Nothing Special   »   [go: up one dir, main page]

Chap 5 Development of Beam Equations: Review Simple Beam Theory Two Methods To Develop Beam Equations

Download as doc, pdf, or txt
Download as doc, pdf, or txt
You are on page 1of 35

CE 631 page

Chapter 5 Development of Beam Equations

Chap 5 Development of Beam Equations


Review Simple beam theory Two methods to develop beam equations o Direct Stiffness Method o !otential ener"y approach
Use relationship between stress and strain and prin iple of minimum potential energ% to reate element equilibrium equations! "e tion 5#&$5#6 plus se tion 5#1 ex ept step '# "e tion 5#&$5#5 and most part of 5#1 are for both methods (rgani)e "e tions! 5#1* 5#6* 5#&$5#5

Use available relationship between internal and external for es to reate element equilibrium equations! "e tion 5#1$5#5

Sec# 5#$ Beam Stiffness

Review Mechanics of Materials Coordinates and si"n conventions see next page
1

CE 631 page

Chapter 5 Development of Beam Equations

&

Beam in pure bendin"

&

CE 631 page

Chapter 5 Development of Beam Equations

Curvature of a "eneral bent beam

CE 631 page

Chapter 5 Development of Beam Equations

'

'

CE 631 page

Chapter 5 Development of Beam Equations

%eometrical relationships
+ x, =
1

+"ee the figure in previous page,

-pproximate for small deformation!


dv . + x, dx .
& &

. dv dx

Deformation relationships +"ee a figure in page &,


x =
y

= y

CE 631 page

Chapter 5 Development of Beam Equations

!hysical &material' equations ((()sed in !otential Ener"y method /or small deformation* linear elasti materials /or one dimensional stress ondition +pure bending,!

x = E =

Ey

= Ey

Equilibrium equations based on 0e hani s of 0aterials ((()sed in Direct Stiffness Method /or pure bending!
+ x, =
1

M + x, EI

or

!rocedures to *btain the %lobal Equations by Direct Stiffness Method in +E,


6

dv M + x, . + x, = dx EI .
& &

CE 631 page

Chapter 5 Development of Beam Equations

Step $# Select Element Type "imple Beam Elements! 1&D beam element2 ompare with 3D beam elements in 3D frames! % d1% d&% 1% 1x &% &x x 1) d1x &) d&x d1) 1 d&) & ) "ele t &D beam element! 3gnore axial for e* torsion* and out of plane shear and bending# ,ssumptions for -D Beam element "traight bar
4

CE 631 page

Chapter 5 Development of Beam Equations

Constant ross se tion 3sotropi material 5wo nodes at ends &D element! Ea h node two D(/! di* i Ea h element! four D(/! d1* 1* d&* & Basic un.nowns! D(/ of displa ements! dy/ 0 +no dx* d)* x* %, 6o axial for e* torsion* and out of plane shear and bending and related displa ements# 1ariables and local coordinates 2/ y &or v' 7ateral displa ements! v+x, Distributed lateral load! w+x,

CE 631 page

Chapter 5 Development of Beam Equations

Step -# Select a Displacement +unction

CE 631 page

Chapter 5 Development of Beam Equations

1>

E2press the displacement function in terms of interpolatin" Shape +unctions in matri2 form
.< = ; N + x , v + x, = ; N :=d
1

N + x,
&

N + x,
3

/ield displa ement fun tion


1 1y & 1 3

?redefined "hape /un tion for ea h un@nown D(/# 6i is onl% fun tion of x.
&y

. d . N + x ,: . d .
'

1y

&y

&

Un@nown D(/2s for ea h element

. + N + x , . . + N + x ,d v + x , = N + x,d

. + N + x ,
'

&

%eometric minin" of these four Shape +unctions for four D*+3s


1>

CE 631 page

Chapter 5 Development of Beam Equations

11

11

CE 631 page

Chapter 5 Development of Beam Equations

1&

Step 4# Define the Strain5Displacement and Stress5Strain Relationships Direct Stiffness Method! Based on the Simple Beam Theory! 5he relationships between the internal for es and deformations are! 0oment! M&2' 6 E7 &d-v5d2-' "hear! 1&2' 6 E7 &d4v5d24' 0+x, and A+x, are depend on displa ement v+x, -pproximate displa ement fun tion v+x,!
are fun tion of shape fun tions and un@nown nodal displa ements
61+x,* 6&+x,* 63+x,* 6'+x, are fun tions of x d1 * 1 * d & * &

are fixed un@nown values


1&

CE 631 page

Chapter 5 Development of Beam Equations

13

Step 8# Derive the Element Stiffness Matri2 and Equations By Direct Stiffness Method

13

CE 631 page

Chapter 5 Development of Beam Equations

1'

1'

CE 631 page

Chapter 5 Development of Beam Equations

15

Sec# 5#9 !otential Ener"y ,pproach to Derive Beam Element Equations


Concepts
( Discrete +inite Element Method ( Strain5Displacement of Stress5Strain Relations for simple beams d v . d v . = y = Ey . . or dx . dx . ( +unctional and 1ariational Methods 0inimum ?otential Energ% 0ethod! +page '8,p 6 ) :
& & x & x &

(f all the displa ements that satisf% the given boundar% onditions of a stru ture* those that satisf% the equations of equilibrium are distinguishable b% a stationar% value of the potential energ%# 3f the stationar% value is a minimum* the equilibrium state is stable#

15

CE 631 page

Chapter 5 Development of Beam Equations

16

( ;umerical 7nterpolation Methods ;6:

!otential Ener"y ,pproach for a Beam Element


16

CE 631 page

Chapter 5 Development of Beam Equations

14

-# ,ssume the displacement pattern to vary with a finite set of


14

CE 631 page

Chapter 5 Development of Beam Equations

18

undetermined parameters ( un.nown nodal displacements


5he on ept of "hape /un tion is the same as that in "e # 5#1!

v+x, B a1x3Ca&x&Ca3xCa' B ;6:=d< B ;61 6& 63 6':;d1% 1 d&% &:5 B 61d1%C6&1C63d&%C6'& B +1D73,+&x3$3x&7C73,d1%C+1D73,+x37$&x&7&Cx73, 1 C+1D73,+$&x3C3x&7,d&%C+1D73,+x37$x&7&, & B v +x* d1%* 1*d&%* &,

18

CE 631 page

Chapter 5 Development of Beam Equations

19

4# E2press the total potential ener"y in accordance with the displacement pattern

19

CE 631 page

Chapter 5 Development of Beam Equations

&>

8# Minimi0e the total potential ener"y with respect to un.nown nodal displacements to obtain the element equations and stiffness matri2es

;@:=d<B=f<

&>

CE 631 page

Chapter 5 Development of Beam Equations

&1

Step 5# ,ssemble the Element Equations to *btain the %lobal Equations and 7ntroduce Boundary Conditions Example! elements* D(/2s* oordinates* element stiffness matrix!

Sec# 5#- E2ample of ,ssembla"e of Beam Stiffness Matrices

&1

CE 631 page

Chapter 5 Development of Beam Equations

&&

Elobal equilibrium equations* boundar% onditions* final ompressed equilibrium equations!

&&

CE 631 page

Chapter 5 Development of Beam Equations

&3

Sec# 5#4 E2amples of Beam ,nalysis )sin" the Direct Stiffness +E, Method
"ee Example 5#1 on page 159! ? 1 7 & 7 3 E3 onstant

Element "tiffness 0atrix! developed b% dire t stiffness method or b% potential energ% approa h is the same# -ssumable element stiffness matrixes into global stiffness matrix are the same as Example in "e # 5#&# (nl% load and boundar% onditions are not the same! Use the load /1%B $?* and boundar% onditions! d&%B>* d3%B>* 3B>#
&3

CE 631 page

Chapter 5 Development of Beam Equations

&'

"olve equilibrium equations* get global un@nown nodal 4 PL 3PL PL = = displa ements! d = 1& EI ' EI ' EI Determine global nodal for es and moments b% "lobal full stiffness matrix and equilibrium equations in global oor2s!
3 & 1y &

&'

CE 631 page

Chapter 5 Development of Beam Equations

&5

Determine element for es b% element stiffness matrix and equilibrium equations in local oordinates!

&5

CE 631 page

Chapter 5 Development of Beam Equations

&6

"ign onvention for element for es and internal for es! 3nterpreter internal for e results!

&6

CE 631 page

Chapter 5 Development of Beam Equations

&4

5#8 Distributed <oadin" ( Equivalent ;odal +orces


Fe all "overnin" equations of stiffness method! =>? @dA 6 @+A $ Basi un@nowns! ;odal Displacement @dA $ 0eaning of @+A ;odal +orces

Conversion! Distributed <oadin" ;odal +orces Static equivalent Dire t "tiffness 0ethod Bor. equivalent ?otential Energ% 0ethod

&4

CE 631 page

Chapter 5 Development of Beam Equations

&8

1# "tati Equivalent $ +i2ed(end Reaction Method!

$ /ixed$end Fea tions! B 5he rea tions at the ends of an element if the ends of the element are assumed to be fixed# $ "tati Equivalent /or es! B 5he nodal for es have the same effe t on the element as the a tual distributed load# $ "tati Equivalent /or es B $ +/ixed$end Fea tions, $ "ee tabulate stati equivalent for es in -ppendix D

3# Gor@ Equivalent $ 1irtual Bor. Method!

&8

CE 631 page

Chapter 5 Development of Beam Equations

&9

$ Concept

?urpose! 5o repla e a distributed load b% a set of dis rete loads at nodal D(/2s# Concept of Equivalent 1irtual wor. of the actual distributed load is equal to that of the discrete load repla ement for arbitrary virtual nodal displa ement#

&9

CE 631 page

Chapter 5 Development of Beam Equations

3>

$ Method

Fe all Gor@ done b% -pplied 7oad in ?otential Energ% 0ethod! Gor@ done b% the distributed load!
W
distributed

= w+ x . ,v .+ x . , dx .
>

/or uniform w, w+x,=w* and

here

v .+ x . , = ; N :=d < = ; N + x ,
1

N + x,
&

N + x,
3

/or wor@ done b% Discrete load 3t needs


W
discrete

. d . N + x ,: . d .
'

1y

&y

&

. * . * . *d ., = W +d
1y 1 &y & 1 1y 1 1

or

Wdis rete B

.d . +m .d . . +f f .
&

&y

. +m .
&

&

3>

CE 631 page

Chapter 5 Development of Beam Equations

31

. * . * . *d . in Wdistributed B% reorgani)ing the oeffi ients of d Eet equivalent for es


1y 1 &y &

Equivalent forces

. f 1

.1 m

. f &

.& m

8# %eneral +ormulation for %lobal ;odal +orce C Equivalent ;odal +orces +see page 14&,

31

CE 631 page

Chapter 5 Development of Beam Equations

3&

5#5 Beam Element with ;odal Din"e E Modified Stiffness Matri2

Step $ Startin" with the "enerali0ed unreleased beam stiffness matri2

3&

CE 631 page

Chapter 5 Development of Beam Equations

33

Step - 7mpose the hin"e condition

m . =>
&
&

. . Condense out the de"ree of freedom associated with m . Eliminate the de"ree of freedom by partitionin"
&

&

=>

33

CE 631 page

Chapter 5 Development of Beam Equations

3'

Step 4 *btain the element equations &force(displacement equations' with the hin"e at node - and the element stiffness matri2

3'

CE 631 page

Chapter 5 Development of Beam Equations

35

5#F %aler.in3s Method to Derive Beam Element Equations

35

You might also like