The real value of ' ' for which is
1 2isin n n 1
purely real is (A)
2
(A) n 1 , n n
2 (B)
2
(B) 2n 1 , n n 1
2 (C)
2
(C) n, n
(D) 3n n 1
(D) 2n 1 , n Ans. A
2
C1 C C C
Ans. C Sol. 2 2 3 3 n n
C0 C1 C2 Cn 1
1 isin
Sol. z , after simplify n. n 1
1 2isin n n 1 n 2 ........ 1
2
z
1 2sin i 3 sin
2
33. The angle between the line x y 3 and the 37. Let a, b, c, d and e be the observations with
mean m and standard deviation S. The
line joining the points 1,1 and 3, 4 is
standard deviation of the observations
1 a k, b k,c k, d k and e k is
(A) tan1 7 (B) tan1
7
S
(A) kS (B) S k (C) (D) S
1 1 1 2 k
(C) tan (D) tan
7 7 Ans. D
Ans. C Sol. adding constant each observation of S.D does
Sol. Slope of x y 3 is m1 1 and not effect.
Slope of line joining the points 1,1 , 3, 4 is
38. Let f : R R be given by f x tan x . Then
3
m2
4 f 1 1 is
m1 m2 1
and tan tan1 (A)
1 m1m2 7 4
(B) n : n Z
34. The equation of parabola whose focus is (6,0) 4
and directrix is x 6 is
2 2
(C)
(A) y 24x (B) y 24x 3
(C) x 2 24y (D) x 2 24y
(D) n : n Z
3
Ans. A
Ans. B
Sol. Focus = F a,0 6,0
Equation of directrix is x 6 then equation of Sol. tan x 1 x n
4
parabola is of the form y 2 4ax,a 6
39. Let f : R R be defined by f x x 2 1 . Then
2 cos x 1 the pre images of 17 and -3 respectively are
35. lim is equal to
x
cot x 1 (A) , 4, 4
4
(D) f x sin x, g x x 2 1 1 10
45. If A , then A is equal to
Ans. C 1 1
(A) 28 A (B) 29 A (C) 210 A (D) 211 A
Sol.
g f x g sin2 x sin2 x sin x
Ans. B
2
fog x f x sin x Sol. A2 2' A, A4 A3 A A10 29 A
58. Let a and b be two unit vectors and is the
angle between them. Then a b is a unit
vector if
(A) (B)
4 3
2
(C) (D)
3 2
Ans. C
2
Sol. ab 1 1 1 2 a b cos 1
1 2
cos
2 3
dy
59. The solution of e dx x 1, y 0 3 is
(A) y 2 xlogx x
(B) y x 3 xlogx
(C) y x 3 x 1 log x 1
(D) y x 3 x 1 log x 1
Ans. D
dy
Sol. log x 1 dy log x 1 dx
dx
And y 0 3 then
y x 3 x 1 log x 1