Solution of Triangle (MT)
Solution of Triangle (MT)
Solution of Triangle (MT)
PAGE # 1
SOLUTION OF TRIANGLE
GENERAL NOTATION :
1.
Circumradius is denoted by R
3.
Inradius is denoted by r.
4.
5.
2s = a + b + c
2s 2c = a + b c
a + b c = 2(s c)
a + c b = 2(s b)
SOLUTION OF TRIANGLE
a b2 c 2
PAGE # 2
= a b c a b c
= 4s(s c)
a b2 c 2 a b c a b c
= 4 s a s b
s a , s b , s c
6.
7.
1
pa
2
2
a
perpedicular =
8.
2 Ar. of
.
opp. side
a2
2
2
2
c
2
AD
2AD2
2 b2 c 2 a2
2
length of median, AD =
2 b2 c 2 a2
2.
3.
In a centroid and incenter will always lie within it whereas orthocentre and circumcentre may lie outside
the .
4.
The ratio of the area of the triangles made on same base (altitudes) will be equals to ratio of altitudes (base)
Ar ABD
Ar ADC
BD
DC
SOLUTION OF TRIANGLE
Ar ABC
Ar DBC
4.
PAGE # 3
p2
p1
In aABC
(i) sin A, sin B, sin C > 0
(ii) (a) sin(A + B) = sin C
(b) cos(A + B) = cos C
(c) tan(A + B) = tan C
C
A B
(iii) (a) sin 2 2 cos 2
C
A B
(b) cos 2 2 sin 2
C
A B
(c) tan 2 2 cot 2
5.
# Sine Rule :
In ABC
a
b
c
2R
sin A sinB sinC
In ABD & ACD :
PROOF : AD = AD
c sinB b sinC
In ABD ACD
b
a
sinB sin A
In BOM
BM =
a
2
a = 2R sin A
sin A
we have
O is circumcentre
a
b
c
2R .
sin A sinB sinC
a
2
SOLUTION OF TRIANGLE
PAGE # 4
PATTERN IDENTIFICATION :
(i) a sin A
2
2
2
PROOF : a2 b2 = 4R sin A sin B
2
= 4R sin A B .sin A B
2
= 4R sin A B .sin C .
(iii)
a b sin A sinB
c
sinC
a b 2R sin A sinB
A B
A B
= 4R sin 2 cos 2
C
A B
= 4R sin 2 sin 2
a
tan A .
cos A
6.
To find a side indentify the in which it lies preferably right angle or the triangle one side of which and two of the
angles are known.
7.
If in the ques. two of the angles say A & B and one of the corresponding sides say a is given this may implies
sine rute.
NAPIERS ANALOGY :
1.
b c sinB sinC
b c sinB sinC
B C
B C
2 sin
cos
2
2
=
B C
B C
2 sin
cos
2
2
B C
B C
= tan 2 cot 2
A
B C
= tan 2 .tan 2
A
B C b c
tan
cot
2 bc
2
SOLUTION OF TRIANGLE
PAGE # 5
tan
2 b c
2
B
A C a c
A B
ab
C
2
ac
2
2
ab
2
NOTE :
If trigonometric ratio of difference of two of the angles (say A B) and the corresponding sides (a & b) are given
in the ques this may imply Napiers analogy.
PROJECTION FORMULA :
BC = BD + DC
a c cosB b cos C
a c cosB b cos C
c = a cosB b cos A .
COSINE RULE :
1.
In ABD
C2 a b cosC b2 sin2 C
= a2 b2 cos2 C 2abcosC b2 sin2 C
C2 a2 b2 2abcosC
b2 a2 c 2 2ac cosB
a2 b2 c 2 2bc cos A
cos C
a2 b2 c 2
2ab
Similarly cos A
cosB
b2 c 2 a2
2bc
a2 c 2 b2
.
2ac
GENERAL NOTE :
(i) for three quantities a, b, c.
(i)
a b 0
(ii)
a b 2 a
(iii)
b c a 0
SOLUTION OF TRIANGLE
PAGE # 6
(iv)
a b c a
(v)
ab a b a b .
NOTE:
1.
If two of the sides (say a & b) and the third angle (C) is given in the ques. then this may imply application of
cosine rule.
2.
bc cos A =
3.
cot A
sin A
b2 c 2 a2
2bc sin A
b2 c 2 a 2
4
1
=
4
cot A
4.
1 2
b c 2 a2
2
c a
a
= 4
a2 b2 c 2
.
4
BD2 BD2
a2 d2 2adcos A b2 c 2 2bc cos A
2cos A ad bc a2 b2 b2 c 2
cos A
a2 d2 b2 c 2
2 ad bc
cosB
a2 b2 c 2 d2
2 ab cd
b2 c 2 a2 d2
cos C =
2 bc ad
BD2
ab cdac bd
ad bc
2
Similarly AC
ac bdad bc
ab cd
SOLUTION OF TRIANGLE
PAGE # 7
BD2 . AC2 ac bd
BD.AC = ac + bd
BD.AC = AB.CD + AD.BC
(Ptolemys Theorem)
NOTE :
b2 c 2 a2
then cos A cos 3 =
.
3
2bc
If A =
1 b2 c 2 a2
2
2bc
a2 b2 c 2 bc .
31
find C.
32
Q.1
Q.2
P.T.
Q.3
Q.4
Q.5
If C
b c cos A a .
, a = 3, b = 4 and
2
7.
Find CD.
6
cot A .
P.T.
A
A
a sin B b c sin .
2
8.
If
bc ac ab
11
12
13
T.P.T.
9.
P.T.
10.
P.T.
.
7
12
25
b2 c 2
a2
.sin 2A 0 .
SOLUTION OF TRIANGLE
1.
PAGE # 8
A B 1 cos A B
tan2
2 1 cos A B
1 cos A B
A B
tan
2
1 cos A B
1 31/ 32
1 31/ 32
1
3 7
Using Napiers
c
A B a b
tan
cot
2 ab
2
1
c
cot
9
2
3 7
tan
c
7
2
3
cosc
1 7 / 9
1 7 / 9
cos c
1
.
8
c 2 a2 b2 2abcosc
= 25 16 2 5 4
1
= 36
8
c = 6.
Q.2
=c+b+a=
Q.3
a.
ab cos C ac cosB
=
Q.4
a2 b2 c 2 a2 c 2 b2
2
2
2 b2 c 2
2
c2 .
cosine Rule :
c 2 a2 b2 2abcosc
= 1 3
4 2.2. 1 3
1
2
SOLUTION OF TRIANGLE
= 1 3
=
Q.5
3 1 2 4
3 1
=c=
PAGE # 9
3 1 4 = 6
6.
2BCD :
CD
sinB
BC
sin B
6
4
3
3 sinB
5
.
CD =
= 1 3
3 4
sin B
2 5
2
5
Q.6
2
a
2
b
2
c
1
2
4 2
a2 b2 c 2 1
=
4
=
Q.7
cot A .
consider
b c sinB sinC
a
sin A
B C
B C
2 sin
cos
2
2
=
A
A
2sin cos
2
2
BC
2
A
sin
2
cos
A
B C
(As cos 2 sin 2 )
SOLUTION OF TRIANGLE
PAGE # 10
CB
2
A
sin
2
cos
A B B
cos
2
=
A
sin
2
acos B
2 2
b c sin 2
= a sin B .
2
Q.8
2 a b c
bc ac ab
=
11
12
13
36
(Using C & D)
c b a
5 6 7
c 5
b 6
a = 7.
Apply cosine rule
b2 c 2 a2
2bc
cos A
Q.9
10.
b2 c 2
a2
36 25 49
etc.
60
sin2A
b2 c 2
a2
2 sin A cos A
b2 c 2
cos A
R.a
c 2 b2 c 2 a2
1
2Rabc
2Rabc
a b
c4
cosBcosC
=
1
cos A cosBcosC
acos A
c 2 = 0.
SOLUTION OF TRIANGLE
PAGE # 11
1
cos A cosBcosC
R
4 sin A sinBsinC
cos A cosBcosC
2R sin A cos A
(using
sin 2A 4 sin A )
cos A
b2 c 2 a2
2bc
b2 c 2 a2
2 A
2cos 1
2
2bc
2
2
2
2
2
b2 c 2 a2
2 A
2cos
1 = b c a 2bc = b c a
2
2bc
2bc
2bc
=
A
cos
2
2s.2 s a
2bc
s s a
bc
B
Similarly cos
2
s s b
ac
C
, cos
2
ss c
ab
2 A
b2 c 2 a2
Again cos A 1 2 sin 2 =
2bc
2
b2 c 2 a2
a2 b c
2 A
2sin
2
2bc
2bc
A
sin
2
s b s c
bc
B
Similarly sin
2
A
also, tan 2
s a s c
s b s c
s s a ,
AREA OF TRIANGLE :
1.
1
ht base
2
1
c sinB a
2
ac
B
tan
2
s a s c
.
s s b
SOLUTION OF TRIANGLE
PAGE # 12
1
ac sinB
2
1
bc sin A
2
1
2R sinB 2R sinC sin A
2
C
2
= 2R
sin A .
A
Also
1
bc sin A
2
1
A
A
= 2 b.c.2sin 2 cos 2
s b s c . s s a
= b.c.
bc
bc
S s a s b s c
1
ab sinC
2
= 2R 2
sin A
S s a s b s c .
tan
s b s c
S s a
cot
S s b
sin A
If ques. contains half s and sides, then use above formula for manipulation.
s as c
s b s c
= s s a .
s s b
= s a s c =
.
2
.
bc
SOLUTION OF TRIANGLE
PAGE # 13
sin sin
...(1)
In ACD :
AD
sin
DC
sin
...(2)
(1) (2)
sin BD sin
sin DC sin
sin m sin
sin n sin
nsin sin cos cos sin msin sin cos cos sin
If in question, one of the side is bisected/trisected etc. then this may imply application of cot m n theorem.
A
cot 2
cot A
a
.
a
Q.1
P.T.
Q.2
Q.3
Let C
, A 75 , If D is on AC
3
Ar. (BAD) =
Q.4
Q.5
, then P.T..
2
a2 b2 5c 2 .
Q.6
Find A, if (a + b + c) (b + c a) = 3bc.
Q.7
If A
Q.8
SOLUTION OF TRIANGLE
PAGE # 14
Q.9
2c
A
B
In a , P.T. 1 tan tan
.
2
2
abc
Q.10
2 c 2 a2
cos A cosC
Ans.1
cot 2 = s s a
A
1
3s 2 s
=
also
Alt :
a
A
s s a
4
2
cot 2
=
a b c 2
a =
cot A
cot 2
cot A
2.
3ac
cot 2
s3 s a s b s c
s s a
s2
.
a b c a b c
= 4 s b s c
s b s c
tan
= 4 tan
A 1
2 4
s b s c
s s a
s b s c
A
1
2
2
4
tan A
8
.
1 =
2 A =
1 tan
15
1
2
16
2 tan
3.
cot m n th :
3 1 75 1.cot 75 3 cot 60
SOLUTION OF TRIANGLE
PAGE # 15
4.
tan A 2 tanB 0 .
5.
2
2 b2 c 2 a2
2 a2 c 2 b2
b
+
.
2
9
36
6.
2s2 s a 3bc
2
= cos
s s a
bc
3
4
A
3
A
3
=
cos
A=
2
4
3
2
2
Alt :
b c 2 a2 3bc
7.
2 b2 c 2 a2
2AD
=
3
b2 c 2 a2
1
bc
b2 c 2 a2 1
= cos A A .
3
2bc
2
A=
b2 c 2 bc a2
Also
SOLUTION OF TRIANGLE
PAGE # 16
2 b2 c 2 a2
AD =
b c
2
2
2
2
4AD 2 b c a
2
2
2 b c
bc
= b2 c 2 bc .
8.
A, B, C A.P..
B
3c 2 2b2
2
sinC
=
3
sinB
2
3
sinC sin .
3 3
2
C
2
1
3
2
A = 3 4 .
9.
1 tan
A
B
tan
2
2
= 1
s b s c s a s c
s s a
s s b
= 1
10.
s c
c
c
2c
.
s abc
2
2 b2 c 2 a2
a
2
2
2
2 b AD b
4
a2 4b2 2b2 2c 2 a2
a2 c 2 3b2
cos A
b2 c 2 a2
2bc
cosC
b2 a2 c 2
2ab
SOLUTION OF TRIANGLE
PAGE # 17
b2 3b2
2ab
2 a2 c 2
cos A cosC
3.2bc
2 c 2 a2
3ac
B C
cos2
2
4b
2ab
B C
sin2
2
P.T.
Q.2
ABCD is a trapezium such that AB & DC are || & BC is 'r to then. If ADB = , BC = p & CD = q,
b c
T.P.T. AB
Q.3
If tan
b c
Q.1
a2
q2 sin
b cos qsin
2 ab
c
sin ,
ab
2
T.P.T. c a b sec .
Q.4
2
2
2
2 c
2 c
P.T. c a b cos 2 a b sin 2 .
Q.5
Q.6
Q.7
bc cos
Q.8
Q.9
A
2
2 s .
bc
A
cos2 0
2
a
A
a cos 2
a .
A
1
2
.
a ba c
tan
Q.10
Sol.1
L.H.S =
B C
cos2
2
b c 2
B C
sin2
2
b c 2
SOLUTION OF TRIANGLE
PAGE # 18
B C
cos2
2
B C
sin2
2
1
1
1
=
2
4R
2 B C
2 B C
4
sin
4cos
2
2
B C
B C
sin2
cos2
2
2
1
=
2
4R
2 B C
2 B C
4 sin 2 cos 2
Sol.2
1
1
1
= 2 .
2
2
a
4R sin B C
In BAD
AB
BD
sin sin
sin .BD
AB = sin .cos cos .sin
Sol.3
sin . p2 q2
q
p
sin
.cos
2
2
2
p q
p q2
q2 .sin
qsin pcos
sec 2 1 tan2
= 1
C
4ab sin2
2
a b 2
a b2 2ab 1 cos C
a b 2
a2 b2 2ab cos C
a b 2
C2
=
a b 2
SOLUTION OF TRIANGLE
Sol.4
PAGE # 19
a b2 .cos2 2 a b 2 .sin2 2
2
2
2 C
2 C
2 C
2 C
= a b cos 2 sin 2 2ab cos 2 sin 2
= a2 b2 2abcos C = C2.
Sol.5
= a sin B sin C
sin A .
2
2
2
2
2
2
= a cos B sin B + b cos A sin A + 2ab cos A cos B sin A sin B
2
2
2
2
2
2
2
2
= a cos B b cos A 2ab cos A cos B a sin B b sin A 2ab sin A sin B
= a cos B b cos A
a sin B b sin A
= c 2 0 c2 .
Sol.7
bc.cos
=
Sol.8
bc.
A
2
s s a
bc
= s
s a
= s(s) = s2.
bc
A
.cos 2
2
a
s
b c s s a
.
=
abc
a
bc
s
s
abc
b c s a
b c a b c 0 .
SOLUTION OF TRIANGLE
PAGE # 20
A.
Circum centre :
(1) R
abc
4
Incentre :
(1)
BD c
.
DC b
(2) (a) BD =
c
a
bc
ab
bc
(3) In BAD :
||ly DC =
IA AB
c
bc
=
=
.
ID BD
ac
a
b c
A B
c
(4) AIB = 2 2 = .
2 2
A
sinB
sin
2
AD =
sinB
C
sin A / 2 b c
2bc
A
= b c .cos 2
= length of r bisector..
2ac
B
.cos .
similarly, BE
2
a c
= r.s
r=
1
1
1
ar br ar
2
2
2
SOLUTION OF TRIANGLE
(iii) r
PAGE # 21
= r s s a . s a
s
A
= s a .tan
2
B
= s b .tan
2
C
= s c .tan 2 .
A
B
C
(iv) 4R sin .sin .sin
2
2
2
4R
s b s c . s a s c
bc
4R
. s a s b s c
abc
4R s
.
abc
1 2
.
r
s
s
= r 4R
(i) r
ac
s a s b
ab
s a
s
sin 2 .
A
= s a .tan 2
= 4R
sin 2
(iv) In BPI
B
BI = r cos ec 2
A
C
= 4R sin 2 sin 2
SOLUTION OF TRIANGLE
PAGE # 22
In BPI
r
B
tan
2 BP
r
sb
BP = tan B
2
(vi) I AO =
A
B
2 2
A B C
B
2 2 2 2
BC
2
B
C
AI = 4R sin 2 sin 2
AO = R.
In AIO
IO2 AI2 OA 2 2.OA.AI.cos IAO .
B
C
B
C
B C
IO2 R 2 16R 2 sin2 .sin2 2.R.4R sin sin .cos
2
2
2
2
2
B
C
B
C
B C
2
2
= R 8R sin 2 sin 2 2sin 2 sin 2 cos 2
2
2
= R 8R
sin 2
IO = R 1 8
sin 2
R2 2Rr
(i) R 2r
(ii)
sin 2 8
Orhocentre :
(i) BD = c.cos B
(ii) DC = b.cos C
BP = BR = s b
CP = CQ = s c
AQ = AR = s a
SOLUTION OF TRIANGLE
PAGE # 23
tan C
BD c cos B
(iii) DC bcos C = tan B
(iv) BAD
BH = c.cos B .cos ec C
c
= sin c .cos B
= 2R cos B
HD = c cos B .cot C
cos C
= c.cos B . sin C
= 2Rcos B .cos C
Hence Dis. of verteces from orthocenter will be 2R cos (A)
2Rcos B , 2Rcos C and the distance of the sides from orthocenter will be 2R cos(B) cos(C),
2Rcos C cos A and 2Rcos A cos B
HAO B C
AH = 2R cos(A)
AO = R
HAC
C
2
AOM B
AOM
B
2
HAO 2 C 2 B = B C.
2
= R 1 4 cos A cos A cos B C
2
= R
= R 2 8R 2
cos A
cos A .
= OH = R 1 8
(iii) EX-CIRCLE :
1. (i) r1
sa
SOLUTION OF TRIANGLE
(ii) r2
sb
(iii) r3
sc
PAGE # 24
A
B
C
2. r1 4R sin 2 .cos 2 cos 2
A
B
C
r2 4R cos .sin .cos
2
2
2
A
3. (a) r1 s tan 2
B
(b) r2 s tan 2
C
(c) r3 s tan 2
4.
r r
s2
r r
s2 .
1 2
1 2
5.
Proof:
sa
3s 2s
s 1
.
=
s a
r1 r2 r3
r
Proof:
.
.
sa sb sc
s 2
1
r
6.
Q.1
tan 2 tan 2
s a
Prove that
s2
cos A 1 R
SOLUTION OF TRIANGLE
Sol.
cos A
= 1 4
sin 2
sin 2
4R
= 1
=1+
PAGE # 25
r
.
R
Q.2
Sol.
1 1 1
, ,
r1 r2 r3 A.P..
sa sb sc
,
,
.....r A.P.
s a, s b, s c A.P.
a, b, c A.P..
a, b, c A.P..
Q.3
Proof:
a.q.r abc
p 2R cos A
q 2Rcos B
r 2R cos C
L.H.S. =
=
a qr
3
= 8R
= 8R3 .
sin A abc
ALT :
Ar ABC 1 + 2 + 3
=
1
qr.sin B C
2
a
qr
4R
1 2 3
abc aqr bpr cpr
4R
4R 4R 4R
SOLUTION OF TRIANGLE
aqr .
= abc =
Q.1
If r1 r2 r3 r
Q.2
Q.3
PAGE # 26
abc
.
2
If altitudes from A, B, C are produced to meet circum centre, if length of produced parts is , , then prove that
centre, if length of produced parts is , , then prove that
1
2 tan A .
.cos 2 = a1 .
Q.4
Q.5
ab 2Rr .
Q.6
Q.7
If , , are the distance of the vertex of a from the corresponding pts. of contect with the in-circle
bc
0.
r1
2
T.P.T. r
A.1
sa sb sc s
1
1
1
1
sa s sb sc
s s a
s s a
2s a b c
= s b s c
s2 as s2 b c s bc
s b c a bc
a b c b c a bc
b2 c 2 2bc a2 2bc
b2 c 2 a2 .
4.
B
r s b .tan
2
= s b .tan = s b
4
SOLUTION OF TRIANGLE
5.
2 s b
2
1
acb
.
2
c
ab = abc
=
PAGE # 27
1
.
abc
2s
4 s 1
1 1 1
. . = . .
=
abc
abc 2
R r 2
bc
s a
b c s a
b c b c = 0.
bc
r1 =
6.
7.
sa
b c . s a
b c 1 a b c = 0.
sb
sc
s a
s
s.
s a
s2
2
= r
s
4.
r2
2bc
A
.cos
2
bc
A
cos
2 b c 1 1 1
2bc
2b c
A
cos
2 =
1 1
2 b c
SOLUTION OF TRIANGLE
1
= 2
3.
b c
PAGE # 28
a .
As BPA = BCA
BPA c
Also,
In BDP
BDcot C
cos C
= c.cos B . sin C
= 2Rcos B cos C
sin A
a
a
=
Q.
t B t C
= 2
t A .
(i)
(ii)
(iii)
1
r
cos A
p1
1
R
bp1
cp2
cp3
a2 b2 c 2
+
+
=
.
c
a
b
2R
B
C
IA = abc tan 2 tan 2 tan 2 .
Q.2
P.T. pro.
Q.3
If x, y, z are respectively distance of the vertex from its orthocentre then prove that
x 2 R r .
Q.4
If x, y, z respectively are the 'r from the circum center to the sides of the triangle ABC then P.T.
Q.5
tan
A
2 1 .
abc
x 4xyz .
SOLUTION OF TRIANGLE
2
PAGE # 29
acos 2 3
.
(ii)
4
a
(iii)
s2
3 3
2
a sin 2 1
.
(iv)
4
a
Ans.1
2
a
p1
cos A
(iii)
p1
2R2
sin A .
R
.4
2
sin A
bp1
A.2.
2s
1
= .
2
r
cos A .a
sin 2A
(iii) bp1
R
2
b 2
c
a
b2 .2
abc
pb1
2
=
.
c
abc
T.P.
1
2R
a .
2
IA = a. tan 2
L.H.S. =
4R sin 2 sin 2
3 A B C A B C
= 64R s 2 s 2 s 2 .s 2 s 2 s 2
3
= 64R
Q.3
s A .s B .s C A B C
.t . . = abc
2 2 2
x 2R cos A
tan 2 .
SOLUTION OF TRIANGLE
PAGE # 30
a 2R sin A
tan A
x 2Rcos A
tan A = tan A = x
x = 2Rcos A
= 2R 1 4
sin 2
= 2 R 4R
sin 2
Q.4
= 2 R r .
x = R cos A
a 2R sin A
x Rcos A = 2 tan(A)
a
2
x
tan A
a
2x
= 2
Q.5
tan A
= 2
1
= 4
x .
A
B
2 A
2 B
tan 2 tan 2 tan 2 .tan 2
similarly
adding
(ii)
tan
A
2 1
A
2
abc
a cos
1 cos A
a
a acos A
2 a
(As
tan 2 tan 2 1 )
SOLUTION OF TRIANGLE
PAGE # 31
1 R sin 2A
= 2
4R sin A
sin A
A
cos 2
1 4
.
= 2 4 4
1 1
.8
2 4
sin 2
(iii)
1 1
1 3
8 .
2 4
8 4
s a s b s c
3
(Using
1/ 3
s a
s
3
s4
3
s.
s a
s a
s2
3 3
max
s2
3 3
------****-----
sin 2 8 )